AUTHOR=Bar Jair , Leibowitz Raya , Reinmuth Niels , Ammendola Astrid , Jacob Eyal , Moskovitz Mor , Levy-Barda Adva , Lotem Michal , Katsenelson Rivka , Agbarya Abed , Abu-Amna Mahmoud , Gottfried Maya , Harkovsky Tatiana , Wolf Ido , Tepper Ella , Loewenthal Gil , Yellin Ben , Brody Yehuda , Dahan Nili , Yanko Maya , Lahav Coren , Harel Michal , Raveh Shoval Shani , Elon Yehonatan , Sela Itamar , Dicker Adam P. , Shaked Yuval TITLE=Biological insights from plasma proteomics of non-small cell lung cancer patients treated with immunotherapy JOURNAL=Frontiers in Immunology VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1364473 DOI=10.3389/fimmu.2024.1364473 ISSN=1664-3224 ABSTRACT=Introduction

Immune checkpoint inhibitors have made a paradigm shift in the treatment of non-small cell lung cancer (NSCLC). However, clinical response varies widely and robust predictive biomarkers for patient stratification are lacking. Here, we characterize early on-treatment proteomic changes in blood plasma to gain a better understanding of treatment response and resistance.

Methods

Pre-treatment (T0) and on-treatment (T1) plasma samples were collected from 225 NSCLC patients receiving PD-1/PD-L1 inhibitor-based regimens. Plasma was profiled using aptamer-based technology to quantify approximately 7000 plasma proteins per sample. Proteins displaying significant fold changes (T1:T0) were analyzed further to identify associations with clinical outcomes using clinical benefit and overall survival as endpoints. Bioinformatic analyses of upregulated proteins were performed to determine potential cell origins and enriched biological processes.

Results

The levels of 142 proteins were significantly increased in the plasma of NSCLC patients following ICI-based treatments. Soluble PD-1 exhibited the highest increase, with a positive correlation to tumor PD-L1 status, and, in the ICI monotherapy dataset, an association with improved overall survival. Bioinformatic analysis of the ICI monotherapy dataset revealed a set of 30 upregulated proteins that formed a single, highly interconnected network, including CD8A connected to ten other proteins, suggestive of T cell activation during ICI treatment. Notably, the T cell-related network was detected regardless of clinical benefit. Lastly, circulating proteins of alveolar origin were identified as potential biomarkers of limited clinical benefit, possibly due to a link with cellular stress and lung damage.

Conclusions

Our study provides insights into the biological processes activated during ICI-based therapy, highlighting the potential of plasma proteomics to identify mechanisms of therapy resistance and biomarkers for outcome.