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Since the approval for the treatment of melanoma in 2014, immune checkpoint

inhibitors (ICIs) have revolutionized the therapy pattern across various

malignancies. Coinciding with their frequent usage, their adverse effects,

including fever, cannot be neglected. In the context of cancer diseases and

cancer treatments, fever of unknown origin (FUO), which has long posed a

challenge for clinicians in terms of diagnosis and management, brings forth new

connotation and significance. In this paper review, we present the concept of

ICIs-associated FUO, consider activated immune system and elevated cytokines

as commonmechanisms by which ICIs induce fever and various immune-related

adverse events (irAEs), summarize and compare the primary etiologies of ICI-

associated FUO, and compare it with conventional types of FUO.
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1 Introduction

Cancer cells attenuate the anti-tumor immune response, promote their proliferation

and metastasis through the expression of immune checkpoint proteins (1). Immune-

checkpoint inhibitors (ICIs), which reverse aforementioned tumor-mediated immune

evasion by blocking immune checkpoints, have revolutionized the treatment of

malignant tumors since the approval in 2014 (2). Currently, FDA-approved ICIs

comprise monoclonal antibodies targeting the PD-1 - PD-L1 axis or CTLA-4 - CD28

axis (3, 4) (Table 1). Concomitant with the surge of ICIs usage, immune-related adverse

events (irAEs) have garnered increasing attention. The irAEs involve respiratory, digestive,

nervous, hematological, and endocrine systems (5), and imbalances in their immune status

may be accompanied by fever.

For over a century, fever of unknown origin (FUO) has been a diagnostic and

therapeutic challenge for clinicians. FUO, characterized by the inability to clarify the

cause of fever despite reasonable investigations in inpatient or outpatient settings, lacks

consensus regarding specific febrile temperatures or fever duration (6). In general, FUO are
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classified as classic FUO, nosocomial FUO, immunodeficiency-

associated FUO, and travel-associated FUO. Given that 1) ICIs

are administered more frequently in cancer therapy; 2) pyrexia

stands as one of the most common adverse events of ICIs (7, 8); 3)

patients treated with ICIs face challenges in identifying and

discriminating the etiology of FUO, we believe that it is of crucial

clinical significance to list ICIs-associated FUO as a separate

category of FUO, which is defined as fever during ICIs

administration in cancer patients with immune activation,

cytokines secretion or pathogen reactivation.

In this review, we describe the mechanisms by which ICIs leads

to fever, summarize the main etiologies, pathogenesis and

characteristics of ICIs-associated FUO and make comparison

among them, and compare ICIs-associated FUO with

conventional types.
2 Mechanisms of post-treatment
pyrexia associated with ICIs

2.1 Endogenous pyrogens and other fever-
related cytokines

Fever is caused by the activation of pyrogenic agents, which

activate endogenous pyrogen (EP)-producing cells to generate and

release EP. This results in an upward adjustment of the body

temperature set point (SP), leading to regulated temperature

elevation (6). EP mainly consists of cytokines such as interleukin

(IL), tumor necrosis factor (TNF) and interferon (IFN), and the

levels of these cytokines usually alter after immunotherapy (9, 10).

IL-1 and IL-6 are considered to be the most important EP (9, 11),

whose production and release lead to the release of prostaglandin E

(PGE) from brain endothelial cells, which serves as a positive

regulatory mediator of fever (6). Research has shown that

blocking PGE production or attenuating its function can mitigate
Frontiers in Immunology 02
fever symptoms (12–14), which lays a theoretic foundation for

aspirin and ibuprofen.

IFN was first found to induce fever in clinical trials, and

subsequent studies have demonstrated that it entailed fever not

due to contamination with endotoxins or its impact on the IL-1

pathway (15), but rather through its direct action on the

thermoregulatory center. As a pro-inflammatory cytokine, TNF

can result in fever through RANKL/RANK-COX2-PEG2-EP3R

pathway and other experiments have proved that it can also

stimulate IL-1 production both in vivo and in vitro (15, 16).

IL-2 and IL-8 have also been viewed as cytokines highly

associated with fever, although there still remains controversy

regarding whether they are EP in the strict sense. It has been

suggested that IL-2 does not stimulate thermoregulatory center

directly, but induces fever indirectly by eliciting other EP, such as

circulating TNF (17). IL-8 is also thought to be associated with fever

and can be utilized as a biomarker for pyrexia, infection, septicemia

and neutropenia in cancer patients (17).
2.2 Alteration in cytokines’ level following
ICIs treatment

Both PD-1/PD-L1 inhibitors and CTLA-4 inhibitors contribute

to upregulation in the production and release of pro-inflammatory

cytokines and even leads to the occurrence of cytokine release

syndrome (CRS) in severe cases (18, 19). For instance, CTLA-4

monoclonal antibody leads to the release of TNF, IFN-g and IL-2,

which in turn further promotes T cell proliferation and activation

(2). Experiments in vitro have demonstrated that CTLA-4

monoclonal antibody administered in melanoma cell lines will

promote TNF-a production from NK cells (2). ICIs accelerate the

production of IFN-g, which increases tumor immunogenicity, curbs

the proliferation and infiltration of cancer cells, attracts immune

cells to malignant disease sites, and enhances the cytotoxic function

of NK cells and CTLs (20). It has been demonstrated that PD-1/PD-
TABLE 1 Immune checkpoint inhibitors approved by the Food and Drug Administration.

ICIs Target Clinical applications Trade name® Date of approval

Cemiplimab PD-1 BCC, CSCC, NSCLC Libtayo® Sep, 2018

Dostarlimab PD-1 Endometrial carcinoma Jemperli® Aug, 2021

Nivolumab PD-1 CRC, ESCC, HCC, M, NSCLC, RCC, UC, etc Opdivo® Dec, 2014

Pembrolizumab PD-1 Breast cancer, CRC, EC, GC, HCC, M, NSCLC, RCC, SCLC, UC, etc Keytruda® Sep, 2014

Atezolizumab PD-L1 Breast cancer, HCC, M, NSCLC, SCLC, UC Tecentriq® May, 2016

Avelumab PD-L1 MCC, RCC, UC Bavencio® May, 2017

Durvalumab PD-L1 NSCLC, SCLC, UC Imfinzi® May, 2017

Ipilimumab CTLA-4 CRC, HCC, M, NSCLC, RCC Yervoy® Mar, 2011

Tremelimumab CTLA-4 HCC Imjudo® Oct, 2022

Relatlimab
plus Nivolumab

LAG-3
plus PD-1

M Opdualag® Mar, 2022
BCC, basal cell carcinoma; CRC, colorectal cancer; CSCC, cutaneous squamous cell carcinoma; ESCC, esophageal squamous cell carcinoma; GC, gastric carcinoma; HCC, hepatocellular
carcinoma; M, melanoma; MCC, merkel cell carcinoma; NSCLC, non-small cell lung cancer; RCC, renal cell carcinoma; SCLC, small cell lung cancer; UC, urothelial carcinoma.
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L1 inhibitors can promote tumor-associated macrophages (TAMs)

to produce IL-6, and IL-6 inhibitors can elevate Th1 responses and

defers melanoma progression (21). As immune checkpoint

molecules including PD-1 - PD-L1 lead to a decrease in IL-2

release, ICIs may increase IL-2 secretion to augment immune

response (22). To the best of our knowledge, it is commonplace

for patients to experience elevated levels of certain cytokines after

ICIs treatment (Table 2), although the mechanisms of each

cytokine’s alteration has not been thoroughly investigated and

elucidated (20, 31).

To summarize, levels of IL-1, IL-2, IL-6, IL-8, TNF, and IFN in

patients may undergo elevation after ICIs treatment. And these

cytokines can function as EP or febrile activators, acting on the

preoptic anterior hypothalamus (POAH) through blood-brain

barrier (BBB) or organum vasculosum laminae terminalis

(OVLT) (32). Consequently, the SP rises due to the interaction

between the positive thermoregulatory center POAH and negative

thermoregulatory centers including ventral septal area (VSA) and

medial amygdaloid nucleus (MAN) (33–36). This eventually leads

to the feverish state characterized by reduced heat dissipation and

increased heat production. The possible mechanism of fever

induced by ICIs therapy is illustrated in (Figure 1).
3 Etiology of fever of unknown origin
induced by ICIs

Fever, caused by a wide variety of reasons, is frequently reported

in cancer patients (37), and fever is one of the most prevalent

adverse events after ICIs remedy (7, 8). When immunotherapy is

combined with other therapy patterns, the incidence of fever

increases remarkably. For example, the rate of febrile events lifts

in the combination of PD-1/PD-L1 inhibitors and chemotherapy,

compared with chemotherapy alone, as shown in a meta-analysis

with rates of 18.8% (85 out of 452) and 10.7% (47 out of 438)

respectively (37). In NSCLC, the incidence of fever is as high as
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32.5% - 38.1% in patients receiving ICIs plus chemotherapy or

radiotherapy (38).

Theoretically, adverse events following ICIs treatment involve

nearly every system. Considering their incidence, severity, and their

association with immune dysregulation and fever, we focus on

the following complications, including pneumonitis, tuberculosis

(TB), colitis, hepatitis, and hematological irAEs (Haem irAEs)

(5). Therefore, we aim to review fever of unknown origin

associated with ICIs according to above etiologies and compare

their differences.
3.1 Pneumonitis

The prevalence of checkpoint inhibitor pneumonitis (CIP) ranges

from 3.5% - 19% (39), with a mortality rate of 10% - 17% (40). The

potential mechanisms by which immunotherapy leads to

pneumonitis have been summarized in the following four points

(41). Firstly, ICIs lead to disorder in the quantity of T cell subsets,

manifested as a significant increase in CD4+ T cells, with Th1 cell

infiltration playing a predominant role. There is also an increase in

the infiltration of CD8+ T cells, particularly those expressing PD-1,

TIM-3, and TIGIT. The reduced number and inhibited function of

Tregs can also contribute to CIP. Secondly, elevated levels of

autoantibodies, including rheumatoid factor (RF), antinuclear

antibody, antithyroglobulin, antithyroid peroxidase and CD74

autoantibodies, also contribute to CIP (40). Thirdly, consistent with

what we mentioned earlier, the increase in various inflammatory

cytokines such as IL-1, IL-2, IL-13, G-CSF, GM-CSF is closely

associated with high-grade irAEs. In terms of CIP, the imbalance in

C-reactive protein (CRP), IL-6 and IL-17 is closely associated with

disease development. Fourthly, different therapy modalities exert

enormous impact. Anti-PD-1 therapy has a higher incidence rate

than anti-PD-L1 and anti-CTLA-4 therapy, and combination with

chemotherapy or radiotherapy raises the incidence through various

mechanisms (41, 42). Additionally, intestinal flora, non-coding RNA
TABLE 2 Elevation in cytokines’ level following ICIs administration.

ICIs Tumors N=
Elevated cytokines
(of participants/%)

References

Ipilimumab Bladder cancer 4 IFN-g (100%) (23)

PD-1 + CTLA-4 CC * IFN-g (24)

Pembrolizumab or nivolumab NSCLC 26 IL-1, IL-2, IL-8, TNF-a, IFN-g (25)

Pembrolizumab or nivolumab NSCLC 10 IL-6 (70%), TNF-a (60%) (26)

Nivolumab NSCLC 27 IL-8 (85.7% of initial responding patients) (27)

Nivolumab M 16 IL-6 (50%) (21)

Pembrolizumab or nivolumab M 29 IL-8 (48.3%) (28)

Ipilimumab + chemotherapy SCLC 37 IL-1, IL-2, IL-6, IL-8, TNF-a, IFN-g (29)

PD-1 + CTLA-4 No limit 12 IL-1, IFN-g (30)
CC, colon cancer; M, melanoma; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer.
*mouse model.
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and other immune cells (B cells, NK, DC) are also relevant to the

development of CIP.

The clinical presentation of CIP mainly includes dyspnea,

decreased activity tolerance, and cough, whereas fever (12%) and

chest pain (7%) are less common (42, 43). Consequently, case reports

of CIP reveal that fever is not the essential factor for the diagnosis of

CIP. In patients who claimed pyrexia, the onset of fever occurred

between week 2 and week 32 after immunotherapy, with peak

temperatures ranging from 38.1°C to 40 °C (43–48). However, the

fever type and daily variation of body temperature were not

thoroughly documented. Organizing pneumonia (OP) is the main

radiological manifestation of CIP, and bronchoscopy and

bronchoalveolar lavage fluid (BALF) can be utilized for differential

diagnosis (39). Biomarkers including IL-17A and IL-35 from BALF

may be associated with the occurrence and severity of CIP (39).
3.2 Tuberculosis

Patients undergoing ICIs administration are eight times more

likely to contract TB than the general population, according to an

observational study (49). A Meta-analysis revealed that patients

receiving PD-1/PD-L1 in developed Asian countries were 35 times

more likely to develop TB than general population (50). Hence several
Frontiers in Immunology 04
reports have suggested that TB screening should be performed prior to

ICIs treatment (51, 52). PD-1 and PD-L1 inhibitors are associated

with TB reactivation, whereas CTLA-4 inhibitors appeared to have no

impact (52, 53). Immune checkpoints are closely related to TB

infection, as their expression is upregulated when TB is active and is

downregulated when TB is curbed. Defects in PD-1/PD-L1 exacerbate

TB infection, which is associated with increased infiltration of

inflammatory cells and cytokines. Thus, the expression of immune

checkpoints may be a necessary condition for maintaining lymphocyte

function as protective responses against TB infection (54).

Upon infection with mycobacterium tuberculosis (MTB), body’s

intrinsic immune cells, mainly macrophages, recognize TB through

pattern recognition receptor (PRR). Cytokines including IL-1, IL-6,

TNF-a will be secreted by macrophages to guide the accumulation of

lymphocytes and monocytes at the location of MTB. Among them,

CD4+ Th1 T cells release loads of cytokines, encompassing TNF-a,
IFN-g, IL-2, etc., gradually forming tuberculous granuloma. After

that, the body represents a state of latent infection, during which PD-

1 expression is elevated, inducing T cells’ apoptosis. Nevertheless,

ICIs block PD-1/PD-L1, restoring lymphocytes’ function and

releasing inflammatory cytokines such as IFN-g and TNF-a.
Excessive inflammatory cells and cytokines destroy the extracellular

matrix, favoring the growth of MTB, which breaks the state of latent

infection and leads to the reactivation of TB (53).
FIGURE 1

Mechanisms of post-treatment pyrexia associated with ICIs. BBB, blood-brain barrier; MAN, medial amygdaloid nucleus; OVLT, organum vasculosum
laminae terminalis; POAH, preoptic anterior hypothalamus; SP, set point; VSA, ventral septal area.
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TB infection following ICIs therapy lacks specificity, and is

usually characterized by cough, expectoration, breathlessness, fever

and weight loss (49, 53). Imaging manifestations, from chest X-ray

and contrast CT, support the diagnosis with features like new

consolidation, patchy opacity/nodules, or the tree-in-bud sign,

especially in the upper lobes (49). However, confirmation is

achieved by culture of MTB or DNA detection by polymerase

chain reaction (PCR) (52, 55). Besides, interferon-gamma release

assay (IGRA) testing is recommended to assess the risk of developing

active TB for relevant patients (56). In case reports, we find many

patients are diagnosed with TB despite the absence of symptoms of

shortness of breath, cough, fever, night sweats (55, 57). In case reports

with detailed fever data, we found that the fever of TB infection

following ICIs therapy occurred between week 13 and week 87, with

peak temperatures between 38.6°C and 39.2°C (58–61).
3.3 Hepatitis

The incidence rate of developing immune-mediated hepatitis

(IMH) in patients receiving immunotherapy ranges from 5% to 10%

(62). The risk of liver toxicity is higher with CTLA-4 inhibitors,

reaching up to 15%, and the figure is even higher when multiple

ICIs are used in combination (63). Possible mechanisms include

cytotoxicity due to complement activation, but such theory fails to

elaborate why the liver would be a specific target (62). It has been

proposed that ICIs block immunosuppressive signals and stimulate

T cells’ function, activation and proliferation. Activated T cells,

under the influence of adhesion molecules, adhere to the hepatic

sinusoids. Fas receptors on activated T cells bind to FasL expressed

on liver sinusoidal endothelial cells and Kupffer cells, resulting in

apoptosis of activated T cells. Kupffer cells, activated by Fas/FasL

binding and IFN-g secreted by T cells, release TNF-a to render

hepatocytes more sensitive to IFN-g-mediated apoptosis, resulting

in apoptosis and injury of hepatocytes ultimately (62).

Although most IMH cases are asymptomatic, a small fraction of

them may exhibit fatigue (17.1%), abdominal discomfort (14.0%),

fever (14.0%), rash (4.3%), and jaundice (3.7%) (64, 65). Reports

indicate that fever is more prevalent in CTLA-4 inhibitors

treatment than PD-1/PD-L1 inhibitors treatment (66). Elevated

ALT or AST exceeding twice the upper limit of normal is regarded

as an indicator of IMH (64). Imaging findings manifest

hepatomegaly, peri-portal edema and lymphadenopathy, which

are non-specific (62). The histological pattern of PD1/PD-L1-

associated IMH tend to exhibit lobular hepatitis, whereas CTLA-

4-associated IMH is more inclined to granulomatous hepatitis (66).

Fever of IMH typically appears between day 3 and week 26 and

ranges 38°C to 40°C (66, 67).
3.4 Colitis

The incidence of immune-mediated colitis (IMC) is

approximately 3.6% (68). Statistics indicate that the incidence of

all-grade colitis after PD-1/PD-L1 treatment is around 1% - 1.6%
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while the figure for CTLA-4 treatment can be as high as 8.8% - 9.1%

(68). The inflammation in the colonic mucosa is attributed to higher

level of cytokines released by CD4+ T cells and the mucosal

infiltration of CD8+ T cells with enhanced cytotoxicity and

proliferative state (69). IL-1, IL-10, IL-17 and transforming

growth factor-b1 (TGF-b1) may serve as biomarkers of IMC (68).

Symptoms of IMC include abdominal pain (20%), abdominal

bloating, nausea and vomiting (15%), fever (12%), along with the

presence of mucus and blood in stool, and signs of peritoneal

irritation (68, 70). Endoscopy is considered the gold standard for

diagnosing IMC. Laboratory tests, including complete blood count,

CRP and erythrocyte sedimentation rate, stool testing for infectious

pathogens, and virus or parasites infections are used as adjuncts in

the diagnostic process (68). Pathological biopsy lacks specificity due

to its diverse histologic manifestations, but CT can evaluate the

degree of inflammatory changes in IMC, which includes bowel wall

thickening, mesenteric engorgement, fat stranding, and fluid-filled

bowel (68). It has been observed that fever onset occurs relatively

early, ranging from day 5 to week 9, with reports extending to week

43 or week 147. The peak temperature typically ranges from 37.2°C

to 39°C (70–77).
3.5 Neutropenia

Patients receiving ICIs treatment exhibit reduced risk of

neutropenia compared to those undergoing chemotherapy.

Despite this, neutropenia remains one of the most common

Haem irAEs, accounting for approximately one-fourth of

hematologic complications (78, 79). Notably, neutropenia induced

by ICIs, although rare, mostly presents as grade 4 (absolute

neutrophil count < 500 cells/µL), posing a risk of fatal septic

shock and is thus described as a life-threatening side effect (80,

81). In such cases, a substantial number of patients must

permanently discontinue ICIs treatment (81, 82). A retrospective

study based on FAERS database highlighted the incidence and

severity of neutropenia, identifying fever and neutropenia as

common fatal adverse events in PD-L1 monotherapy and the

most prevalent fatal adverse events in PD-L1 combined with

bevacizumab (83). The study highlights that combination

therapies, the current research hot spot, can help patients delay

tumor progression and reduce mortality compared with

monotherapy (84). However, it also comes with a significantly

increased incidence of neutropenia and fever. Therefore, a deeper

understanding of ICIs-induced neutropenia could assist clinicians

in more effectively managing irAEs and making informed treatment

decisions. The mechanism underlying ICIs-induced neutropenia

remains to be explored. According to the current research, we

summarize that a portion of neutropenia may occur due to the

activation of T cells, leading to widespread infiltration of cytotoxic T

cells into the bone marrow tissue. This type is also referred to as the

central type. Correspondingly, the peripheral type may arise due to

the production of anti-neutrophil antibodies, impeding

granulocytes’ maturation (85, 86). Therefore, immunological

examination of anti-neutrophil antibodies and bone marrow

examination can help identify potential causes.
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In cases of ICIs-induced neutropenia, patients may not exhibit

any symptoms, with abnormalities often detected through

laboratory tests. Due to the role of neutrophils in innate immune

defense, patients are susceptible to infection-related fever, and the

proportion of febrile neutropenia typically usually exceeds 50% (85,

87, 88). While most fevers observed in ICIs-related trials are

categorized as grade 1 or 2 adverse reactions, febrile neutropenia

is consistently described as grade 3-5, which is most likely to result

in the discontinuation of ICIs therapy (37). In a retrospective study

involving 35 patients with Haem irAEs registered in three

pharmacovigilance databases, 9 patients developed neutropenia,

of which 6 patients (66.7%) progressed to febrile neutropenia due

to infection. Notably, 2 deaths associated with ICIs were both

attributed to febrile neutropenia (78). Despite the effectiveness of

steroids in alleviating Haem irAEs, it is recommended to administer

G-CSF and antibiotics to patients with febrile neutropenia instead

of choosing systemic steroid treatment. The onset of febrile

neutropenia commonly occurs in the third or fourth cycle of

treatment, typically around 6 to 12 weeks after the initial ICIs

treatment. The peak temperature of patients generally exceeds 38°C,

with most cases ranging between 38°C and 39°C (89–96).
3.6 Cytokine release syndrome

Cytokine release syndrome (CRS) is relatively rare in patients

treated with ICIs, as evidenced by an incidence of approximately 4.6%

reported in a single-center retrospective study (19, 97, 98). However,

once it occurs, it tends to be persistently severe and potentially life-

threatening (99, 100). CRS, as a systemic inflammatory response

mediated by inflammatory cytokines, is directly triggered by

immunotherapy. It was initially used to describe the toxic side effects

associated with the anti-T-cell antibody OKT3. Subsequently, it has

been observed in various immune-related therapies, including anti-

thymocyte globulin (ATG), rituximab, chimeric antigen receptor

(CAR) T cell therapy (101–103). Thus, with the greater success of

immunotherapy, there is growing interest in investigating the

mechanisms, diagnosis, and treatment of CRS. T cells activated

during immunotherapy can produce inflammatory cytokines such as

IFN-g, TNF, and GM-CSF. Furthermore, the lysis of tumor cells is also

attributed to the elevated level of these cytokines, which can activate

macrophages to secrete inflammatory mediators, including the crucial

cytokines IL-6 and IL-1 (104, 105). IL-6 has been proven to actively

participate in the systemic pathological response in CRS patients. It

initiates the subsequent release of cytokines by signaling to non-

immune tissues such as endothelial cells, triggering cascade reaction

that results in severe symptoms, including vascular leakage, circulation

failure, complement activation, and disseminated intravascular

coagulation (106). In addition, IL-1 can also contribute to

downstream cascade reaction, resulting in the release of large

amounts of cytokines. Moreover, IL-1 can signal to the

hypothalamus and pituitary gland to induce fever and has been

found a strong association with neurotoxicity (104, 107). Given the

critical role of IL-6 and IL-1 in CRS, the corresponding IL-6R inhibitors

(Tocilizumab) and IL-1R inhibitors (Anakinra) have been identified for

their effectiveness in treatment (19, 108, 109).
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The clinical symptoms and severity of CRS exhibit wide

variation. Mild cases may manifest with symptoms such as fever,

headache, myalgia, and nausea, while severe cases can present with

hypotension, cardiac dysfunction, cerebral edema, myocarditis,

hepatic and renal failure, and other organ-related severe

symptoms (19, 110). Due to the nonspecific feature of CRS

symptoms, there may be overlapping symptoms with tumor lysis

syndrome, infections, and neutropenia, which need to be carefully

identified and considered for attribution (110). Fever, a hallmark of

CRS, typically occurs around 11.0 days after the initiation of ICIs.

Interestingly, patients with severe CRS may present with fever

significantly later (111). CRS patients generally experience high

fever, and a review of published case reports indicates that peak

temperatures induced by ICIs range from 38.5°C to 40.3°C, with

most cases exceeding 39°C (99, 100, 109, 112–114).
3.7 Hemophagocytic lymphohistiocytosis

Hemophagocytic lymphohistiocytosis (HLH) is a rare but

critical immune complication characterized by an overactive

immune system that results in multi-system damage (115–117).

The observational study of the VigiBase database reveals an

incidence of ICIs associated with HLH at approximately 0.08%

(118). However, the incidence of life-threatening or fatal conditions

in these HLH patients alarmingly reaches 44% (118). Similar to

CRS, HLH is attributed to a systemic inflammatory response. The

key pathophysiological process involves the over-activation of CD8

+ T-cells and macrophages, leading to the secretion of substantial

amounts of pro-inflammatory cytokines, including IFN-g, TNF-a,
IL-1, IL-4, IL-6, and IL-8. The excessive cytokine levels in serum

lead to organ damage and systemic organ failure (119, 120). Current

research highlights IFN-g as a pivotal player in HLH. This

inflammatory factor not only induces fever and activates

macrophages but also hampers bone marrow and blood cell

production, leading to cytopenia and lymph node disease (121,

122). Consequently, targeting IFN-g emerges as a potential strategy

to improve the prognosis of HLH patients.

According to the HLH-2004 and Hscore diagnostic criteria,

common symptoms in patients with HLH include fever and

splenomegaly (123, 124). Typical laboratory findings include 2 or

3 lineages of peripheral blood cytopenias, hypertriglyceridemia,

hypofibrinogenemia, elevated serum ferritin, and sCD25 (125).

The biopsy can reveal hemophagocytosis in the bone marrow,

spleen, or lymph nodes (126). It is worth noting that many

symptoms overlap between CRS and HLH. Severe CRS

may present similar clinical and laboratory manifestations of

HLH, including elevated serum ferritin and triglycerides, which

makes it challenging to distinguish from primary HLH (127).

Despite theoretical differences in cytokine levels, such as the

higher levels of IL-6 in CRS patients, the challenge lies in the

variability of baseline inflammatory cytokine levels in cancer

patients, making it unreliable as a discriminatory factor (110).

It has been suggested in the literature that CRP, an IL-6 reactant

produced by the liver, can serve as a reliable surrogate for IL-6

bioactivity, aiding in the differentiation between the two
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complications (19, 128). ICIs-induced HLH typically occurs

between 3 to 15 weeks after the initiation of ICIs, with a median

of 7 weeks, often observed during the third or fourth cycle of

treatment (118, 129). One of the diagnostic criteria for HLH is

the presence of a fever higher than 38.5°C. According to our

review, patients with ICIs-induced HLH frequently exhibit

hyperthermia, with peak temperatures ranging between 38.6°C

and 40.5°C (115–117, 124, 130, 131).
4 Comparison between ICIs-related
FUO with other FUO types

It is generally accepted that FUO is mainly categorized into

classic FUO, nosocomial FUO, and immunodeficiency-associated

FUO and others (6). In this review, we aim to summarize a novel

type FUO, namely ICIs-associated FUO. First and foremost, we

make comparison of the etiology, incidence, clinical presentation,

diagnostic methods and fever condition in various types of ICI-

associated FUO (Table 3). The comparison of their time to onset of

fever and peak body temperature is illustrated in (Figure 2). It can

be noted that patients with CRS and HLH tend to experience higher

febrile temperatures, whereas patients with TB, IMC, and
Frontiers in Immunology 07
neutropenia typically present febrile temperatures below 39°C.

The majority of patients develop fever symptom within 25 weeks

of the initiation of ICIs, with TB being the exception, possibly

because reactivation of TB is associated with the patient’s latent

infection status and the nutritional and immune condition, which

warrants further investigation. Notably, CRS, an acute systemic

inflammatory response, has the earliest onset time of fever among

all irAEs. Moreover, through the in-depth exploration of the

pathogenic mechanisms, we summarized immune activation,

elevation of cytokines, and infection or reactivation of pathogens

as crucial features of ICI-associated FUO. Consequently, laboratory

tests of cytokines and pathogens can serve as two crucial clues for

diagnosis in clinical practice.

Subsequently, we conducted a comparison between ICIs-

associated FUO with classic FUO, nosocomial FUO, neutropenia-

associated FUO, and HIV infection-associated FUO. The main

points of comparison encompass their definitions, patient

distributions, primary etiologies, key elements in history inquiry

and physical examination, auxiliary tests, management, and clinical

course (Table 4) (6, 132–134). Instead of identifying a particular

cutoff as peak temperature and duration time in the definition, we

emphasize that the mechanism of ICIs-associated FUO involves

autoimmune activation induced by ICIs, leading to the release of EP
TABLE 3 Comparison between various irAEs inducing FUO after ICIs administration.

Pneumonitis TB Hepatitis Colitis Neutropenia CRS HLH

Etiology
associated
with FUO

immune
activation and
cytokines
secretion

immune
activation and

pathogen
reactivation

immune
activation and
cytokines
secretion

immune
activation and
cytokines
secretion

immune activation and
pathogen infection

immune
activation

and
cytokines
secretion

immune activation
and

cytokines secretion

Epidemiology 3.5% - 19%
1.7%;

(1% - 6%)**
5%-10% 3.6% 0.94%

4.6%
or lower

0.08%

More
prevalent
ICI model*

PD-1/L1 PD-1/L1 CTLA-4 CTLA-4 PD-1/L1 PD-1/L1 PD-1/L1

Incidence
rate of fever

12% NA 14% 12% 50% All Nearly All

Clinical
presentation

dyspnea; cough;
fever; chest pain

cough; fever;
expectoration;
weight loss

fatigue;
abdominal
discomfort;

fever;
rash; jaundice

diarrhea;
abdominal
discomfort;
nausea;

vomiting; fever

fever; weakness; pain

fever;
tachycardia;
headache;

hypotension

fever; splenomegaly;
hepatomegaly;

skin rash

Laboratory
tests

elevated CRP,
ESR, WBC, N

acid-fast
staining;

sputum culture;
PCR;

NGS; IGRA

elevated ALT,
AST, ALP, STB

elevated CRP,
ESR, fecal
calprotectin;
anemia;

stool culture

reduced N
elevated IL-
6, IL-1, IFN-

g, CRP

cytopenia;
hypertriglyceridemia;
hypofibrinogenemia

Histologic
findings

lymphocytic
infiltration;

granulomatous
inflammation; OP

necrotic tissue
layer;

granulomatous
inflammation

mononuclear
inflammation;

lobular
hepatitis;

granulomatous
hepatitis

diffuse mucosal
inflammation;

acute
inflammatory

features

granulocyte hypoplasia;
granulocyte maturation

blockade, or
lymphocyte infiltration

–

hemophagocytosis in
bone marrow, spleen,

or lymph node
ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BALF, bronchoalveolar lavage fluid; CRP, C reactive protein; CRS, cytokine release syndrome; ESR,
erythrocyte sedimentation rate; HLH, hemophagocytic lymphohistiocytosis; IGRA, interferon-gamma release assay; N, neutrophil; NA, not available; NGS, next-generation sequencing; OP,
organizing pneumonitis; PCR, polymerase chain reaction; STB, serum total bilirubin; TB, tuberculosis; WBC, white blood cell; d, day(s); m, month(s); w, week(s).
*confined to ICI monotherapy irrespective of combination regimen;
**1.7% is confined to lung cancer, while 1% - 6% is confined to PD-1/PD-L1 therapy.
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and other fever-associated cytokines. ICIs-associated FUO occurs in

both outpatients and hospitalized patients, whose potential

etiologies theoretically encompass all adverse events caused by

ICIs. Therefore, during history taking, attention should be paid to

the patient’s medication and treatment history, as well as their

cancer conditions. Targeted physical examinations and diagnostic

investigations should be carried out accordingly.
Frontiers in Immunology 08
5 Discussion

It is common for cancer patients to experience fever triggered by

the tumor, infection, and various treatment patterns. Drug-induced

fever in cancer patients has grabbed sufficient attention, as relevant

guidelines have been developed (37). It is of vital importance to clarify

the causes and mechanisms of fever. The mechanisms of irAEs
A

B

FIGURE 2

Comparison of fever condition in different types of irAEs. (A) Range of peak fever. (B) Time to onset of fever.
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include augmented T cells’ response to normal and tumor tissues,

elevated levels of cytokines, increased levels of autoantibodies, and

enhanced complement-mediated inflammation (135). However,

while this might account for the occurrence of Haem irAEs

induced by ICIs, it falls short of demonstrating the specificity of

adverse events occurring in individual solid organs. This review

delves into the immunological mechanisms of pneumonitis, TB,

hepatitis, and colitis caused by ICIs separately and finds that they

all include abnormal changes in cytokines’ level. Therefore, we

propose that the elevation of multiple cytokines and immune

activation are a shared characteristic among them.

In addition to aforementioned compilations, there is a potential

of other system disorders, such as encephalitis and meningitis,

belonging to central nervous system diseases, presenting with fever

(136). Because these adverse effects occur relatively less, they are

inadequately documented and the potential mechanism still waits

for further exploration (137, 138). Notably, they can result in poor
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prognosis, even fatality, which should not be overlooked in clinical

practice (139).

It is noteworthy that the incidence of irAEs, the onset time of

them, and the severity vary for different types of cancers and drugs.

In general, the incidence and severity of adverse events at all grades

are higher for anti-CTLA-4 inhibitors (135, 140). However,

concerning fever solely, there seems to be a lack of extensive

statistic on the incidence, onset time, and severity of fever among

various irAEs caused by anti-PD-1/PD-L1 and anti-CTLA-4

inhibitors. In the section of IMH, we mention that fever is more

prevalent with anti-CTLA-4 inhibitors than with anti-PD-1/PD-L1

therapy (66), but there is still a lack of statistically rigorous analyses,

leaving room for future exploration. As biomarkers are a hot spot in

medical research at present, exploring whether we can predict the

occurrence and severity of fever in ICIs-treated patients by assessing

baseline and post-treatment levels and alterations in multiple

cytokines represents an avenue for future efforts. Additionally,
TABLE 4 Comparison between ICIs-related FUO with other FUO types.

Classic FUO Nosocomial FUO
Neutropenia-
associated FUO

HIV
infection-
associated

FUO

ICIs-associated FUO

Definition
> 38.3°C,
> 3w,

> 1w clinical assessment

> 38.3°C,
> 3d,

no fever at admission

> 38.3°C,
> 5d,

despite empirical
antibiotic therapy

> 38.°C,
> 3w for

outpatients
> 3d for inpatients

fever during ICIs
administration with
immune activation

Distribution
community patients,
outpatients, inpatients

ICU patients,
non-ICU patients

inpatients,
outpatients

community
patients,

outpatients,
inpatients

inpatients,
outpatients

Main
Etiology

infections, NIID, cancers
nosocomial infections,
postsurgical infections,

drugs

infections
(though only 40% -
60% of cases have

pathogens identified)

HIV, HHV-8 and
Mycobacterial
infections;

toxoplasmosis;
cryptococcosis;
lymphoma

pneumonitis, TB, hepatitis,
colitis, neutropenia, CRS,
HLH, hypophysitis, etc

History
Taking

history of travel, contact, animal
exposure, family, immunization,

valvular heart disease

history of surgery, invasive
operation, medication;

medical devices
implantation;

anatomical structure

history of medication
and primary

immunodeficiency
diseases; stage

of chemotherapy

history of exposure,
contact, travel,
medication;

infection stage of
HIV; risk factors

history of medication
(chemotherapy,

immunotherapy, targeted
therapy); radiotherapy;

cancer conditions

Physical
Examination

fundi, oropharynx, temporal artery,
heart, abdomen, lymph nodes,

spleen, joints, skin, nails, genitalia,
rectum, prostate, deep veins

wound, drainage tube,
implanted medical devices,

sinus tract, urine

skin folds, venipuncture
site, lungs,

perianal region

oral cavity, nasal
sinuses, skin, lymph
nodes, eyes, lungs,
perianal region

skin, liver, lungs, abdomen,
lymph nodes, thyroid, heart,

nervous system

Auxiliary
Tests

based on diagnostic clues
imaging tests;
bacterial culture

thoracic imaging tests;
bacterial culture

CBC; serological
tests; thoracic and
cranial imaging
tests; fecal tests;
lung, liver, and
marrow biopsy;
bacterial culture

cytokines level; pathogen
tests; CBC; CRP; ESR; blood
biochemistry; thoracic and
abdominal imaging tests;

Management
observation; recording of body
temp; conducting auxiliary tests;
avoiding empirical medication

based on patients’ condition
antibacterial
medication

antiviral and
antibacterial
medication;
vaccination

suspend ICIs;
corticosteroid;

anti-cytokines antibody;
antimicrobial medication;

Course several w - m several d -w several d - 1 w several w - m several w - m
CBC, complete blood count; NIID, non-infectious inflammatory and autoimmune diseases; d, day(s); m, month(s); temp, temperature; w, week(s).
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exploring the potential for designing preventive and therapeutic

measures based on these biomarkers is an area worth considering.

Consistent with the traditional view, we regard fever as an

adverse symptom following ICIs treatment. In other words, we

focus on the process by which ICIs induce fever, rather than the

effect that fever exerts on ICIs treatment. It is reported that fever

regulates the tumor immune microenvironment and enhances the

immune response through heat shock protein (141). Considering

that fever can promote damage to tumor DNA and induce

immunogenic cell death, fever may play a positive role in

suppressing tumor growth, activating the immune system and

enhancing the efficacy of ICIs (138). This perspective is

advantageous for a dialectical consideration of the physiological

significance of ICIs-associated FUO.
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