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Arginine and tryptophan are pivotal in orchestrating cytokine-driven macrophage

polarization and immune activation. Specifically, interferon-gamma (IFN-g)
stimulates inducible nitric oxide synthase (iNOS) expression), leading to the

conversion of arginine into citrulline and nitric oxide (NO), while Interleukin-4

(IL4) promotes arginase activation, shifting arginine metabolism toward ornithine.

Concomitantly, IFN-g triggers indoleamine 2,3-dioxygenase 1 (IDO1) and

Interleukin-4 induced 1 (IL4i1), resulting in the conversion of tryptophan into

kynurenine and indole-3-pyruvic acid. These metabolic pathways are tightly

regulated by NAD+-dependent sirtuin proteins, with Sirt2 and Sirt5 playing

integral roles. In this review, we present novel insights that augment our

understanding of the metabolic pathways of arginine and tryptophan following

Mycobacterium tuberculosis infection, particularly their relevance in macrophage

responses. Additionally, we discuss arginine methylation and demethylation and

the role of Sirt2 and Sirt5 in regulating tryptophan metabolism and arginine

metabolism, potentially driving macrophage polarization.
KEYWORDS
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Introduction

Understanding how our immune system, particularly macrophages, combats the

infection of Mycobacterium tuberculous (MTB), the causative agent of tuberculosis, is

paramount for developing effective treatments and prevention strategies. Recent findings

have highlighted the functional heterogeneity of human M1 and M2 macrophages, with

secreted pro-inflammatory and anti-inflammatory cytokines, respectively and exhibit

distinct transcriptomes (1). M1 macrophages, driven by interferon-gamma (IFN-g), are
generally associated with the classical activation and pro-inflammatory response. They are
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characterized by the production of nitric oxide (NO) through

inducible nitric oxide synthase (iNOS), which converts arginine

to citrulline and NO (2–6). NO has antimicrobial properties and

can help in the control of intracellular pathogens like MTB (1, 7–

10). Furthermore, M1 macrophages exhibit enhanced autophagy to

eliminate MTB (1). In contrast, M2 macrophages, driven by IL-4,

are associated with alternative activation and anti-inflammatory

response. They express Arginase-1 (Arg1), which converts arginine

to ornithine and urea, promoting tissue repair and fibrosis.

Furthermore, the production of ornithine in M2 macrophages

contributes to immunosuppression, allowing the bacteria or MTB

to evade the host immune response. Therefore, in addition to

autophagy, the balance between citrulline and ornithine

production, determined by arginine metabolism via either iNOS

or Arg1, plays a crucial role in the control of MTB infection by

polarized M1 vs M2 macrophages. Tryptophan catabolism, up-

regulated by indoleamine 2, 3-dioxygenase 1 (IDO1), has been

reported in individuals with active TB and latent TB infection

(LTBI) (11, 12). Systematic analysis of the gene and protein

expression in human alveolar macrophages from MTB-infected

individuals identified IL-1b, STAT1 and IDO1 as hub genes

associated with MTB growth. Their expression shifts from low

initial levels in M1 macrophages to high levels in M2 macrophages.

(13). Our proteomics and gene expression analysis further

confirmed alterations in tryptophan catabolism between M1 and

M2 macrophages and revealed that Interleukin 4 induced 1 (IL4i1)

and aryl hydrocarbon receptor (AHR) were down-regulated in M1

macrophages. While arginine and tryptophan are the primary focus

of this review, it is important to note that glutamine, serine, and
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other amino acids are also implicated in immune responses to MTB

infection, albeit beyond the scope of this review (14).

The intricate connection between arginine and tryptophan

metabolism in the context of immune cell regulation have been

underexplored, despite their shared cytokine regulation. Emerging

evidence points to Sirtuin proteins, Sirt5 and Sirt2, as key regulators.

Sirt5 influences glutamate synthesis from glutamine through

desuccinating glutaminase (GLS) which protects it from

ubiquitin-mediated degradation (15). In addition, Sirt5

deacetylates Carbamoyl-Phosphate Synthase 1 (CPS1) and

upregulates its activity (16, 17), which enhances the urea cycle,

promoting citrulline production from carbamoyl phosphate and

ornithine (Figure 1). In contrast, Sirt2 appears to regulate

tryptophan catabolism through the activation of IL4i. For

example, Sirt2 has been implicated in the control of IL4i1

expression in blood cells from acute myeloid leukemia (AML)

(18). Recently, we have found that Sirt2 also regulates IL4i1

expression in macrophages, impacting their polarization and

control of MTB growth. We observed distinct expression patterns

with Sirt5 being more prominent in M1 macrophages compared to

M2, and Sirt2 showing higher expression in M2 macrophages

compared to M1 (1). These findings suggest that Sirt2 and Sirt5

may differentially regulate arginine and tryptophan metabolism,

impacting macrophages polarization and their anti-TB activity (1,

19). This review compiles and synthesizes the latest knowledge on

arginine and tryptophan metabolism and their intricate association

with MTB infection. The insight offered here are intended to guide

future research endeavors, focusing on the expression of Sirtuin

proteins in macrophages during tuberculosis. The ultimate aim is to
FIGURE 1

Arginine metabolism and its associated metabolic network in human cells. ACY1, Aminoacylase-1; ARG1, Arginase 1; ASL, Argininosuccinate Lyase;
ASNS, Asparagine Synthetase; ASS1, Argininosuccinate Synthase 1, CPS1, Carbamoyl-Phosphate Synthase 1; DDAH, Dimethylarginine
Dimethylaminohydrolase; GDH, Glutamate Dehydrogenase; GLS Glutaminase; GOT1, Glutamic-oxaloacetic Transaminase 1; GS, Glutamine
Synthetase; ME1, Malic Enzyme 1; NAGS, N-Acetylglutamate Synthase; NAT8, N-Acetyltransferase 8; NAT8L, N-Acetyltransferase 8 Like; iNOS/
NOS2:, Inducible Nitric Oxide Synthase/Nitric Oxide Synthase 2; OAT, Ornithine Aminotransferase; ODC, Ornithine Decarboxylase; OTC, Ornithine
Transcarbamylas; PRMT, Protein Arginine Methyltransferase; Sirt5, Sirtuin 5. Abbreviation of metabolites, Ac-CoA, Acetyl Coenzyme A; ATP,
Adenosine triphosphate; Cit, Citrate; GSA, Glutamyl-g-semialdehyde; a-KG, a-ketoglutarate; Fum, Fumarate; Mal, Malate; Oaa, Oxaloacetic acid;
P5C, Pyrroline-5-carboxylic acid; PLP/B6, Pyridoxal 5’-phosphate/Vitamin B6; Pyr, Pyruvate; R5P, Ribose-5-phosphate; Rme/Rme2, Arginine
monomethylation/Arginine dimethylation; Suc, Succinate; PPP, Pentose Phosphate Pathway; TCA, Tricarboxylic acid cycle. For the purpose of
emphasis, enzymes and pathways are in blue-outlined box; Sirt5, active action, and NO are in green-outlined box; Sirt5 substrates, NAO, and
methylated arginine are in red-outlined box.
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identify potential targets for host-defense-therapy (HDT)

against TB.
Free arginine in immune cells

Arginine occupies a central role in the M1/M2 macrophage

dichotomy, which critically determines the fate of invading

pathogens, survival or death (20). In M1 macrophages, arginine

undergoes conversion into citrulline by NOS/iNOS leading to the

release of NO. NO can be further metabolized to reactive nitrogen

species (RNS), exhibiting potent bactericidal properties. Conversely,

in M2 macrophages, arginine is metabolized into ornithine and urea

by arginase (ARG1) (21). Ornithine, in turn, can be utilized for the

synthesis of polyamines (putrescine, spermidine, and spermine)

through the enzyme ornithine decarboxylase (ODC). Additionally,

ornithine can be converted to glutamic g-semialdehyde and

subsequently to proline via ornithine aminotransferase (OAT) (22).

These products of ornithine metabolism not only enhance

macrophage viability and numbers but also promote the replication

of pathogens, including MTB within macrophages. During pathogen

infection, monocytes-derived macrophages are initially activated as

M1macrophages, characterized by the release of NO and engagement

of autophagy for pathogen clearance. However, as the infection

progresses, there is a requirement for macrophages to undergo

polarization into M2 macrophages to facilitate continued

efferocytosis and resolve inflammation (23). IFN-g plays a pivotal

role as the primary inducer of iNOS/NOS2, orchestrating the

transformation of quiescent macrophages into the M1 phenotype.

On the other hand, IL-4 or IL-13 serves as a potent stimulus for the

expression of ARG1, leading to the transition (polarization) of

quiescent macrophages towards the M2 phenotype. This duality in

macrophage polarization is crucial in regulating immune response to

pathogens. Moreover, the significance of arginine and its metabolism

extends to T cell fate and function. When CD4+ T cells are activated

with CD3 and CD28 antibodies for a duration of 72 hours, there is a

noticeable reduction in the levels of arginine, ornithine, and N-

acetylornithine compared to their non-activated naïve counterparts

(24). This decreased abundance of arginine and ornithine indicates an

upsurge in arginine metabolism through ornithine degradation into

polyamine and proline. Experimental evidence underscores the

essential role of this metabolic shift in T cell activation,

differentiation, proliferation, survival, and to anti-tumor activity (24).

Host cells, particularly macrophages, have a critical need for

arginine to support their growth and function. Arginine can be

obtained from extracellular nutrition or synthesized de novo from

citrulline. The process of de novo biosynthesis extends to involve

glutamine metabolism. Glutamine undergoes deamination to form

glutamate through the action of glutamate synthase (GLS).

Subsequently, glutamate is acetylated to produce N-acetylglutamate

(NAG) in the presence of acetyl-CoA and glutamine acetyltransferase

(NAGS). Notably, the Sirtuin protein Sirt5 is intricately involved in

this metabolic pathway. Sirt5 has been reported to regulate ammonia

detoxification through deacetylation, consequently activating

carbamoyl phosphate synthetase 1 (CPS1) in the liver (17, 25–27).

NAG plays an important role in the activation of activates CPS1,
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which catalyzes the conversion of ammonia into carbamoyl

phosphate. This enzymatic step represents the initial stage of the

urea cycle (Figure 1). Carbamoyl phosphate further participates in

two significant pathways: 1. It reacts with ornithine to synthesize

citrulline. Subsequently, citrulline serves as a precursor for

arginosuccinate and, ultimately, the production of arginine; 2. It

can also directly react with aspartate to form carbamoyl aspartate

which is further utilized for pyrimidine synthesis, contributing to the

formation of essential nucleotide components (28). Sirt5’s role in

regulating ammonia production extends beyond the liver and

includes non-liver cells. In non-liver cells, Sirt5 desuccinylates

mitochondria GLS. However, it is important to note that two

studies have reported contradictory results regarding the impact of

Sirt5 on GLS activity: In one study, Sirt5 was shown to desuccinylate

Lys245 and Lys320 of GLS. This desuccinylation by Sirt5 inhibits the

activity of GLS, resulting in a reduced conversion of glutamine into

glutamate, leading to a decrease in ammonia production (29). In

contrast, in another study, Sirt5 was found tomediate desuccinylation

of Lys164 of GLS, leading to the protection of GLS from ubiquitation.

This stabilization of GLS by Sirt5 promoted the conversion of

glutamine into glutamate and, consequently, an increase in

ammonia production (15). The conflicting outcomes from these

two studies indeed highlight the complexity of Sirt5’s role in

regulating glutamine catabolism, ammonia production, and

detoxification. These discrepancies suggest that our current

understanding of Sirt5’s mechanisms in these processes is

incomplete, and additional, as yet unidentified, mechanisms could

be at play. It is likely that the multifaceted roles of Sirt5 involve a

network of interaction and dependencies that necessitate more

comprehensive investigation. Indeed, a recent research sheds light

on Sirt5’s involvement in cancer cell development. In pancreatic

ductal adenocarcinoma cells (PDAC), the downregulation of Sirt5 or

its knock-down led to an increase in the activity of glutamate

oxaloacetate transaminase 1 (GOT1) through acetylation (30).

GOT1, a cytosolic aspartate aminotransferase, is responsible for

converting aspartate derived from glutamine into oxaloacetate and

subsequently into malate for the tricarboxylic acid (TCA) cycle or for

the synthesis of pyruvate which is the end product of glycolysis

(Figure 1). Notably, reduced Sirt5 expression in PDAC cells

promoted cancer cell proliferation, whereas enhancing Sirt5

expression or activating it through a SIRT5 activator, MC3138,

restrained tumor growth (30). In an alternate report, PDAC

expressed a preference for the de novo synthesis (DNS) of ornithine

from glutamate, facilitated by ornithine aminotransferase (OAT), as

opposed to the traditional biosynthesis from arginine (31). However,

it remains unknown whether the depletion or inhibition of Sirt5 leads

to increased acetylation or succinylation, subsequently stabilizing

OAT. Additionally, it’s unclear whether the Sirt5-GOT1 axis

activates an alternative metabolic pathway or influences the

pentose-phosphate pathway (PPP) after decoupling glycolysis with

aspartate metabolism towards pyruvate, which subsequently

influences the synthesis of pyridoxal phosphate (PLP). It is worth

noting that PLP, an active form of vitamin B6, is vital as a cofactor for

OAT and can be synthesized from ribose-5-phosphate at least in

bacteria (Figure 1) (32, 33). In human macrophages and naïve CD4+

T cells, there is a significant presence of N-acetyl-ornithine (NAO),
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and its concentration is markedly decreased in activated T cells (12)

but increased in non-MTB infected M1 macrophages (19, 24) and

Sirt5 depleted THP-1 cells (our unpublished data). The origin of

increased NAO and its potential association with elevated ornithine

through DNS is not well-established. The exact correlation between

Sirt5 expression and NAO formation in immune cells is a subject that

necessitates further investigation. This includes understanding their

role in arginine synthesis and metabolism, and how these processes

are interconnected with glutamine metabolism mediated by Sirt5.
Arginine is essential for survival and
killing of MTB

Arginine serves a dual role in the context of MTB infection. It is

not only essential for host macrophage development but also plays a

crucial role in the survival or elimination of MTB through autocrine-

paracrine cytokine signaling pathways (34). There are multiple

mechanisms through which MTB can acquire arginine: 1. Direct

Uptake. MTB is predicted to have up to five putative arginine

transporters, suggesting that the bacterium can directly absorb

arginine from the host (35). In vitro models show that MTB

utilizes arginine both as a nitrogen and carbon source with the

involvement of Rv2323c which comprises 909 base-pairs and has

been annotated as a dimethylarginine dimethylaminohydrolase (27).

Rv2323c is responsible for synthesizing ornithine, proline, and other

amino acids through mechanisms that are yet to be fully defined (36).

Additionally, Rv2323c also functions as an arginine demethylase,

potentially being secreted into host cells to hydrolyze methylated

arginine (36). The dependence of MTB on arginine is underscored by

its inability to survive in arginine-depleted medium (37). This is

further supported by the observation that an arginine auxotrophy

MTB strain was unable to persist in a mouse infection model (38),

indicating that obtaining arginine directly from the mediummight be
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insufficient for meeting MTB’s high growth demand when its own

arginine synthesis is blocked (39). The fine-tuned balance of arginine

availability and distribution within host cells and MTB appears to be

a crucial factor in determining pathogen survivability. In the host

cells, like macrophages, arginine is supplied as a part of amino acid

nutrition to pathogens such as MTB, supporting growth and survival.

Concurrently, the host cells utilize arginine to produce NO for

pathogen elimination. Even in the absence of NO, arginine can still

contribute to pathogen clearance by increasing macrophage numbers

and viability (40). Given this complex interplay, arginine has been

considered as a potential adjunctive therapy in the context of active

tuberculosis (41). Pilot studies are exploring the safety and efficacy of

supplemental arginine to enhance immune function in individuals

with HIV/AIDS (42). These findings highlight the multifaceted role

of arginine in host-pathogen interactions and suggest its therapeutic

potential for combating infectious diseases.

2. Synthesis from glutamine/glutamate. Majority of arginine

required by MTB is synthesized de novo from glutamate through a

unique route known as the glutamate - glutamyl-g-aldehyde –

ornithine – citrulline pathway (Figure 2). This pathway is specific to

bacteria and plants and is not believed to exist in human or animal cells

(43). The pathway involves the action of eight different enzymes,

including ArgA-H and ArgJ (Figure 2). The synthesis process begins

with the acetylation of glutamate to form NAG by glutamate

acetyltransferase/N-acetylglutamate synthetase (ArgA) in the

presence of acetyl-CoA. NAG is then phosphorylated at the carbonyl

group, leading to the formation of NAG-5-phosphate with the help of

N-acetylglutamate kinase (ArgB). ArgC subsequently reduces NAG-5-

phosphate to form NAG-5-semioaldehyde, which serves as an

intermediate in the synthesis of NAO through the action of

acetylornithine aminotransferase (ArgD). NAO is then deacetylated

by ArgE to form ornithine. Ornithine further reacts with carbamoyl

phosphate to yield citrulline, a process catalyzed by ArgF, which is the

bacterial equivalent of human ornithine transcarbamylase (OTC).
FIGURE 2

Arginine biosynthesis from glutamate in MTB. ArgA, glutamate acetyltransferase/N-acetylglutamate synthetase; ArgB, Acetylglutamate kinase; ArgC,
N-acetyl-g-glutamyl-phosphate reductase; ArgD, Acetyornithine aminotransferase; ArgE, N-acetylornithine deacetylase; ArgF, Ornithine
carbamoyltransferase; ArgF’, Acetylornithine transcarbamylase; ArgG, Arginosuccinate synthase; ArgH, Arginosuccinate lyase; ArgJ, Glutamate
N-acetyltransferase.
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Additionally, citrulline can be synthesized from acetylcitrulline by

transferring acetyl groups from NAO, involving the enzymes ArgF’

and ArgE. It is worth noting that an analog of ArgE, an ornithine

deacetylase (hydrolase) is known to exist in E. Coli and plants (44, 45),

although its presence in MTB has not yet been identified (46, 47).

However, it is likely that MTB possesses an enzyme with similar

functions, enabling the completion of this unique arginine biosynthesis

pathway. Citrulline undergoes two steps of metabolic conversions to

become arginine. Initially, it is transformed into arginosuccinate by

ArgG, an enzyme with similarities to Argininosuccinate Synthase 1

(ASS1) in human cells (Figure 1). Subsequently, arginosuccinate is

further metabolized into arginine by argininosuccinate lyase,

specifically ArgH (the human equivalent being ASL (Figure 1).

The biosynthesis of arginine from NAG in MTB, as well as in

other bacteria and plants, is unique to these organisms and presents

a potential target for the development of anti-TB drugs. The first

trial involved Pranlukast (PRK), which acts as a non-competitive

inhibitor with a Ki value of 139 mM against MTB-specific ornithine

acetyltransferase, ArgJ, by targeting its surface large pocket instead

of substrate-binding sites, thereby reducing cross-reaction with

other proteins that may also have the same substrate-binding

sites. Using a microplate Alamar blue assay, the minimum

inhibitory concentration of PRK against MTB H37Rv is 5 µg/mL

(39). Another compound, Sorafinib (SRB) was also identified as a

non-competitive inhibitor with a Ki value of 244 mM against ArgJ,

targeting the same pocket (48). The minimum inhibitory

concentration of SRB against MTB H37Rv is 10 µg/mL. It seems

PRK has higher efficacy than SRB. PRK has demonstrated the ability

to inhibit the growth of MTB H37Rv at the micromolar level and

has shown effectiveness in killing when used in combination with

standard anti-tuberculosis drugs such as rifampicin and isoniazid in

vitro (48). It shows that PRK inhibits the survival of MTB in

macrophage infection model without affecting the host cells and

the inhibitory effect is compromised by supplemental arginine.

Furthermore, PRK treatment with the dose of 40 mg/kg body

weight has been found to induce bacterial killing and reduce

granuloma formation in the lungs of MTB-infected mice (48).

These findings highlight the potential of targeting this unique

arginine biosynthesis pathway for developing anti-TB drugs.

3. Synthesized from methylated arginine. Arginine in MTB can

also be synthesized through the cleavage of methylated arginine,

resulting in the formation of citrulline. Citrulline is subsequently

metabolized to arginosuccinate and, finally, converted into arginine

(Figure 1). Interestingly, Rv2323c, cited above serves as a

dimethylarginine dimethylaminohydrolase (DDAH) or arginine

demethylase that cleaves methylated arginine into dimethylamine

and citrulline. Following the cleavage by Rv2323c, citrulline is

processed as previously described, first metabolized into

arginosuccinate by ArgG then into arginine by ArgH (Figure 2).

The availability of arginine in MTB is also subject to regulation by

the dormancy survival regulator regulon (DosR) proteins, which

consist of 48 co-regulated components. DosR binding to the

promoter region of ArgC regulates arginine synthesis, particularly

during the anaerobic dormancy phase of persistent MTB (49, 50).

This regulatory mechanism adds another layer of complexity to

arginine metabolism in MTB and its role in survival strategies.
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Arginine methylation

Arginine methylation is a post-translational modification that

occurs in proteins and catalyzed by enzymes known as protein

arginine methyltransferases (PRMTs). There are currently nine

known PRMTs, labeled as PRMT1 to PRMT9 with PRMT4

having another name as CARM1, each with distinct abilities to

methylate arginine in various forms. These forms include mono-

methylarginine (MMA or Rme1), symmetric omega-NG, NG-di-

methylarginine (SDMA or Rme2s), and asymmetric omega-NG,

NG-di-methylarginine (ADMA or Rme2a). MMA involves the

addition of a single methyl group to one of the terminal nitrogen

atoms of the guanidino group. SDMA incorporates two methyl

groups symmetrically placed on each terminal nitrogen atom of the

guanidino groups. In the case of ADMA, two methyl groups are

added to the same terminal nitrogen atom of the guanidino group.

Among these forms, Rme2a (ADMA) is the predominant form,

with Rme1 (MMA) and Rme2s (SDMA) levels typically ranging

from 20% to 50% of that of Rme2a (ADMA) (51). Thus,

methylation plays a role in regulating various cellular processes

and protein functions in both health and disease.

The nine PRMT members can be primarily categorized into

three types based on their structural differences and the final forms

of methylation products they generate. Type I PRMTs, including

PRMT1, 2, 3, 4, 6 and 8, are responsible for catalyzing the formation

of Rme1 and Rme2a (52). Type II PRMTs, comprising PRMT5 and

9, are involved in generating Rme1 and Rme2s (53–55). Type III

PRMT, represented by PRMT7, can only produce Rme1 (52, 56).

Arginine methylation in the human proteome primarily occurs

within glycine-arginine rich and proline-glycine-methionine-rich

regions. It is frequently found in histones and a plethora of RNA-

binding proteins (51). Heteregeneous nuclear ribonucleoproteins

(hnRNPs) constitutes a significant portion of the total arginine

methylation within the cell nucleus, accounting for about 65% of

such modification (57, 58). Quantitatively comparable to protein

phosphorylation, about 0.5%–2% of arginine residues are

methylated in mammalian cells and tissues (59–61). These ost-

translational modifications play a role in a number of different

cellular processes, including the maintenance of genome integrity,

regulation of cell cycle and transcription, RNA splicing and

metabolism, RNA-protein interactions, DNA damage response

and cancer-related processes (62–68). Therefore, arginine

methylation contributes significantly to the regulation and

coordination of numerous critical cellular functions.
Methylation of free arginine

Upon the proteolytic cleavage of arginine-methylated proteins,

free intracellular mono-methylated arginine (MMA), symmetric di-

methylated arginine (SDMA), or asymmetric di-methylated

arginine (ADMA) are generated. These methylated arginines can

be transported into the extracellular space, including plasma,

directly affecting the concentrations of methylarginines in the

plasma. The body clears free methylarginines by renal excretion

or hepatic metabolism. In addition, MMA and ADMA, but not
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SDMA, can be degraded by a class of intracellular enzymes known

as dimethylarginine dimethylaminohydrolases (DDAH). Plasma

and urine levels of arginine and methylated arginines have been

measured in healthy children, revealing concentrations of 52.2-

127.7 mM for arginine, 0.06-0.16 mM for MMA, 0.42-1.10 mM for

ADMA, 0.41-0.96 mM for SDMA (69). However, the concentrations

of these compounds are notably higher in peripheral blood

mononuclear cells (PBMC) (70, 71). It is worth mentioning that a

disproportionately high amount of ADMA has been observed in

human monocytes and macrophages (19). To date, a de novo

synthetic pathway for generating MMA, ADMA, or SDMA from

free arginine has not been identified. Therefore, it is believed that

free methylarginines found in both the plasma and within cells are

derived solely from the degradation of proteins containing

methylated arginines (72). Additionally, the turnover and

degradation rates of proteins are assumed to be higher in PBMC

and its derivatives compared to the plasm, leading to the

accumulation of methylated arginines.
Free methylated arginine in immune
cells during tuberculosis

Mono-methylated arginine (MMA) is well-known inhibitor of

inducible nitric oxide synthase (iNOS) and has been extensively used

for studying NO’s mechanistic roles during macrophage activation,

cardiovascular diseases, hypercholesterolemia, nervous system

disorders, lung diseases, autoimmunity, and viral/bacterial infections,

including tuberculosis (7, 73–76). ADMA is considered as a

nonspecific competitive inhibitor of nitric oxide synthase (NOS) and

a weak inhibitor of iNOS (77, 78). SDMA, on the other hand, does not

have NOS inhibitory activity. Both NMA and ADMA can be recycled

back to arginine within the arginine metabolic pathway. Initially, they

are hydrolyzed by dimethylarginine dimethylaminohydrolose

(DDAH) to produce citrulline along with either mono- or

dimethylamine. Subsequently, arginine is synthesized from citrulline

through a two-steps enzymatic process involving the enzymes

argininosuccinate synthase 1(ASS1) and argininosuccinate lyase

(ASL) (Figure 1). Enhanced hydrolysis of MMA and ADMA not

only alleviates the suppression of iNOS, promoting the production of

antibacterial NO, but also generates additional arginine from citrulline,

the hydrolytic product of MMA and ADMA, which can strengthen

host defenses against mycobacterial infections (79). In activated

macrophages, high concentration of ADMA, and possibly MMA,

block NO synthesis, resulting in increased expression of the receptor

for oxidized LDL (oxLDL), also known as lectin-like oxLDL receptor

(LOX-1). This can contribute to lipidosis and foam cell formation (80).

Studies show that oxLDL supports MTB survival in

macrophages by impairing lysosomal function. Treatment of

macrophages with oxLDL results in the accumulation of

lysosomal cholesterol, altered levels of lysosomal and autophagy

markers (such as LAMP1, LAMP2, Cathepsin D, and L), reduced

MTB colocalization with lysosomes, and an increased bacterial load

(81). Further, plasma oxLDL levels are significantly elevated in type

2 diabetes mellitus (DM) and they are associated with high levels of
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triglyceride in diabetes-associated tuberculosis (DMTB) patients,

suggesting oxLDL may serve as a risk factor for DMTB (81). During

MTB infection, the uptake and accumulation of oxLDL in

macrophages are facilitated by proteins such as CD36 and COX-1

(82). Interestingly, the deletion of LOX1 has been found to improve

the neutrophil response, enhance bacterial clearance, and reduce

lung injury in mice with polymicrobial sepsis (83). While this study

was conducted using a polymicrobial model and mice, it provides

insights into potential mechanisms relevant to pathogenesis of

tuberculosis. Moreover, there is a positive association between the

ADMA-oxLDL-LOX-1 axis and the severity of bacterial infections.

ADMA appears to drive macrophages towards an M2-like subtype

characterized by increased expression of markers such as Arg1,

CD163, and CD206, while suppressing IL-10 and dectin-1

expression, ultimately impairing phagocytosis (84). Therefore, the

removal of ADMA and MMA from host cells via DDAH activation

may be beneficial in promoting M1 polarization and enhancing

immune protection.

The role of the MTB DDAH paralog protein, Rv2323c, presents

an intriguing paradox. On one hand, it is involved in producing

arginine and other products derived from arginine metabolism,

which are essential for bacterial growth and survival (36). However,

it also has a second role: Rv2323c is secreted by MTB into the host

environment, where it hydrolyzes methylated arginine. This unique

function enhances the host’s immune response, potentially

contributing to self-destruction of MTB by M1-macropnages as

described above. This dual role suggests that Rv2323c may serve as a

strategy employed by MTB to modulate the host immune response.

By hydrolyzing methylated arginine, Rv2323c could contribute to a

more robust immune defense within the host. It may reflect the

complex relationship between MTB and the host’s immune system,

where the pathogen both relies on specific nutrients for survival and

triggering immune responses that could be detrimental to its

persistence. The detailed mechanisms of Rv2323c’s and their

impact on MTB pathogenesis and host defense are the subject of

ongoing research.
Tryptophan catabolism in
immune cells

Tryptophan catabolism comprises of at least three metabolic

pathways, tryptophan IDO1-oxidation pathway, tryptophan IL4I1-

oxidation pathway, and tryptophan serotonin pathway (Figure 3).

Tryptophan IDO1-oxidation pathway: While tryptophan is an

indispensable component for protein synthesis and various biological

processes, it is intriguing to note that a significant portion of dietary

tryptophan embarks on an alternative journey. This path leads to the

formation of an array of downstream metabolites, primarily

orchestrated by the kynurenine pathway. This pathway initiates with

the pivotal conversion of tryptophan into N-formylkynurenine, a step

governed by three distinct enzyme isoforms: indoleamine 2,3-

dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), and

tryptophan 2,3-dioxygenase (TDO). Among the three enzymes

responsible for catalyzing the conversion of tryptophan into N-
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formylkynurenine, IDO1 stands out as a captivating subject. Due to its

conformational plasticity and adaptability to a complex and highly

regulated catalytic activity, IDO1 has a remarkable ability to orchestrate

changes in expression profile of immune cells towards a highly

immunoregulatory phenotype (85).

The expression of IDO1 is primarily initiated by IFN-g, but it is
interesting to note that IFN-g, which induces NO production in M1

macrophages, can also inhibit IDO1 expression through a feedback-

loop mechanism (86). An essential end product of this pathway is

quinolinic acid (QA), which serves as a precursor for nicotinic acid

(NA). The conversion of QA to NA is facilitated by quinolinate

phosphoribosyl transferase (QPRT). Subsequently, NA undergoes a

series of conversions into nicotinamide (NAMN) and finally into

NAD+. The transformation of NAD+ to NADH, a redox reaction, is

required for the function of numerous dehydrogenases involved in the

energy-associated metabolic pathways of living cells (87). For instance,

NAD+ serves as an essential cofactor for the functioning of enzymes

like glyceraldehyde phosphate dehydrogenase (GAPDH) in glycolysis.

Additionally, it is involved in the oxidative decarboxylation of pyruvate

into acetyl-CoA through the activity of pyruvate dehydrogenase

(PDH). NAD+ also participates in the conversion of lactate to
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pyruvate, a process mediated by lactate dehydrogenase (LDH).

Furthermore, it is indispensable for the proper functioning of

enzymes such as a-ketoglutarate dehydrogenase, isocitrate

dehydrogenase, and malate dehydrogenase in the tricarboxylic acid

(TCA) cycle. Beyond that, it plays a crucial role in the b-oxidation of

fatty acids, facilitated by 3-hydroxyacyl-CoA dehydrogenase. Lastly,

NAD+ is involved in alcohol metabolism, serving as a cofactor for

aldehyde dehydrogenase enzymes (87, 88). Furthermore, NAD+ serves

as the exclusive cofactor for the type III histone/protein deacetylase

Sirtuin proteins (Sirt1-7). NAD+ is also actively involved in other

essential processes, including its role in PARPs (poly(ADP-ribose)

polymerase) during DNA repair and the function of CD38 and its

analog CD157 in cyclic ADP-ribose (cADPR) synthase. To maintain

NAD+ homeostasis, it can be replenished from the oxidation of NADH

via the electron-respiration chain, de novo biosynthesis from

tryptophan catabolism, biosynthesis from nicotinic acid (NA)

through the Preiss-Handler pathway, and the salvage pathway (87).

In macrophage stimulated by lipopolysaccharide (LPS) alone or in

combination with IFN-g, intracellular NAD+ levels decrease because of

an elevated ROS-induced DNA damage response and subsequent

repair through PARP activation (89). To counterbalance this
FIGURE 3

Tryptophan catabolism pathways. IL4i1, Interleukin 4 Induced 1; IDO1, Indoleamine 2, 3-Dioxygenase 1, TDO2, Tryptophan 2,3-Dioxygenase; KAT,
Kynurenine Aminotransferase; KMO, Kynurenine 3-Monooxygenase; KYNU, Kynureninase; QPRT, Quinolinate Phosphoribosyltransferase; NAMPT,
Nicotinamide Phosphoribosyltransferase; NAPRT, Nicotinate Phosphoribosyltransferase; PARP, Poly(ADP-Ribose) Polymerase 1; SIRT, Sirtuin; CD38,
Cluster Of Differentiation 38/ADP-Ribosyl Cyclase 1; CD157, Cluster Of Differentiation 157/Bone marrow stromal cell antigen 1 (Bst1)/ADP-Ribosyl
Cyclase 2. Abbreviation of metabolites in NAD+ salvage pathway, NAD+, Nicotinamide adenine dinucleotide; NADH, NAD + Hydrogen (NAD reduced
form); NAAD, Nicotinic acid adenine dinucleotide; NAM, Nicotinamide; NAMN, Nicotinic acid mononucleotide; NMN, Nicotinamide mononucleotide.
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decrease, cells initiate a compensatory response by increasing the

protein expression of nicotinamide phosphoribosysyltransferase

(NAMPT), the rate-limiting enzyme in the NAD+ salvage pathway

(89). This rescue strategy for NAD+ utilization and resupply are critical

in maintaining glycolysis and inflammation. In inflammatory and

ageing macrophages, the de novo NAD+ biosynthesis pathway

through tryptophan catabolism is activated due to elevated

expression of IDO1, which helps to maintain NAD+ homeostasis

and restrict inflammation. Inhibition or knockdown of IDO1 or

other enzymes in this pathway, such as QPRT, results in the

suppression of mitochondrial NAD+-dependent signaling and NAD+

synthesis from the electron transport/respiration chain (ETC),

increased glycolysis, and impaired resolution of inflammation.

However, the NAD+ reduction resulting from the inhibition of

tryptophan catabolism can also be rescued by increased NAD+

production through NAMPT or nicotinate phosphoribosyltransferase

(NAPRT) (Figure 3). These enzymes serve as the biomarkers of chronic

and acute inflammatory diseases (90). In the context of resolving

inflammation, inhibiting NAMPT using FK866 appears to be a

promising strategy for the treatment of inflammatory diseases.

However, it is important to note that NAMPT-mediated glycolysis is

also required for the antitumor immunity of tumor-infiltrating

macrophages. In this scenario, STAT1 binds to the STAT1 binding

elements, also known as NAMPT-Regulatory Element-1 (NRE1),

located in the first intron of NAMPT. This binding enhances the

expression of NAMPT, leading to aerobic glycolysis that promotes the

expression of pro-inflammatory genes in tumor-associated

macrophages (TAM) stimulated with IFN-g (91). Inhibition of

NAMPT results in NAD+ depletion and impairs phagocytosis, as

demonstrated by a reduced intracellular uptake of FITC-labeled,

complement-opsonized zymosan (COZ particles) in RAW 264.7

macrophages treated with FK866 (92).

Tryptophan IL4i1-oxidation pathway: IL-4i1 is an L-amino acid

oxidase (LAAO) that primarily catalyzes the oxidation of phenylalanine

and tyrosine (93, 94) and can catalyze the oxidation of tryptophan,

albeit with reduced efficacy (95). Initially, identified as an early IL-4-

inducible gene in B cells, IL4i1 is expressed in primary macrophages,

and dendritic cells, and tumor-associated macrophages (93, 96–99).

The expression of IL4i1 seems to be involved in phagocytic processes,

as IL4i1+ macrophage population coexists with the genes involved in

phagosome maturation in the tumor microenvironment (TME) (100).

This observation is further supported by the finding that highly

phagocytic macrophages expressing IL4i1 play a role in the removal

of apoptotic B cells (93, 99). Single-cell RNA sequencing (scRNAseq)

has revealed overlapping expression of IL4i1 and IDO in the TME and

in myeloid cells, particularly LAMP3+ cells in the TME (101, 102).

Since the gene expression of IDO1 is stimulated by IFN-g and TNF-a
(103), it is reasonable to speculate that the gene expression of IL4i1 is

also activated in cells stimulated by IFN-g and/or TNF-a. Consistent
with this, we found both IDO1 and IL4I1 gene expression were

upregulated in M1 macrophages exposed to MTB (1). However,

proteomics analysis indicated that the protein expressions of both

IDO1 and IL-4i1, along with AHR, were reduced compared to IL-4-

treated M2 macrophages. In this context, it was not surprising to

observe that overexpression of IL4il could drive the expression of M2

macrophage markers, such as Fizz-1 and Arg1, while inhibiting the
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cytokines typical of M1 macrophages, including IL-1b and TNF-a
(104). Accordingly, additional research is necessary to elucidate the

disparity between RNA gene expression and protein expression and

their respective roles in regulating macrophage polarization. The

products of IL4i1-catabolized tryptophan oxidation, including indole-

3-pyruvic acid (I-3-P), indole-3-acetic acid (I-3-A), and kynurenic aid

(KynA), are AHR agonists (105). The work of Sadik et al. further

suggests that IL4i1 activates the expression of AHR, IDO, and TDO2,

which collectively suppress tumor immunity in the hypoxic TME of

glioblastoma derived GBM cells, thereby promoting cancer progression

(105). The suppressive effect exerted by IL4i1 on immune cells is also

evident by an enrichment of myeloid-derived suppressor cells

(MDSCs) and Foxp3+ regulatory T (Treg) cells, a characteristic

frequently observed in chronic lymphoma leukemia (CLL) (105). In

addition, the mTORC1 pathway is inhibited by IL4I1 in activated naïve

CD4+ T cells (106). Furthermore, IL4i1 plays a crucial role in regulating

antigen-presenting cell (APC)-mediated inflammatory responses

during acute and chronic MTB infection. This is supported by data

that IL4i1–deficient (IL-4i1−/−) mice display enhanced protection

against acute MTB H37Rv and acute/chronic MTB HN878

infections. These mice exhibited reduced lung bacterial burdens and

alterations in APC responses (107). In addition, during acute MTB

HN878 infection, IL-4I1-/- mice exhibited a significant increase in the

numbers of “M1-like” interstitial macrophages, as well as higher NO

and IFN-g production when compared to wild-type mice (108). It is

possible that the simultaneous deletion of both IL4i1 and IDO1, despite

their overlapping expression patterns in myeloid cells, may be

necessary to disrupt the three primary biochemical outcomes:

tryptophan depletion, AHR activation, and ferroptosis suppression

(102, 109).

Targeting tryptophan catabolism as
host-directed therapies of
human tuberculous

MTB is naturally prototrophic for tryptophan, meaning it has the

ability to synthesize its own tryptophan. Interestingly, auxotrophic

mutants of MTB, which are unable to synthesize their own tryptophan

and depend on external sources, cannot establish an infection in mice.

This emphasizes the essential role of tryptophan biosynthesis for the

bacterium’s survival and its ability to cause disease (110). Moreover,

studies show increased catabolism of tryptophan (Trp) to kynurenine

(Kyn) not only in active TB disease but also during latent TB infection

(LTBI) (11). As a result, the Kyn/Trp ratio has been proposed as a

potential marker for predicting the prognosis of pulmonary

tuberculosis (12). This suggests that monitoring Kyn and Trp levels

in individuals could offer valuable insights into the progression and

severity of TB. Persons with active TB and LTBI also show an increased

expression of IDO1 suggesting that it mediates increased tryptophan

catabolism (11, 12). Additionally, systems analysis of the gene and

protein expression in human alveolar macrophages from MTB-

infected individuals identified a robust network with IL-1b, STAT1
and IDO1 as the hub genes associated with MTB growth and their

macrophages shift from an initial M1 to later M2 gene expression with

inter-individual variability (13).
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It is worth noting that depleted tryptophan resulting from

tryptophan catabolism does not significantly affect the growth of

MTB since it relies on its own biosynthesis system to produce

tryptophan. In this context, elevated levels of IDO1 activity or IDO1

protein have little direct effect on MTB growth and ability to cause

disease. Instead, low IDO1 activity has been used as a predictor of death

from MTB infection although the mechanisms underlying this inverse

relationship are poorly understood. One potential mechanism could be

the immunomodulatory effect of kynurenine which is a ligand for

AHR. In this scenario, activation of AHR can promote the polarization

of macrophage from anM1 to anM2 phenotype where a switch occurs

from pro-inflammatory IL-6 and IFN-a to anti-inflammatory

cytokines IL-10 and TGFb. Latter increases the disease severity

during pulmonary tuberculosis (111–113). As tryptophan serves as

the source of NAD+ de novo biosynthesis, any excess NAD+ generated

from the activated tryptophan catabolism seems carefully balanced by

multiple regulatory mechanisms. Firstly, NAD+ experiences increased

hydrolysis and consumption, while simultaneously, NAD+ synthesis

through the salvage pathway is diminished due to the suppression of

NAMPT expression (114, 115). Moreover, the heightened NAD+

production exerts limitations on the redox reactions taking place in

the mitochondrial electron-respiration chain complex I and II. These

reactions generate reactive oxygen species (ROS), which are lethal to

MTB. Inhibiting NAMPT activity also results in a reduction in

glycolysis, particularly at the glyceraldehyde-3-phosphate

dehydrogenase step (116). Meanwhile, tuberculosis necrotizing toxin

(TNT) operates by hydrolyze cellular NAD+ into NAM (nicotinamide)

and ADPR (adenosine diphosphate ribose), thereby activating the

necroptosis effectors MLKL and RIPK3 (117). However, an increase

of the NAD+ hydrolysis products, NAM and ADPR, can competitively

impede the TNT-induced respiratory bursts. These bursts often result

in an overproduction of ROS, which, in turn, can be detrimental to

macrophages. In summary, the complex interplay between NAD+

metabolism and tryptophan catabolism seems to play a critical role

in macrophage polarization that needs additional research.

The reversal of tryptophan catabolism holds promise as an

effective treatment strategy for both active TB disease and LTBI

through host-directed therapies. In support of this concept,

macaques subjected to treatment with IDO1 inhibitor 1-methyl-

DL-tryptophan (1-MT) exhibited reduced mycobacterial burden

and lung pathology in comparison with control groups following

infection with MTB CDC1551 (107). However, it is worth noting

that gene knock-out of IDO1 did not yield consistent results with

IDO1 inhibition. Specifically, there was no significant difference in

anti-mycobacterial burden observed between IDO1-/- and wild-type

mice (118). Conflicting results have also emerged in studies

involving AHR, as Ahr-/- mice exhibited an increased

mycobacterial burden. The ablation of AHR led to diminished

expression of cytokines IL23A and IL12B, which encode subunits

of IL-23, a cytokine produced by macrophages that in turn,

stimulates the production of IL-22 by innate lymphoid cells (119,

120). Since the impact of tryptophan catabolism on macrophage

immunity against MTB infection is intricately linked to various

interconnected metabolic processes, a comprehensive approach
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involving metabolomics, proteomics, and functional studies in the

context of MTB infection of macrophages appears warranted.
Concluding remarks and prospectives

Arginine and tryptophan are two critical amino acids that the

immune system utilizes to create both immune-activating and

immunosuppressive products. The metabolism of these amino

acids plays a crucial role in defending against pathogen invasions

and repairing damage caused by infections.

Arginine metabolism is known to have a dichotomous role in

immune cells. In IFN-g stimulated M1 macrophages, arginine is

metabolized into citrulline by iNOS, leading to the production of

NO and other reactive-nitrogen-species (RNS) that contribute to

pathogen killing. In contrast, IL-4-induced M2 macrophages

metabolize arginine into ornithine, which serves as a precursor

for polyamines to mitigate hyper-inflammation and tissue damage

caused by over-activated macrophages.

Tryptophan catabolism, on the other hand, does not exhibit such a

clear-cut dichotomy. It has three different metabolic routes leading to

the production of kynurenine by IDO1, indole-3-pyruvate by IL4i1,

and serotonin, generating downstreammetabolites from each pathway.

IDO1 is the most extensively studied route due to the

immunosuppressive properties of its product, kynurenine, and its

role as an AHR agonist. IL4i1 also contributes to tryptophan

metabolism, and its metabolic products, such as indole-3-pyruvic

acid and its downstream derivatives are AHR agonists with

immunosuppressive functions. The expression of both IDO1 and

IL4i1 can be induced by IFN-g. This overlapping expression of IL4i1

and IDO1 in activated macrophages and immune cells highlights the

complexity of tryptophan metabolism in immune responses. While

both enzymes can lead to the generation of immunosuppressive

molecules, their specific roles and regulation may vary in different

contexts or after different immune challenges. Contemporary research

on tryptophan catabolism in immune responses to MTB infection and

the development of anti-TB drugs primarily centers on the IDO1

pathway. However, future investigations should expand to encompass

not only the IL4I1 pathway but also the serotonin pathway, in addition

to the link of tryptophan catabolism to NAD+ metabolism.

We propose that Sirtuin proteins may be involved in arginine and

tryptophan metabolism. Among the seven sirtuin proteins (Sirt1-7),

Sirt2 and Sirt5 are particularly relevant in the context of amino acid

metabolism in the immune cells. Sirt2 is upregulated in M2

macrophages compared to M1 macrophages and upregulated in

MTB-infected macrophages compared to uninfected ones (1).

Sirt2’s role in NAD+-biosynthesis from tryptophan-IDO1

metabolism and its connection to the NAD+ salvage pathways are

areas of interest. Depleting Sirt2 drives macrophage polarization from

M2 to M1 (Figure 4A). In contrast, Sirt5 is upregulated in M1

macrophages compared to M2 macrophages but downregulated in

MTB-infected macrophages compared to uninfected ones. Sirt5 is

known to modify proteins related to the extended arginine

metabolism cycle that includes glutamine metabolism and
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glutamate acetylation. Activation of Sirt5 by small molecules like

MC3138 may influence the arginine metabolism in favor of iNOS

activation and NO production, which is dominant in M1

macrophages (Figure 4B).

To gain a comprehensive understanding of how sirtuin proteins

shape arginine and tryptophan metabolism, multi-omics

approaches, including metabolomics and proteomics, need to be

used. These studies, in combination with functional assays, can

reveal how sirtuin inhibitors or sirtuin-depleted cell lines impact

metabolism (19). Moreover, mechanistic studies are needed to

explore how histone lysine acetylation and arginine methylation,

influenced by sirtuin and PRMT proteins, regulate gene expression

related to autophagy. Overall, understanding the molecular

mechanisms of arginine and tryptophan amino acid metabolism

and its regulation by NAD+- dependent sirtuin proteins can pave

the ways for the development of novel host-directed therapy (HDT)

drugs for the treatment of tuberculosis, either alone or in the

combination with existing anti-TB medications.
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