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Due to the physiological alteration during pregnancy, maternal gut microbiota

changes following the metabolic processes. Recent studies have revealed that

maternal gut microbiota is closely associated with the immune

microenvironment in utero during pregnancy and plays a vital role in specific

pregnancy complications, including preeclampsia, gestational diabetes, preterm

birth and recurrent miscarriages. Some other evidence has also shown that

aberrant maternal gut microbiota increases the risk of various diseases in the

offspring, such as allergic and neurodevelopmental disorders, through the

immune alignment between mother and fetus and the possible intrauterine

microbiota. Probiotics and the high-fiber diet are effective inventions to

prevent mothers and fetuses from diseases. In this review, we summarize the

role of maternal gut microbiota in the development of pregnancy complications

and the health condition of future generations from the perspective of

immunology, which may provide new therapeutic strategies for the health

management of mothers and offspring.
KEYWORDS

gut microbiota, uterine microenvironment, immune cells, pregnancy complications,
recurrent miscarriages, fetal development, probiotics
1 Introduction

During pregnancy, the maternal body experiences various hormonal, immunological,

and metabolic changes (1, 2). To meet the fetus’s needs for growth and development, the

maternal gut microbiota changes during pregnancy, predisposing mothers to metabolic

syndrome (3). Gut microbiota has been considered closely associated with immune

activation in the gut, systematic circulation, and other peripheral organs and tissues (4).
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During this particular period, maternal gut microbiota can

significantly impact the immune environment in utero. According

to the available evidence, a wide range of diseases during pregnancy,

including hypertensive disorders of pregnancy (HDP), gestational

diabetes mellitus (GDM), preterm birth and recurrent miscarriages,

are associated with gut dysbiosis owing to imbalances in the

composition and diversity of gut microbiota (5–7). Furthermore,

maternal gut microbiota profoundly influences the health status of

the next generation (8–10), and disturbances in the maternal gut

microbes can lead to diseases in the offspring’s later life (9, 11, 12).

Therefore, it is crucial to develop effective inventions to restore the

balance of maternal gut microbiota.

In this review, we concentrate on how maternal gut microbiota

impacts the immune response in utero, leading to pregnancy

complications and offspring disorders, which provides potent

therapeutic strategies to restore microbiota balance.
2 The alteration of maternal gut
microbiota during pregnancy

During a normal pregnancy, there are various changes in the

maternal body compared to the non-pregnant women (1, 2).

Production of estrogen, progesterone, prolactin, and human

placental lactogen significantly increases, while hormones like

gonadotropin decline sharply during pregnancy (1). Metabolic

changes also occur during this period. For instance, in early

pregnancy, body fat increases, followed by insulin sensitivity

reduction later, which is beneficial for pregnancy as it helps

mothers to support the fetal growth and provide the energy of

breastfeeding (13). Interestingly, women may increase their food

intake during pregnancy and sometimes uniquely prefer certain

foods (14). As these changes in the maternal body are closely related

to the gut microbiota, questions about whether gut microbiota is

stable in normal pregnancy compared to non-pregnant populations

and how the diversity and composition of bacterial community

change have aroused great interest recently (3, 15–17).

Whether maternal gut microbiota changes during pregnancy is

controversial. Previous studies have been conducted to sample the gut

microbiota at longitudinal time points during pregnancy, andmost of

these studies reported that the diversity and composition of the gut

microbiota remained stable primarily throughout pregnancy (17, 18).

However, another study has shown the opposite. A study of 91

women with varying prepregnant BMI and gestational diabetes status

by Koren et al. showed that during the first trimester (T1), gut

microbiota was comparable to those of normal controls and similar to

each other. However, the composition and structure shift

dramatically throughout pregnancy. In the third trimester (T3), the

b-diversity greatly expanded. In contrast, a-diversity is reduced, with
a significant increase in Proteobacteria and Actinobacteria and pro-

inflammatory cytokine concentrations in stool (3). Proteobacteria

have been considered as pathogenic bacteria in the inflammation-

associated dysbiosis (19). In the meantime, the abundance of health-

related bacteria was depleted. For example, Faecalibacterium, one of

the microbes producing butyrate, was at low average levels in the T3
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(3). Of note, the expansion of b-diversity was not related to health

status or diet, which strongly suggest that it was a widely shared

phenomenon during pregnancy (3). However, whether other changes

during pregnancy were common remained unknown. Similarly,

another study found that maternal gut microbiota diversity changes

as pregnancy progresses, and the alterations are closely correlated

with gestational weight gain (16). Except for studies in human, Chen

et al. found that in sows there were dramatic changes in the fecal

microbiota from the early pregnancy to the late pregnancy, with

significantly decreasing Firmicutes and increasing Bacteroidetes and

Verrucomicrobia (20). Actinobacteria was also observed to increase

in the late pregnancy (21, 22). In the genus level, Clostridiales,

Desulfovibrio, Mogibacteriaceae and Prevotella in the gut of sows

increased as the pregnancy progressed and decreased at weaning (23).

The relative abundance of Streptococcus was found higher during the

late pregnancy (24). However, these results in sows were not

completely consistent with that in human.

The inconsistent data among different studies may result from

multiple factors:

1. As the gut microbiota is correlated with clinical

characteristics like race, age, diet, medication history, living

environment, body weight, and health status (25–27), differential

selection standards of the participants may lead to different

concnlusions (3, 17). Sample size, sampling methods, time, and

the study design are inevitable confounding factors. Because few

studies have ruled out the interference of these factors, it remains

unclear whether these results reflect physiological changes in

normal pregnancy or dysbiosis caused by pathological processes.

2. Few studies have incorporated metagenomic measures, which

provides more specific classifications of sequences when they were

compared to 16S rRNA gene amplicon sequencing (28).

Dramatic shifts in the concentration of hormones during

pregnancy, such as estrogen and progesterone, can be one of the

contributors of the altered composition of gut microbiota. For

instance, progesterone was found to promote Bifidobacterium

growth during late pregnancy (15). Among overweight and obese

women with dysregulated metabolic hormone levels, the gut

microbiota profile was different. Insulin was positively correlated

with the genus Collinsella (29). In turn, gut microbiota affects

hormonal levels. For example, antibiotics contributed to lower

estrogen levels in a clinical trial, which was associated with

decreased abundance of b-glucuronidase-producing bacteria (30).

In brief, more extensive studies with multiple timepoint

collections of fecal samples, improved sequencing methods, as

well as adequate documentation and assessment of confounding

factors are needed to investigate how and why maternal gut

microbiota changes during pregnancy.
3 Maternal gut microbiota and the
immune response during pregnancy

The gut microbiota and their metabolites greatly impact the

immune system of the host and the fetus during pregnancy.

Notably, hormonal changes are also highly associated with the
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host immune status (31). For example, progesterone during

pregnancy is benefit for the balances of Th1/Th2 response and

the regulation of pro-inflammatory cytokines (31). It seems that the

interrelated hormonal and microbial factors jointly act on the host

immune microenvironment at the maternal-fetal interface to main

the stability. Here we mainly focused on the role of gut microbiota

in dominating the immune response during pregnancy.
3.1 How to trigger the immune response

To trigger the immune response, maternal gut microbiota can

adhere and translocate through the gut epithelial barrier to enter the

systemic circulation for direct interaction betweenmicroorganisms and

immune cells. In addition, the gut microbiota can release mediators,

such as lipopolysaccharide (LPS), metabolites, or extracellular vesicles

(EVs), to impact the immune system (Figure 1) (32).

To enter the systemic circulation, maternal gut microbiota first

crosses the epithelium of the gut by binding to receptors, such as

toll-like receptors (TLR). Besides, the dendritic cells (DCs) can help

to localize the pathobionts across the epithelium of the gut and into

the systemic circulation by phagocytosis (32).

Gut microbiota triggered the immune response through its

metabolites. Among all the metabolites, short-chain fatty acids
Frontiers in Immunology 03
(SCFAs) are the most extensively described. SCFAs, such as

acetate, propionate, and butyrate, are produced by fermenting

non-digestible fibers dominated by Bacteroidetes and Firmicutes

(33, 34). It has been well established that SCFAs play a crucial role

in host immunity (33). SCFAs and other microbial metabolites can

cross the epithelium and stay in the host systemic circulation, where

they are detected by immune cells (33).

Other substances can act as mediators for the maternal gut

microbiota to influence the host immune response, among which

EVs have aroused great interest. Gut microbiota is able to produce

EVs, carrying products such as nucleic acids, proteins, and lipids

(35). Growing studies have paid attention to the role of EVs in

mediating the immune effects of gut bacteria (36–38). Recently, it

has been reported that gut microbiota-derived EVs play a vital role

in driving the prenatal immune system, which could be a potential

area of research in the future (39).
3.2 Maternal gut microbiota: the role in the
immune environment at the maternal-
fetal interface

During pregnancy, the immune system of mothers tends to

maintain tolerance to the fetal allograft while protecting from
FIGURE 1

Dysbiosis of maternal gut microbiota alters the immune environment at the maternal-fetal interface and contributes to pregnancy complications.
Factors such as diet, pressure, antibiotics, and infection can lead to dysbiosis of maternal gut microbiota during pregnancy. The altered maternal gut
microbes can trigger the immune response by adhesion and translocation through the gut epithelial barrier or releasing mediators, such as
lipopolysaccharide (LPS), short-chain fatty acids (SCFAs), or extracellular vesicles (EVs). At the maternal-fetal interface, the tolerogenic environment is
disturbed, with increased pro-inflammatory macrophages (M1) phenotype and elevated levels of pro-inflammatory cytokines, including tumor
necrosis factor-a (TNF-a), interleukin-6 (IL-6), and interleukin-1b (IL-1b). In contrast, decreased regulatory T cells (Tregs), regulatory B cells (Bregs),
follicular regulatory T cells (Tfr), transforming growth factor-b (TGF-b) and interleukin-10 (IL-10) were observed during pregnancy, leading to various
pregnancy complications. DA, dopamine; GDM, gestational diabetes mellitus; PE, preeclampsia; PTB, preterm birth; RM, recurrent miscarriages; Prop,
propionate; BA, butyrate; GABA, gamma-aminobutyric acid; NE, norepinephrine; 5-HT, serotonin; NEU, neutrophils.
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infections (40). The placenta and the decidua are crucial for

pregnancy sustainment and preventing the fetus from maternal

immune attacks (40). Maternal T helper 1 (Th1) activity was

suppressed to maintain a successful pregnancy. At the same time,

the immune profile switched to the Th2 dominant profile with the

expansion of regulatory T cells (Tregs) in the placenta and decidua

(41). Regulatory B cells (Bregs) were lowered in the systemic

circulation and were considered to migrate to the maternal-fetal

interface (42). More macrophages tend to be polarized into M2-like

macrophages to maintain the immunosuppressive property (43).

Maternal gut microbiota has been reported to be closely

associated with establishing a tolerogenic environment in utero

through direct interaction, or their metabolites and components,

such as LPS and SCFAs. Dysbiosis of gut microbiota is associated

with a pro-inflammatory macrophage phenotype in the placenta

with an elevated expression of tumor necrosis factor-a (TNF-a)
and interleukin-6 (IL-6) (44). In recurrent miscarriages, metabolites

like chenodeoxycholic acid sulfate, 1,4-Methylimidazoleacetic acid

are positively associated with changes in levels of Th1 and Th17

cytokines, suggesting that they are involved in the pathogenesis of

miscarriages (45). When fed with a diet enriched in prebiotics, the

abundance of Tregs increased in the placenta, and Bregs increased

in both the placenta and the uterus, followed by the alteration of gut

microbiota (46). It has been proved recently that oral probiotics also

increased Tregs, Bregs and follicular regulatory T cells (Tfr), as well

as IL-10 and transforming growth factor-b (TGF-b), while

decreased TNF-a and IL-6 to prevent inflammation in mice with

GDM (Figure 1) (47). In a sow model, a higher abundance of

Bacteroides fragilis was associated with higher levels of LPS, IL-1b
and IL-6 as well as increased intestinal permeability (48).

LPS is a surface membrane component of Gram-negative

bacteria. Elevation of LPS leads to metabolic endotoxemia, which

can travel to the peripheral tissues, including the uterus and

placenta, to trigger the immune response (49). LPS can increase

the permeability of the gut epithelial layer by disrupting the mucosal

layer and downregulating tight junction protein expression on gut

epithelial cells, such as zonula occludens-1 (ZO-1) and occludin (50,

51). Meanwhile, cannabinoid receptor 1 (CB1) and zonulin were

found significantly increased when gut microbiota was disturbed,

leading to increased gut epithelial permeability (52, 53). LPS binds

to TLR2/4 and recruits the adapter proteins myeloid differentiation

factor 88 (MyD-88), IL-1 receptor-associated kinase (IRAK), TNF

receptor-associated factor 6 (TRAF6), TGF-b-activated kinase1

(TAK1) and TAB1 (TAK1-binding protein 1), triggering the

infiltration of macrophage and elevating pro-inflammatory

cytokines, such as IL-1, IL-6, and TNF-a (54).

SCFAs could bind the G-protein coupled receptors (GPR),

including GPR43, GPR41, GPR109A, and OLFR78/OR51E2

expressed on macrophages, neutrophils, eosinophils or DCs (55–

57). Through inhibiting histone deacetylase (HDAC) activity (58,

59), SCFAs control gene transcription in various tissues and cells.

Previous studies have shown that SCFAs promote Tregs via GPR-

dependent and HDAC-dependent mechanisms (58, 60).

Additionally, SCFAs can serve as energy substrates for immune

cells and thus participate in cellular metabolism (61). Based on these

mechanisms, SCFAs enhance the epithelial integrity and the anti-
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inflammatory effects in the regulation of cytokine production,

suppression of macrophages, and expansion of Tregs in the gut

and peripheral tissues (58, 62). SCFA supplements, such as sodium

butyrate, decreased inflammatory cytokines (IL-1b, IL-6, and TGF-

b) and reversed the symptoms of preeclampsia (63).

Gut microbiota was reported to produce or regulate

neurotransmitters, such as glutamate, gamma-aminobutyric acid

(GABA), and norepinephrine (NE), which are associated with

emotional and cognitive disorders (64–66). The production of

GABA, the inhibitory neurotransmitter, has been reported to be

specially associated with Lactobacillus, Bifidobacterium and

Bacteroides in the gut (64). In mice model, Lactobacillus

rhamnosus JB-1 elevated the levels of GABA and the expression

of GABA receptors in the brain, which led to the alleviation of

anxiety and depression (67). Additionally, reduced levels of luminal

NE in the gut have been found in germ-free mice, which could be

reversed by colonization with Clostridium spp (66). It is likely that

gut microbiota participated in regulating the nervous system of

mothers during pregnancy and even played a role in the

neurodevelopment of their offspring. However, up to now,

evidence that linked gut microbiota-related neurotransmitters to

the maternal-fetal diseases during pregnancy was still lacking.

Approximate ly 90% of serotonin is produced by

enterochromaffin cells in the gut and its biosynthesis is largely

regulated by commensal gut microbiota, such as spore-forming

bacteria (68, 69). Several studies indicated that serotonin in

maternal circulation, placenta, and cord blood apparently

increased and its degradation is partly blocked in preeclampsia

(70). Serotonin is key to maintain the function of DCs and modulate

the activation and proliferation of T cells by decreasing the

production of Th1/Th17 cytokines and enhancing Tregs (71, 72).

Serotonin is also necessary for cytokine production, including IFN-

g, IL-1B, IL-8, IL-12, TNF-a, IL-17, and IL-6 (70).

Current findings that connect maternal gut microbiota with

host immune profile at the maternal-fetal interface are limited. It is

hard for researchers to identify the exact genus or species of gut

microbiota or the metabolite that drives the immune alterations at

the maternal-fetal interface of the host for the complexity of gut

microbiota. Also, most studies have paid attention to the systemic

change rather than the immune environment in the placenta or

decidua. Therefore, improved evidence will be needed.
3.3 Gut microbiota-related immune
alignment between mother and fetus

It has been widely recognized that most immune alterations

driven by microbiota occur in the postnatal period (73–75). There

are growing numbers of studies discussing how the maternal

microbiota affects the offspring’s immune system. However, only

some of these studies focus on the prenatal period instead of the

vertical transmission in the postnatal period.

Maternal gut microbiota plays a vital role in developing the fetal

immune system (76, 77). A recent study revealed that the Dialister,

Escherichia, and Ruminococcus predominant cluster in maternal

gut microbiota was closely associated with a lower proportion of
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granulocytes and higher proportions of central naïve CD4+ T cells

and naïve Tregs in cord blood (76). A maternal fiber-rich diet,

which profoundly affected the composition of maternal gut

microbiota, was associated with lower proportions of RORgt-
positive innate and adaptive immune cell subsets in the

offspring (77).

Preparing the fetal immune system in utero for extrauterine

conditions is crucial for survival. Humoral immunity, especially

immunoglobulin G (IgG), has been well investigated (Figure 2) (78).

Gomez et al. found that serum transfer from gestation-only

colonized females to unexposed pregnant mice was adequate to

shape intestinal group 3 innate lymphoid cells (ILC) populations in

the neonates, but not when IgG was depleted, which may suggest

that maternal IgG transfer of gut microbial components to the

offspring during pregnancy is important for fetal innate immune

development. Also, they showed that maternal antibodies increased

the levels of microbial molecules in the fetus and the neonate. In

other words, maternal antibodies have an effect on promoting

microbial molecular transfer (8).

Nevertheless, except for the antibody-dependent way, maternal

microbiota-driven immune system development also depends on

cellular immunity (Figure 2). The placenta provides a barrier

preventing the immune cells traveling across the maternal-fetal

interface, keeping the fetal and maternal immune cells separate (79).

However, this concept has been challenged by a study providing

strong evidence that a great number of maternal cells could cross

the placental barrier to stay in fetal lymph nodes, before they

induced the development of Tregs in fetus that suppress anti-

maternal immunity (80). Also, fetal and maternal cells flow bi-

directionally, with fetal cells being transferred to the mother (81).

This early exchange shapes the offspring’s immune response and

can, in part, explain why maternal gut microbiota can impact

offspring’s immune condition.

Even though whether there are microbes in the placenta,

amniotic fluid, or fetal tissues is questionable, the transport of

immune molecules or microbiota-derived metabolites via the

placental barrier is well established (Figure 2) (82–86). Recent

evidence showed that a short and mild infection during prenatal

development could lead to lasting alterations to gut epithelial stem

cells of offspring mediated by IL-6, resulting in enhanced resistance

to gut infection and increased susceptibility to mucosal

inflammation (87). Metabolites of the maternal gut microbiota

are also potential candidates for immune alignment. A study

found that disturbances in the maternal microbiota that affect the

generation of acetate may impair fetal Tregs development (88).

Moreover, the serotonin dysregulation in placenta can disturb

neurotransmitter signaling in the fetal brain (89).
3.4 The possible intrauterine microbiota
and uterine immune tolerance
in pregnancy

For about a century, the uterus was believed to be sterile, with

microbes only colonizing the newborn during birth. However, this

concept has been greatly challenged in recent studies. Several
Frontiers in Immunology 05
studies have detected microbes in human placenta and fetus (90–

92), though others suggest that the presence of bacteria in

pregnancy tissues may due to the DNA contamination (84, 85).

Current evidence revealed that placental microbiome in normal

pregnancy is characterized by both gram-positive and gram-

negative bacteria dominated by Lactobacillus, which plays a

protective role in pregnancy (93). The dysbiosis of microbiota

in placenta and the amniotic cavity has been reported to be

associated with adverse maternal outcomes such as preterm

birth, chorioamnionitis, intrauterine growth restriction, and

postpartum hemorrhage (94, 95). Placental microbiota of women

with GDM was characterized by lower relative abundance of the

Pseudomonadales order and Acinetobacter genus, which was

associated with increased O’Sullivan glucose and lower placental

expression of anti-inflammatory cytokines IL-10 and TIMP3 (96).

In placental microbiota of women with preeclampsia, pathogenic

bacteria like Bacillus cereus, Listeria, Salmonella and Escherichia

have been reported, which are often associated with infection (97).

Except for vaginal and oral microbiota, gut microbiota has been

considered one of the origins of the intrauterine microbiota (98). It

has been shown that in utero, bacterial colonization of the fetus can

be affected by maternal oral uptake of microbiota. After pregnant

mice were fed with a genetically labelled Enterococcus faecium

strain, the bacteria could be detected in their offspring delivered by

Caesarean section (99). Jeon et al. found that the maternal gut

microbiota is the largest donor of the infant bacterial strains,

whereas the maternal vaginal microbiota seems to be less

important (100). One potential in utero bacterial colonization

mechanism is translocation through the choriodecidual barriers

(Figure 2) (91). After entering the maternal circulation, a small

number of bacteria can be translocated to the placenta and go

through the choriodecidual barriers due to higher intercellular

junctional permeability and DC-mediated transport (91, 101).

Therefore, it is possible for gut microbiota to impact maternal-

fetal health via altering the intrauterine microbiota. However,

evidence about how microbiota enters the fetoplacental

compartment is still lacking.

The uterine immune environment can be affected by

intrauterine microbiota. Nature killer (NK) cells are the most

abundant immune cells (70–80%) in the decidua (102). As the

core of the maternal-fetal immune environment, NK cells play a key

role in decidual vascular transformation and IFN-g production,

which then stimulate macrophages, neutrophil cells, T cells and B

cells to release antimicrobial substances (103, 104). Studies on

uterine NK cells in response to local microbes during pregnancy

are limited (105). Recently, a study indicated that intrauterine

infection by Porphyromonas gingivalis was associated with

increased uterine NK cell populations and decreased secretion of

IL-18 in rat, accompanied by a reduction of TNF-a+ T cells (106).

Another study showed that the depletion of NK cells, mainly uterine

NK cells, played a protective role in Group B Streptococcus (GBS)

fetal invasion in GDM mice (107). Crespo et al. show that human

decidual NK cells, with higher expression of granulysin than

peripheral NK cells, can defense Listeria monocytogenes infection

and protect fetus by infusion of granulysin into placental

trophoblast cells via nanotubes and removing the intracellular
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pathogen (108). In the gut, the mucosal NK cells are characterized

by limited IFN-g production and the absence of perforin as a result

of the adaptation to the gut commensal microbiota (109, 110).

However, whether this property exists when uterine NK cells adapt

to the uterine microbiota remains to be clarified.

Small proportion of neutrophils are found at the maternal fetal

interface during normal pregnancy. However, they increase

dramatically and produce TNF-a and macrophage inflammatory
Frontiers in Immunology 06
protein-1b (MIP-1b) with intraamniotic bacterial infection, which

often lead to preterm birth (111). Neutrophils can neutralize

microorganisms and enhance the inflammatory response via

forming neutrophil extracellular traps, producing reactive oxygen

species and releasing antimicrobial enzymes (112). Additionally,

specific placental microbiota and increased activation of

neutrophils were found in women with preeclampsia (97, 113).

However, to connect the intrauterine microbiota, neutrophils
FIGURE 2

Disturbances in maternal gut microbiota increase the risk of diseases in the offspring. Maternal gut microbiota affects the health of the fetus by three
potential pathways. First, after maternal immune activation, antibodies, immune molecules, and immune cells can cross the placental barrier to stay
in fetal tissues. Next, the metabolites and components of maternal gut microbiota can be crucial substances that cross the placenta barrier. In
addition, some microbes can colonize in utero as fetoplacental microbiota. Disturbances in maternal gut microbiota may further increase the risk of
allergic diseases and neurodevelopmental disorders in the offspring through altered concentration of metabolites and imbalanced immune profile.
TMAO, trimethylamine-N-oxide; IP, imidazole propionate; BA, butyrate; GABA, gamma-aminobutyric acid; NE, norepinephrine; 5-HT, serotonin.
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activation and the pathogenesis of preeclampsia, more evidence is

still needed.

Antigen-presenting cells, such as macrophages and DCs, account

for 10-20% of uterine leukocytes (114). As innate phagocytes,

macrophages are likely to engage intrauterine microbiota. Evidence

indicated that placental macrophages release macrophage

extracellular traps (METs) in response to GBS infection via an

oxidative burst-dependent mechanism (115). Other studies suggest

that placental macrophages activated inflammatory pathways in

response to GBS through Protein kinase D and eliminated Coxiella

burnetii infection via an IFN-g dependent way (116, 117). While

intestinal macrophages have a diminished ability to express innate

response receptors or to produce proinflammatory cytokines (118), it

remains unclear in uterine macrophages.

T cells make up approximately 10–20% of uterine leukocytes in

early pregnancy and become the major immune cells of the decidua in

late pregnancy (114). Commensal gut microbiota promotes the

generation and activation of mucosal Tregs (119), and disrupted gut

microbiota leads to impaired differentiation of various T cell subsets

(120). Similarly, intrauterine microbiota could be essential for

programming the local immunity in the uterus. Specifically,

Bacteroides fragilis, commonly present in the lower gut, is found in

the uterus (121). Bacteroides fragilis have been reported to reverse

systemic T cell deficiencies and the imbalance of Th1/Th2 via

polysaccharide A (PSA) secretion (122). Another study found that

PSA can promote the immunologic tolerance of Tregs through TLR2 at

the intestinal mucosal surfaces in a mouse model (123). Therefore, it

could be hypothesized that PSA derived fromBacteroides fragilis plays a

role in uterine immune tolerance due to the immunomodulatory effect.

Microbiota has been found in fetal meconium and umbilical

cord blood as well. Maternal gut microbiota is essential for the

development of the fetal microbiota, which acts as an initiating

stimulus for driving the fetal immune system (124). Beneficial

bacteria, such as Bifidobacteria and Lactobacilli, present in the

human placenta, are important for immune regulation. Their

exposure to foreign antigens promotes fetal ILCs and prepares the

offspring for colonization during delivery and postnatal life (8).

Microbes in fetal tissues could also induce the activation of memory

T cells in fetal mesenteric lymph nodes in vitro, suggesting the role

of microbes in fetal immune priming (83).

Up to now, whether and how gut microbiota interact with

intrauterine microbiota remains to be established. It remains to

unclear whether different uterine microbial compositions are

associated with altered uterine immune profiles. In addition, the

uterine microbial composition may not be the cause but the

consequence of the imbalanced immune state. Further studies are

required to explore the interactions between intrauterine

microbiota and the local immune cells.
4 Maternal gut microbiota in
pregnancy complications

As gut microbiota plays an important role in physiological

processes during pregnancy, recent studies have focused on the
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complications. Recent studies showed that maternal gut

microbiota was associated with GDM, HDP and preterm birth.

Additionally, recent evidence showed that gut microbial dysbiosis

impacted the levels of Th1/Th17 cytokines, thus leading to

recurrent miscarriages (Figure 1) (45). Here, we review what kind

of effects gut microbiota can bring about in pregnancy

complications and the underlying mechanism by which it

interacts with the host.
4.1 Maternal gut microbiota and GDM

GDM is a transient hyperglycemic condition during pregnancy.

Insulin sensitivity is reduced, and increased maternal plasma

glucose and free fatty acids (FFAs) are transported to provide

sufficient energy for the development of the fetus through the

placenta (125). However, women who are unable to compensate

for insulin resistance suffer from hyperglycemia (125). In non-

pregnant obese subjects, recent studies have stressed the role of gut

microbiota in leading to metabolic disease (126, 127).

A strong association between gut microbiota during pregnancy

and maternal metabolic milieu has been proposed in several studies

(Table 1) (128–137, 146–170). Gomez-Arango et al. confirmed the

positive correlation between circulating insulin at early gestation

and the genus Collinsella, which is a strict anaerobic bacterium that

produces lactic acid (168), suggesting that high Collinsella

abundance may be responsible for the development of insulin

resistance during pregnancy. However, as the study was

conducted on overweight and obese women, another study

investigated if the findings could be extended to non-obese

pregnant women (169). Different from Gomez-Arango’s findings,

the non-obese women with GDM presented a lower abundance of

Collinsella at T1 and a higher abundance of Akkermansia in the

second trimester (T2) than the normal controls (169). Several

studies observed the increase of pathogenic bacteria and

reduction of beneficial butyrate-producing microbes in GDM

patients (131, 146–155). An alternative view is that women who

developed GDM had significantly fewer changes in the classification

and function of gut microbiota with advancing gestation than in gut

microbiota during normal pregnancy (132, 165). Apart from

bacteria, one study has observed alterations in the fungi in gut

microbiota and found that glucose levels were negatively associated

Ganoderma, a polysaccharide-producing genera (166).

Although there are many studies exploring the correlation

between gut microbiota and GDM, few have confirmed a causal

relationship between them. A prospective study with 75 overweight

pregnant women with normal glucose tolerance found the

relationship between the dysbiosis of gut microbiota in early

pregnancy and the onset of GDM. After adjusting all potential

confounders, there is still a significant association between the

Ruminocococaceae family and glucose level (167). To clarify the

causal relationship, Liu et al. transferred the fecal samples of GDM-

positive women and non-GDM controls to germ-free mice. They

found it led to different colonization patterns of gut microbiota, and
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TABLE 1 Association between maternal gut microbiota and pregnancy complications in model/participants, associated gut microbiota and the
underlying mechanisms.

Pregnancy
complications

Model/Participants
Associated
gut microbiota

Mechanisms
Author
(year)

Reference

Gestational
diabetes
mellitus (GDM)

15/60/67/29 pregnant women with
GDM and 76/68/203/29 without GDM

No significant difference Not available Koren et al.
(2012), Hasan
et al. (2018),
Mokkala et al.
(2021), Mullins
et al. (2021)

(3, 128–130)

27/120/27 pregnant women with GDM
and 30/120/27 without GDM

Acidobacteria; Bacteroides ovatus,
Anaerostipes hadrus, Eubacterium
ramulus, Fusobacterium mortiferum,
Escherichia coli; Veillonellaceae,
Lachnospiraceae, Caulobacteraceae

Through the
imbalanced
production of short-
chain fatty
acids (SCFAs)

Wu et al. (2021),
Sun et al. (2023),
Lyu et al. (2023)

(131–133)

45 pregnant women with GDM and 45
without GDM

Faecalibacterium Through altering the
levels of
inflammatory
factors

Liu et al. (2020) (134)

50 pregnant women with GDM and 54
without GDM

Verrucomicrobia, Megamonas,
Bacteroides eggerthii,
Ruminococcus gnavus

Through insufficient
dopamine, the
imbalanced
production of
SCFAs and
excessive
inflammation

Ye et al. (2023) (135)

394 pregnant women (44 developed
GDM, and the other 350 did not)

Prevotella (lower) Through the
imbalanced
production of
SCFAs and
increased
proinflammatory
cytokines

Pinto
et al. (2023)

(136)

24 pregnant women with GDM but
good glycemic control, 12 with GDM
and failed glycemic control, 16
without GDM

Blautia, Eubacterium_hallii_group Through the
peroxisome
proliferator-
activated receptor
(PPAR)
signaling pathway

Ye et al. (2019) (137)

Control and GDM mouse models fed
with probiotics or not

Fusobacteria, Firmicutes Through decreased
Treg, Tfr, and Breg
cells and imbalanced
inflammatory
cytokines

Liang
et al. (2023)

(47)

Hypertensive
disorders of
pregnancy (HDP)

67 patients with preeclampsia (PE) and
85 healthy controls

Clostridium, Dialister, Veillonella
and Fusobacterium

Through disturbing
Treg/Th17 balance
and
intestinal leakage

Chen
et al. (2020)

(6)

27/11 patients with severe PE and 36/
202 healthy controls

Proteobacteria, Enterobacter,
Gammaproteobacteria,
Escherichia_Shigella, Veillonellaceae;
Collinsella, Bifidobacterium,
Actinomyces and Unclassified
Erysipelotrichaceae genera

Through the
imbalanced
production
of SCFAs

Chang et al.
(2020), Altemani
et al. (2021)

(138, 139)

78/41 PE patients and 72/45
healthy controls

Blautia, Ruminococcus2, Bilophila,
Fusobacterium, R. gnavus, B.
wadsworthia, and F. nucleatum;
Proteobacteria, Fusobacteria,
Firmicutes/Bacteroidetes

Through increased
proinflammatory
cytokines

Lv et al. (2019),
Zhao
et al. (2022)

(140, 141)

92 PE patients and 86 healthy controls Fusobacterium, Desulfovibrio,
Flavobacterium, Eggerthella,

Through the
imbalanced
production of

Jin et al. (2022) (142)

(Continued)
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microbiota from GDM patients induced hyperglycemia in

mice (134).

There are also studies extending the time of sampling to the

postnatal period (3, 128, 147, 170). Koren et al. reevaluated

maternal gut microbiota one month after deliver and showed that

gut microbiota dysbiosis and loss of bacteria richness persisted after

delivery (3). Crusell et al. reported that the gut microbiota of women

with previous GDM was still marked by an aberrant composition

eight months after delivery, though the postpartum composition

was different from that during pregnancy (147). However, five years

after delivery, no significant differences in the composition of gut

microbiota between GDM-positive women and non-GDM controls

were observed (128).

Nonetheless, the link between gut microbiota and GDM is still

controversial (3, 129, 130). Opposed to the above findings, a study

by Koren et al. suggest there was no difference between the gut

microbiotas of GDM-positive women and non-GDM controls (3).

A study based on deep sequencing metagenomics pointed out that

specific gut microbiota species did not influence GDM when

adjusting all the confounders, except for the higher abundance of

Ruminococcus obeum in late pregnancy in women with

GDM (129).

Although growing evidence showed a correlation between the

altered gut microbiota and GDM, few studies have investigated the

mechanisms underlying the dysbiosis of the gut microbiota that

leads to the development of GDM (Figure 1). Recent studies found

that the insufficiency of circulating dopamine, imbalanced

production of SCFAs, and excessive inflammation resulting from

the dysbiosis of the gut microbiota led to the development of GDM

(133, 135, 136). Meanwhile, restoring the balance of maternal gut

microbiota limited the inflammatory response by increasing the

production of Tregs, Tfrs, Bregs in the GDM mice model (47).

Another study proposed that gut bacteria were responsible for

shifting indoleamine 2,3-dioxygenase-dependent tryptophan

anaerobic metabolism to kynurenine production, leading to

intestinal inflammation and gestational insulin resistance in the

mice model (171).

In summary, women with GDM often presented gut microbiota

dysbiosis with increased pathogenic bacteria, while symbiotic
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butyrate-producing bacteria were depleted. The dysbiosis of the

gut microbiota is closely related to immune imbalances and

excessive inflammation. Given that the studies are not sufficient

to confirm a causal relationship between gut microbiota and GDM,

we need more prospective studies or try to transplant gut

microbiota from GDM mice to germ-free mice to clarify the

actual relationship and more detailed mechanisms between

maternal gut microbiota and GDM.
4.2 Maternal gut microbiota and
hypertensive disorders of pregnancy

Hypertensive disorders of pregnancy (HDP), characterized by

increased blood pressure, include gestational hypertension,

preeclampsia (PE), eclampsia and chronic hypertension with

superimposed preeclampsia, seriously affecting the health of

mothers and babies (172).

A growing number of studies have suggested a close

relationship between the development of HDP and dysbiosis of

the gut microbiota (Table 1) (6, 138–142, 173–182). Of the studies

investigating these relationships, most have focused on PE. A study

using shotgun metagenomic sequencing showed that some species

that were classified in Blautia, Pauljensenia, Ruminococcus, and

Collinsella were increased in the gut microbiota of PE donors (177).

By transplanting feces from PE donors into antibiotic-treated mice,

elevated pregestational blood pressure was observed in mice,

suggesting that the gut microbiome has a direct impact on host

blood pressure (6). The PE-transplanted group also demonstrated

disturbed Treg/Th17 balance in the gut and spleen and more severe

intestinal leakage than the controls (6). To clarify the causal effect of

gut microbiota, a two-sample Mendelian randomization study was

conducted to reveal that Bifidobacterium was causally associated

with PE (175). Lv et al. found that the alterations of gut microbiota

during pregnancy persisted 6 weeks postpartum (140).

Most studies have observed decreased SCFA-producing

bacteria and SCFAs in the gut microbiota of individuals with PE

(6, 138–142, 173–182). Recently, a study showed evidence that

Akkermansia muciniphila, propionate, or butyrate significantly
TABLE 1 Continued

Pregnancy
complications

Model/Participants
Associated
gut microbiota

Mechanisms
Author
(year)

Reference

Oribacterium, Blautia,
Fluviicola, Moheibacter

propionate, butyrate
and M1/
M2 polarization

Preterm
birth (PTB)

20/22/102 pregnant women who
delivered term babies without preterm
labor (PTL), 11/8/0 pregnant women
who had PTL but delivered term babies,
10/11/19 pregnant women who
had PTB

Lactobacillales; Porphyromonas,
Streptococcus,
Fusobacterium, Veillonella

Not available Shiozaki et al.
(2014), Yin et al.
(2021), Dahl
et al. (2017)

(143–145)

Recurrent
miscarriages (RM)

41 RM patients and 19 controls Prevotella_1,
Prevotellaceae_UCG_003,
Selenomonas_1 (lower)

Through alteration
of metabolites and
levels of Th1/
Th17 cytokines

Liu et al. (2021) (45)
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reversed the symptoms of PE rats by inducing autophagy and M2

phenotype of macrophages in the placenta (Figure 1, Table 1)

(142). Tang et al. found that gut microbiota dysbiosis led to

proliferation, invasion, and migration of trophoblast cells in

preeclampsia (176).

To date, it is hard to conclude whether changes in the gut

microbiome occur prior to HDP or as a result of it. We need to

distinguish adaptive changes of gut microbiota from disease-

promoting microbiota as well as eliminate environmental

disturbances. There are still gaps in knowledge about the gut

microbiome of HDP, including longitudinal analyses of the

microbial profiles of the subjects during pregnancy and the

underlying immune mechanisms linking microbes to the

development of HDP. Moreover, we need more studies with

fecal transplantation in animal models, which can clarify the

cause-and-effect relationship between gut microbiota and HDP.
4.3 Maternal gut microbiota and
preterm birth

Preterm birth has been a substantial problem in perinatal

medicine worldwide in recent years. A great number of studies

have investigated the relationship between vaginal microbiota

and preterm delivery, while the research on gut microbiota

is limited.

Only a few studies proposed the association between gut

microbiota and preterm birth (Table 1). Shiozaki et al. first

described that some clusters of Clostridium and Bacteroides

depleted while the level of Lactobacillales increased in women

delivering prematurely (143). Other studies revealed reduced a-
diversity and lower species abundance in the Bifidobacterium,

Streptococcus genera, and Clostridiales order in gut microbiota

from individuals with preterm birth (7, 144). Recently, Yin et al.

found that opportunistic pathogens, especially Porphyromonas,

Streptococcus, Fusobacterium, and Veillonella, were increased. In

contrast, Coprococcus and Gemmiger were markedly decreased in

the gut microbiota of women with preterm birth. Interestingly, most

of the enriched microbes were oral bacteria, implying the possibility

of oral-to-gut migration (145).

The altered gut microbiota may impair the anti-inflammatory

properties to increase the risk of preterm birth (Figure 1). Clostridia

spp. is able to impact the number and function of Tregs in the

colon, thereby attenuating inflammation (183). Bacteroides

fragilis activates IL-10-secreting Tregs through PSA to reduce

inflammatory response in the gut, which downregulates the TLR2

signaling pathway and suppresses Th17 responses (184). Multiple

strains of Bifidobacterium have anti-inflammatory properties with

the ability to inhibit LPS-induced NF-kB activation, IL-8, TNF-a,
cyclooxygenase 2 (Cox-2), and intercellular adhesion molecule-1

(ICAM-1) in vitro (185). Thus, its decrease in abundance may

increase the susceptibility of the host to inflammation-induced

preterm delivery.

While these studies provide support for the potential role of gut

microbiome in mediating preterm birth, more research is clearly

needed in this area.
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5 Maternal gut microbiota: the role in
offspring health

Maternal gut microbiota is not only a candidate for the health of

mothers but also an important factor that is beneficial or harmful to

the health of the offspring. Maternal gut microbiota provides key

metabolites and substrates essential for fetal immune and neural

development (8–10). A range of mouse and human studies support

that stable maternal gut microbiota can decrease the risk of

offspring diseases. Conversely, disturbance in maternal gut

microbiota, such as infection, malnutrition and exposure to

antibiotics, may impair the health of offspring in a wide range (9,

11, 12).
5.1 Maternal microbiota and allergic
diseases in offspring

Maternal gut microbiota plays a vital role in driving the early

innate immune development of the fetus (76, 77). Allergic diseases,

including atopic dermatitis, food allergy and asthma, are often

linked to the immune system. A large number of studies have

shown that elevated Th1 response, increased Tregs, and enhanced

neutrophils are signs for the decreased risk of allergic disease (186–

190). Dysbiosis of gut microbiota may impair the fetal immune

system, making it susceptible to allergic diseases after birth.

Previous studies have explored the direct relationship between

maternal gut microbiota and allergic disease in offspring in humans

(Table 2). One study that collected stool samples from 60 pregnant

women during T3 of their pregnancy showed that higher maternal

total aerobes and enterococci were related to an increased risk of

infant wheezing, which is associated with an increased risk of child

asthma (205). Mothers with infants who had atopic dermatitis

showed increased Candidatus_Stoquefichus and Pseudomonas

during pregnancy (191). Instead, carriage of Holdemania and

Prevotella copri in maternal gut microbiota during T3 protected

infants from food allergies (192, 193). Another pilot study showed

that the diversity of Proteobacteria and the relative abundance of

Actinobacteria from maternal gut microbiota were negatively

associated with dermatitis in early infancy (206).

The association between maternal gut microbiota and allergic

diseases in offspring may also depend on the maternal-fetal transfer

of SCFAs, which often changes the composition of the gut

microbiota of the offspring at the same time (12, 194, 195).

SCFAs are known to have anti-inflammatory properties, and

butyrate is able to protect against asthma by inducing FoxP3 on

Tregs, suppressing inflammatory Th9 cells and inhibiting IL-13 and

IL-5 production by ILC2s (207–209). Except for butyrate,

propionate contributed to the alteration of DC biology to protect

against allergic airway disease, for DCs had ability to promote Th2

responses (210),.

Additionally, maternal diet, nutrition, prenatal stress,

supplementation of prebiotics and probiotics during pregnancy,

as well as exposure to environmental pollutants, have all been

proven to affect the allergic immune response across generations.
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TABLE 2 Association between maternal gut microbiota and the disorders of the offspring in model/participants, mechanisms, and results/conclusions.

The disorders
in the offspring

Model/
participants

Mechanisms Results/conclusions
Author
(year)

Ref.

Allergic diseases

36 maternal-
offspring pairs

Not available Maternal gut microbiota has higher abundance of
Candidatus_Stoquefichus and Pseudomonas during
pregnancy when their infants have atopic dermatitis.

Fan
et al.
(2022)

(191)

68 maternal-offspring
pairs (24 infants
diagnosed with
food allergy)

Not available Maternal carriage of Holdemania during the third trimester
strongly bodes for the absence of food allergies in infants.

Wang
et al.
(2022)

(192)

58 maternal-offspring
pairs with food allergy,
258 maternal-offspring
pairs as controls

Not available Maternal carriage of Prevotella copri during pregnancy
strongly bodes for the absence of food allergy in
the offspring.

Vuillermin
et al.
(2020)

(193)

Pregnant mice treated
with three
concentrations of the
antibiotic vancomycin

Through altering the
concentration of short-
chain fatty acids (SCFAs)
and the composition of
microbiota in offspring

Prenatal antibiotic exposure, which causes changes in the gut
microbiota composition in both mothers and the offspring
and decreases SCFAs, is associated with increased offspring
asthma severity.

Alhasan
et al.
(2020)

(194)

Pregnant rats given
drinking water with
insulin or
normal water

Through altering the
concentration of SCFAs
and the composition of
microbiota in offspring

Inulin intake alters maternal gut microbiota composition,
with increased SCFA-producing bacteria, alleviating the
inflammatory response in the offspring; inulin intake during
pregnancy regulates the composition of the gut microbiota of
the offspring.

Yuan
et al.
(2023)

(195)

Pregnant mice
provided with control,
high-fiber or no-fiber
diet, or acetate in the
drinking water

Through maternal-fetal
transfer of acetate

High-fiber/acetate feeding of pregnant mice protects their
adult offspring from developing allergic airways disease by
promoting gene regulation in the fetal lung and affecting
Treg biology in the fetus.

Thorburn
et al.
(2015)

(12)

Neurodevelopmental
diseases

Germ-free mice,
antibiotic-treated mice
and specific pathogen-
free mice

Through microbiota-
derived metabolites

Maternal gut microbiota promotes fetal axonogenesis,
probably by microbe-related metabolites, including
trimethylamine-N-oxide and imidazole propionate.

Vuong
et al.
(2020)

(9)

116 mother-child pairs Not available Fusobacteriia is more related to high fine motor skills in the
maternal prenatal gut microbiota but more associated with
low fine motor skills in the infant gut microbiota.

Sun
et al.
(2023)

(196)

BTBR mouse model of
autism spectrum
disorders (ASD)

Through maternal-fetal
transfer of butyrate

Maternal butyrate treatment can improve ASD-like
symptoms in the offspring.

Cristiano
et al.
(2022)

(197)

Mouse model with
maternal
immune activation

Through Th17 cells and
IL-17a

Maternal immune activation-associated abnormalities in the
offspring require maternal gut microbiota that promotes
Th17 differentiation.

Kim
et al.
(2017)

(10)

Mice transplanted
with high-fat diet
(HFD)- or control
diet-associated
gut microbiota

Not available HFD-induced maternal dysbiosis can disrupt behavioral
function in murine offspring in a sex-specific manner.

Bruce-
Keller
et al.
(2017)

(198)

778 children aged 7-14
years and their
mothers; mouse model

Through altering the
concentration of SCFAs
and the composition of
microbiota in offspring

Maternal obesity is correlated with cognitive and social
deficits in children mediated by gut microbiota; high-fiber
intake in maternal diet reshapes the gut microbiota in
mother and offspring mice and reverses the
neurodevelopmental deficits in the offspring.

Liu
et al.
(2021)

(199)

Mice fed with a HFD
or a control diet

Not available HFD-induced maternal gut microbiota dysbiosis has
multigenerational impacts on the social dysfunction of
the offspring.

Di Gesù
et al.
(2022)

(200)

Mice fed with a HFD
or a control diet, then
supplemented
with probiotics

Not available Perinatal intake of probiotics can mitigate the abnormal
emotional behavior in the offspring of obese dams.

Radford-
Smith
et al.
(2022)

(201)

(Continued)
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However, it is unknown whether there is any direct involvement of

maternal gut microbiota (211–215). Maternal treated with

antibiotics during pregnancy was associated with increased

asthma severity in the offspring in a dose-dependent way (194,

216–218).
5.2 Maternal gut microbiota and
neurodevelopmental diseases in offspring

The prenatal and early postnatal periods are critical for the

rapid development of the human nervous system. Disruptions in

the development of the fetal gut microbiota in early life can affect

neurodevelopment and may lead to poor mental health outcomes

later in life (219). Recently, the role of maternal gut microbiota in

the neurodevelopment of children has aroused heated discussion.

Maternal gut microbiota can have a great impact on the nervous

system of the offspring (Table 2). In the formation of neural circuits,

maternal gut microbiota produced metabolites, antibodies, and

substrates during the prenatal period to provide important

metabolic support (9). In human research, a large-scale study

found that Fusobacteriia in maternal gut microbiota is more

associated with the high fine motor skills of their children (196).

In mice models, maternal butyrate treatment can reverse autism

spectrum disorders in offspring (197). Embryos of antibiotic-treated

and sterile mice showed lower expression of axonogenesis genes,

defective thalamocortical axons and impaired thalamic axon

growth, which suggest that dysbiosis of gut microbiota can have a

permanent impact on fetal neurological development through

altering microbially modulated metabolites which promote

axonogenesis, including trimethylamine-N-oxide and imidazole

propionate (9). Maternal immune activation (MIA) can lead to

behavioral abnormalities and neurodevelopmental disorders in

the offspring (220, 221), and IL-17a produced by Th17 cells plays

a crucial role in inducing behavioral and cortical abnormalities

(222). In 2017, Kim et al. proved that MIA-associated

neurodevelopmental disorders in the offspring required maternal

gut bacteria that promote Th17 cell differentiation. Mouse

commensal segmented filamentous bacteria or human commensal

bacteria that induced intestinal Th17 cells were more likely to

increase the risk of MIA-associated abnormalities in the offspring

(10). In addition to behavioral abnormalities, another study in 2022
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proved that maternal gut microbiota could also drive inflammation

in the gut of offspring with neurodevelopmental diseases by

changing the chromatin landscape of naive CD4+ T cells (223).

Factors that impact the maternal gut microbiota, such as

maternal diet, infections and prenatal stress, have all been linked

to neurodevelopmental disorders in the offspring (198, 224). A

maternal high-fat diet can induce long-term cognitive deficits in the

next generation (225). However, maternal treatment with oral

intestinal alkaline phosphatase, an enzyme that tightens the gut

barrier and promotes the growth of commensal symbionts by

detoxifying anti-inflammatory agents, mitigated high-fat diet-

induced cognitive disorders in offspring mice (226). When there

is antibiotic exposure during pregnancy, more severe anxiety and

less social interactions were observed in rat offspring (202), and

similar results were found in a human study (203). Maternal gut

microbiota may work in both prenatal and postnatal phases to

continuously influence the health of offspring.

Maternal gut microbiota dysbiosis participates in the

development of neurological disorders in the offspring via

microbially modulated metabolites and alterations in the

composition of the microbiota of offspring (9, 199) or by

mediating immune activation and IL-17a elevation (10). Given

that most of the experiments were conducted with mice models,

human research is needed for future exploration.
6 Potential therapeutic strategies

Given that maternal gut microbiota plays a crucial role in the

pathogenesis of pregnancy complications and the health status of

the offspring, it is particularly important to take effective

interventions. Among the interventions, taking probiotics and

improving the diet aimed at restoring gut microbiota balance are

the most widely applied.
6.1 Probiotics

Probiotics are live microbes beneficial to the host when

administered in adequate amounts (227). Bifidobacterium and

Lactobacillus are the most common microbes used as medical

interventions (228). Probiotics contribute to beneficial health
TABLE 2 Continued

The disorders
in the offspring

Model/
participants

Mechanisms Results/conclusions
Author
(year)

Ref.

Rats exposed to a diet
with antibiotics or not

Not available Offspring exposed peri-conceptionally to
SuccinylSulfaThiazole (a non-absorbable antibiotic) shows
reduced social interactions.

Degroote
et al.
(2016)

(202)

483,459 mothers with
their first live
singleton delivery

Not available Maternal and early-life antibiotic use is associated with an
increased risk of autism and attention deficit/hyperactivity
disorder in childhood.

Njotto
et al.
(2023)

(203)

213 pregnant women
and their children

Not available The alpha diversity of the maternal gut microbiota during
the third trimester of pregnancy bodes for child
internalising behavior.

Dawson
et al.
(2021)

(204)
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outcomes by increasing the composition of symbiotic bacteria,

reducing the adherence and penetration of pathogenic bacteria,

strengthening the permeability of gut epithelium, and regulating

immune response (Figure 3) (229, 230). The combination of

Bifidobacterium, Lactobacillus, and Streptococcus increased the

expression of tight junction proteins, including claudin-1 and

occluding, and suppressed the expression of pro-inflammatory

cytokines like IL-6 and IL-17 (231). Additionally, probiotics can

induce the proliferation of Tregs and the secretion of anti-

inflammatory cytokines like IL-10 (232). In general, probiotics are

safe and play a protective role in mothers and infants (227, 233).

Probiotics have a positive effect on preventing pregnancy

complications. In GDM, a meta-analysis of 10 randomized

control trials with 2921 pregnant women was published to assess

the role of probiotics in GDM women (234). The results showed

that probiotics reduced GDM incidence by 33%, and using

multiple-strain probiotics had a greater effect on GDM. One

study examined the therapeutic effects of probiotics on

inflammatory factors. After the intervention, hypersensitive C-

reactive protein (hs-CRP), TNF-a, and IL-6 levels were

significantly reduced in women with GDM who were treated with

probiotics compared to the placebo group (235). A recent study

proved that oral probiotics increased Tregs, Tfrs and Bregs and

decreased proinflammatory cytokines to prevent inflammation in

mice with GDM (47), which showed the effect of probiotics on

regulating the immune response. Additionally, probiotics can

reverse the phenotype of GDM through the metabolism pathways
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of amino acids, bile acids, porphyrin, and chlorophyll (236).

Limosilactobacillus reuteri could ameliorate PE in mice by

improving endothelial dysfunction (237). However, a recent

systematic review indicated that probiotics may slightly increase

PE rates in pregnant women with comorbidities (238). There are

also studies found that oral probiotics can prevent preterm birth in

mice and human by reducing leucocyte infiltration and

inflammation in reproductive tissue (239, 240). These findings

emphasize the clinical value of regulating gut microbiota.

Probiotics taken by mothers can provide benefits for the

offspring. A study in mice showed that maternal milk

oligosaccharides and probiotics could promote immune organ

development, splenocyte proliferation, and antibody production,

as well as improve macrophage phagocytosis in the offspring (241).

The systematic review and meta-analysis found that maternal

probiotics supplementation prenatal reduced the risk of eczema in

infants, but not on other allergic diseases (242, 243). However,

another meta-analysis found that Lactobacillus rhamnosus GG

supplementation did not reduce the risk of eczema (244). The

heterogeneity between studies may due to different probiotic strains

and protocols. In the prevention of neurodevelopmental diseases, a

study showed that the intake of probiotics during pregnancy could

alleviate the abnormal emotional behavior in the offspring of obese

mice (201). Bifidobacterium feeding during pregnancy protected

the offspring from depression-like behaviors (245).

The selection of an appropriate probiotic strain is important,

which may impact the therapeutic effects of probiotics (234).
FIGURE 3

Various interventions can restore maternal gut microbiota balance and promote the health of mothers and infants. Various inventions, such as
probiotics, the high-fiber diet, exercise, and nutrition supplementation, can restore the composition of gut microbiota by increasing symbiotic
bacteria, reducing pathogenic bacteria, strengthening gut epithelial permeability, and regulating immune response.
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Therefore, deeper investigation, including different strains of

probiotics, was required in the future.
6.2 High-fiber diet

Dietary fiber, fermented by gut bacteria, is able to produce

SCFAs and participated in the host’s physiologic process. The high-

fiber diet has potential benefits for the health of mothers. Short-

term diet management in GDM patients can bring a change in the

ratio of Firmicutes/Bacteroidetes and even in some specific fungi,

suggesting that the diet intervention could play a positive role

during GDM pregnancy (131, 166). Recently, Huang et al. found

that high dietary fiber, which increased abundances of

Lachnospiraceae and butyrate, enhanced the gut barrier and

inhibited the transfer of LPS, thus reducing placental

inflammation and insulin resistance (246). Similar results were

also found in pigs. A high-fiber diet reduced proinflammatory

markers like IL-6 and increased the anti-inflammatory markers

like IL-10 in sows and piglets through promoting beneficial bacteria

and the production of SCFAs (247–249). However, studies that

investigated the therapeutic effects of dietary fiber in HDP and

preterm birth are still lacking.

While a high-fat diet may cause metabolic and neurological

disadvantages in offspring, replacing it with a healthy diet may

improve the disease status of offspring by improving infant gut

microbiota diversity and reducing opportunistic pathogens, such as

Enterococcaceae (250). An interesting finding showed that high-

fiber/acetate feeding of pregnant mice, which yielded a distinctive

gut microbiota, suppressed allergic airway disease responses in the

offspring by suppressing the expression of certain genes in the fetal

lung and promoting Treg function in the fetus (12). Given that a

maternal high-fat diet can induce long-term cognitive disorders in

the next generation (225), several studies found that maternal gut

microbiota mediated maternal obesity-induced cognitive and social

deficits in offspring through co-housing and fecal microbiota

transplantation experiments, which could be reversed by a high-

fiber diet in either pregnant mice or offspring (199, 200).

Additionally, maternal high-fiber diet improved the testicular

development in the offspring in sow model (251).

Dietary fiber provides benefits for the health of mothers and

offspring via altering the composition of maternal gut microbiota,

increasing SCFAs production, improving the antioxidant capacity,

and reducing inflammation (248, 252). Li et al. proposed that

dietary fiber promoted maternal serotonin synthesis in the gut

and transported the serotonin to the placenta in sows, which

improved placental function (253). A high-fiber diet was also

found to lead to an increase in serum concentration of IL-10 and

IgG, and a decrease in the serum concentration of IFN-g and CRP

(254, 255). Based on the solubility, dietary fiber has been classified

into soluble fiber and insoluble fiber. Soluble fiber tends to have

more extensive impact on gut microbiota and the expression of the

gut barrier-related genes than insoluble fiber in sow model (256).

Higher ratio of soluble fiber to insoluble fiber in pregnancy diets was

associated with higher antioxidant capacity, higher total SCFAs

concentrations and lower pro-inflammatory factors (252).
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Except for probiotics and a healthy diet, other inventions, such as

prebiotics, synbiotics, exercise, and nutrition supplementation (257–

259), can also restore the composition of gut microbiota and even

prevent detrimental outcomes, though current studies are still limited.
7 Conclusion and outlook

This review emphasizes the crucial role that maternal gut

microbiota plays in the health of mothers and offspring from the

perspective of immunology, linking maternal gut microbiota and its

derivatives and metabolites to the immune response during

pregnancy. The core findings lie in the abilities of maternal gut

microbiota to alter the immune environment at the maternal-fetal

interface and even affect the immune system of the offspring during

pregnancy. From this point, the maternal-fetal health, is hopefully

intervened through the reconstitution of the maternal gut

microbiota. Lactobacillus and Bifidobacterium have been proved

beneficial for patients with specific pregnancy-related diseases.

So far, the findings have been limited. The direct interaction

between maternal gut microbiota and the immune response in utero

has yet to be fully investigated. In current studies, the number of

patients or animal models included is not always large enough to be

statistically strong to draw clear and consistent conclusions.

Likewise, there is great variability in inclusion criteria, methods,

and doses and duration of medications between different studies,

leading to contradictory findings.

Whether based on clinical cohorts or animal model, most of the

studies proposed that gut microbiota dysbiosis is one of the etiological

factors in the pregnancy-related diseases. However, due to the

heterogeneity between human and animal model, the specific

species of microbes that undergoes change is not always the same.

While studies based on clinical patients aremore suitable for exploring

specific strains highly associated with the pathogenesis of GDM,

animal models are more convenient for probing the underlying

mechanisms and the causal relationship between gut microorganism

and the diseases. Considering mouse model is more economical and

convenient, we recommended to transplant specific constitution of

microbes to germ-free mice for the in-depth study of this field.

More research should focus on identifying the exact species and

strains of gut microbiota, or the specific molecules or metabolites

that significantly improve or impair the maternal-fetal health,

which may provide a potential therapeutic target. Researchers can

pay more attention to the impact of gut microbiota on innate

immune cells, like NK cells and neutrophils. The relationship

between gut microbiota and intrauterine microbiota is also a

research gap currently. Together, more valuable evidence is

needed in the future research.
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