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Colorectal cancer (CRC), known for its high metastatic potential, remains a

leading cause of cancer-related death. This review emphasizes the critical role

of immune responses in CRC metastasis, focusing on the interaction between

immune cells and tumor microenvironment. We explore how immune cells,

through cytokines, chemokines, and growth factors, contribute to the CRC

metastasis cascade, underlining the tumor microenvironment’s role in shaping

immune responses. The review addresses CRC’s immune evasion tactics,

especially the upregulation of checkpoint inhibitors like PD-1 and CTLA-4,

highlighting their potential as therapeutic targets. We also examine advanced

immunotherapies, including checkpoint inhibitors and immune cell

transplantation, to modify immune responses and enhance treatment

outcomes in CRC metastasis. Overall, our analysis offers insights into the

interplay between immune molecules and the tumor environment, crucial for

developing new treatments to control CRC metastasis and improve patient

prognosis, with a specific focus on overcoming immune evasion, a key aspect

of this special issue.
KEYWORDS
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1 Background

Colorectal cancer (CRC), a major global health concern, recorded 1.93 million new

cases and approximately 916,000 deaths in 2020, making it the second deadliest cancer

worldwide (1, 2). A significant proportion of early-stage CRC patients (25%-50%) progress

to metastasis, mainly affecting the liver, lungs, peritoneum, and distant lymph nodes, with a

five-year survival rate for metastatic CRC at about 14% (3). The interaction between the

immune system and tumor growth, involving phases of elimination, equilibrium, and
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escape, is crucial in CRC progression (4). Despite progress in

targeted and immunotherapies, which offer advantages over

systemic chemotherapy, there are still limitations in current

treatments for metastatic CRC (3): Patients with microsatellite

stable tumors (5), lack of biomarkers to predict the response to

immunotherapy and so on. This review focuses on the roles of

immune cells and molecules in CRC metastasis, particularly

exploring the mechanisms of immune tolerance and evasion. We

aim to evaluate the potential and limitations of these components in

clinical applications, highlighting the need for novel therapeutic

strategies to overcome immune evasion in metastatic CRC, and to

foste r future research in this vital area.
2 The role of immune cells in
mediating the metastasis cascade
of CRC

In the progression of colorectal cancer (CRC), the immune

system is fundamentally instrumental (6). The tumor

microenvironment (TME), encompassing immune cells,

fibroblasts, endothelial cells, and matrix proteins, significantly

influences tumor growth and metastatic spread, impacting

processes like seeding, proliferation, and evasion of immune

response. Key players within the TME include tumor-associated

macrophages (TAMs), CD4+ T (helper T) cells, dendritic cells

(DCs), regulatory T cells (Tregs), and tumor-associated neutrophils

(TANs), each playing a vital role in CRC’s metastatic journey.
2.1 Tumor-associated macrophages

Traditionally, TAMs are divided into “M1” and “M2” types,

which are associated with pro-inflammatory, immune-activating,

anti-tumor properties, and immune-suppressive, tumor-promoting

properties, respectively (7). M1 type produces pro-inflammatory and

immune-activating cytokines like IL-1b, IL-6, and TNF-a. While

generally seen as anti-tumor, their effectiveness depends on the

environment. For instance, in colitis models, M1 type TAMs can

promote chronic inflammation, increasing the risk of CRC. Studies

have shown that M1 type TAMs can promote tumor invasion and

metastasis by secreting factors like MMP-9. Conversely, M2 type

TAMs accelerate tumor progression and invasion by secreting

immune-suppressive factors like IL-10 and TGF-b (Figure 1,

Table 1). Understanding the dual roles of TAMs opens avenues for

targeted therapies. Modulating the balance between M1 and M2

phenotypes may offer a strategy to harness the anti-tumor potential of

TAMs, potentially influencing treatment outcomes.
2.2 Helper T

Cells CD4+ T cells, particularly the TH17 subset, have been

linked to the hepatic metastasis of colorectal cancer (CRC), also
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known as CRLM. Research has shown that an increase in these cells

after surgery correlates with a worsened prognosis (8) (Figure 1,

Table 1). Strategies aimed at modulating these cells may hold

promise in improving post-surgery outcomes.
2.3 Dendritic cells

As crucial antigen-presenting cells, DCs play a pivotal role in

the immune response. They capture and present external antigens

to T cells. Within CRC, it’s often myeloid DCs that predominate.

These cells are integral in cell-mediated immunity and in nudging

naïve CD4+ T cells towards a TH1 phenotype. They are also noted

for their presence at the tumor’s invasive edge and their link to

lymph node invasion (9, 10) (Figure 1, Table 1). Strategies that

maintain the balance of DCs(Lymophoid DCs and myeloid DCs)

and T cells(TH1 and TH2) could be explored as a potential adjunct

to existing treatments, aiming to improve outcomes, particularly in

lymph node-involved cases.
2.4 Regulatory T cells

In the tumor microenvironment (TME), Tregs are key players

in immune suppression. Their presence is often tied to heightened

metastasis and poorer outcomes in various cancers (11). In CRC,

the role of Tregs in the TME is multifaceted, with indications of

their dual functionality (12–14) (Table 1). Understanding the

nuanced role of Tregs in CRC provides insights for targeted

interventions. Modulating Treg activity within the TME may be a

viable strategy to disrupt immune evasion mechanisms and

improve treatment responses.
2.5 Tumor-associated neutrophils

The link between TANs and patient prognosis is a growing

research focus. These cells are implicated in promoting tumor

invasion, partly through mechanisms like angiogenesis regulation

(Figure 1) and increasing tumor cell resistance to VEGF inhibitors.

They also contribute to metastasis by accelerating the breakdown of

the basement membrane (15, 16) (Table 1). Strategies aimed at

regulating TAN functions may enhance the efficacy of existing

therapies, especially those targeting angiogenesis.
2.6 Other cells in the
tumor microenvironment

Beyond immune cells, the TME comprises stromal cells, the

extracellular matrix (ECM), cancer-associated fibroblasts (CAFs),

and endothelial cells (ECs), all playing roles in metastasis (17). The

ECM, made up of structural proteins such as collagen and

proteoglycans, undergoes remodeling by TME cells, affecting both

its structure and function (18). It serves not just as a scaffold for
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tumor cells but also in roles like intercellular adhesion and

paracrine signaling, contributing to tumor growth, immune

evasion, and metastasis (19–23). CAFs are crucial for ECM

upkeep, fibrosis, angiogenesis, immune suppression, invasion, and

chemoresistance. The vascular system, composed of ECs, peripheral

cells, smooth muscle cells, and progenitor cells, plays a significant

role in CRC invasion and therapy targeting (24). The liver is often

the primary metastasis site in CRC (25), with interactions between

tumor and liver cells, liver sinusoidal endothelial cells (LSECs), and

others fostering CAF formation and enhancing cellular stemness

and epithelial-mesenchymal transition via exosomes (26, 27).

Comprehensive approaches targeting various components of the

TME, including ECM, CAFs, and vascular elements, may be crucial.

Strategies aimed at disrupting these interactions could potentially

hinder metastasis and improve the efficacy of CRC treatments.
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3 Immune-related molecules in
colorectal cancer

Colorectal cancer (CRC) is significantly influenced by the TME,

where tumor cells interact intricately with various stromal cells.

This interaction is facilitated by a range of soluble elements like

cytokines, growth factors, chemokines, and components of the

extracellular matrix. In CRC’s pathogenesis, cytokines are

particularly crucial. Chronic inflammation, for example, often

leads to CRC, exacerbated by the dysregulated expression

of cytokines.

CRC exhibits a rise in both pro-inflammatory and anti-

inflammatory cytokines, which are deeply intertwined with the

progression and potential outcomes of the disease. The pro-

inflammatory cytokine, IL-17, for instance, not only intensifies
FIGURE 1

The roles of some immune cells to the development of CRC and the mechanisms of PD-L1 and CTLA-4 for immune evasion.
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tumor-caused inflammation but also assists cancer cells in evading

immune detection (28) (Table 1). The IL-23/IL-17 pathway’s role in

fostering colorectal tumor development is also notable (29).

Further, high levels of IL-23, its receptor, and IL-17A correlate

with unfavorable prognosis and swift metastatic progression in

CRC cases (30).

Cytokines like TNF-a, IL-1b, and IL-6 are pivotal in the

intestinal response to inflammation, fostering intricate cell

interactions within the intestinal milieu. These interactions

involve cells such as intestinal epithelial cells, paneth cells,

macrophages, and goblet cells, all contributing to the chronic

inflammation seen in inflammatory bowel diseases like Crohn’s

disease and ulcerative colitis. Both TNF-a and IL-6 are implicated

in CRC progression, activating oncogenic transcription factors like

NF-kB and STAT3 (31, 32).

Moreover, cytokines IL-11, IL-17A, and IL-22 show heightened

protein-level expression in CRC, playing a role in the disease’s

development in both humans and mice (33–35). IL-17A, IL-17F,

and IL-22 display anti-tumor effects in CRC, aiding immune cell

recruitment, tissue repair, and reducing inflammation and

angiogenesis-promoting factors (36). Interestingly, IL-17A has a

dual role in tumor development, whereas IL-17F exhibits tumor-

suppressing properties (36) (Table 1).

In addition, the CXCL12/CXCR4 axis activation is linked with

the spread of colorectal cancer and peritoneal macrophage

involvement (37, 38). The TGF-b signaling pathway is also

believed to play a crucial role in CRC by governing epithelial-

mesenchymal transition (EMT) (39). The intricate interplay of

abnormally expressed molecules like cytokines, chemokines,

growth factors, and enzymes remodeling the matrix contributes to

CRC pathogenesis, ultimately affecting disease outcomes (40–43).
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4 Immune evasion mechanisms of
CRC cells

4.1 Cancer cells suppress immune cells
and immune molecules

To evade immune detection, cancer cells deploy various strategies

to inhibit immune cells and molecules. On the surfaces of activated T

cells, B cells, and natural killer cells, PD-1, a transmembrane protein,

functions as an immune checkpoint receptor. Its main role is to

modulate immune responses, diminishing inflammatory activity,

thereby serving as a crucial immune checkpoint. Its ligand, PD-L1,

another transmembrane protein, is found on tumor cells,

macrophages, and other immune cells. These proteins are part of

the immune checkpoint protein family. The interaction between PD-

L1 and PD-1 suppresses the activation, growth, and tumor-fighting

capabilities of CD8+ T cells, aiding in the tumor’s immune evasion

(44). Research indicates that PD-L1 levels are higher in lung (45) and

liver metastases (46) of colorectal cancer (CRC) than in primary

tumors. Cancer cells also produce TGF-b, which impairs dendritic

cells (DCs) (47). CTLA-4, a receptor on T cells, inhibits T cell

activation and growth by interacting with B7 molecules (CD80 and

CD86) on antigen-presenting cells. In CRC, increased regulatory T

cells (Tregs) in the tumor microenvironment may upregulate CTLA-

4, which dampens immune responses through high CTLA-4

expression. This upregulation, along with changes in cytokines and

chemokines, can promote CTLA-4 expression. Enhanced CTLA-4

expression further impedes anti-tumor immune responses by

competing with CD28 for B7 molecules, thereby reducing T cell

activation and proliferation (48) (Figure 1). This creates an

immunosuppressive milieu, aiding tumor immune evasion and
TABLE 1 The different aspects of immune response-related molecules in CRC metastasis.

Category
Role/Function in
CRC Metastasis

Key Points/Findings References

Tumor-Associated
Macrophages (TAMs)

Mediate tumor growth
and metastasis

M1 type: pro-inflammatory, can promote/inhibit tumor; M2 type: immune-
suppressive, promote tumor progression

(7)

CD4+ T Cells Influence hepatic metastasis TH17 subset linked to worsened prognosis after surgery (8)

Dendritic Cells (DCs)
Antigen presentation, immune
response initiation

Myeloid DCs predominant in CRC; link to lymph node invasion (9, 10)

Regulatory T Cells (Tregs)
Immune suppression
within TME

Associated with heightened metastasis and poorer outcomes (11–14)

Tumor-Associated
Neutrophils (TANs)

Promote tumor invasion
and metastasis

Involved in angiogenesis regulation, resistance to VEGF inhibitors (15, 16)

Cytokines (e.g., IL-17, TNF-
a, IL-6)

Modulate tumor growth and
immune response

Both pro-inflammatory and anti-inflammatory cytokines play roles in
CRC pathogenesis

(28–32)

Cytokines (IL-17A, IL-17F,
and IL-22)

Display anti-tumor effects
in CRC

Aiding immune cell recruitment, tissue repair, and reducing inflammation and
angiogenesis-promoting factors (IL-17A has a dual role in tumor development)

(36)

Immune Evasion
Mechanisms (PD-1, PD-L1,
CTLA-4)

Inhibit immune cell activation
and response

High PD-L1 levels in metastases; TGF-b impairs DCs; CTLA-4 inhibits T
cell activation

(44, 46–49)

Emerging Immunotherapies
Target immune checkpoints,
enhance anti-tumor immunity

PD-1 inhibitors (e.g., nivolumab) show promise, especially in MSI-H/dMMR
CRC cases

(57–59)
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survival. Additionally, cancer cells limit cytotoxic T cells (CTL)

activity through various mechanisms. For instance, TNF-a in CT26

CRC cells heightens PD-L1 expression in stromal cells, which curbs

CD8+ T cell Granzyme secretion (49) (Table 1). PD-L1 on tumor and

stromal cells binds to PD-1 on T cells, further repressing T cell

activation. In colorectal cancer, PD-L1 levels are lower in CRC cells

but higher in TAMs, which also hinder the immune response through

PD-1 expression and support CRC cell immune evasion by releasing

CCL5. Thus, TAMs are key targets in cancer immunotherapy.

Advanced stages of CRC, characterized by high PD-L1 expression,

are linked withmore aggressive disease and poorer survival rates (50).

Targeting the PD-1/PD-L1 pathway has become a focal point in

immunotherapy. Other cells in the TME also suppress CTL function

by releasing TGF-b, which lowers the expression of critical lytic

enzymes like perforin, Granzyme, and Fas ligand (51). Furthermore,

the CCL5/CCR5 signaling pathway recruits regulatory T cells,

effectively suppressing CTLs in CRC mouse models (52). Studies by

Wei et al.,2017 demonstrate that high PD-L1 expression in colorectal

liver metastasis tumors (CRLMs) and primary tumors correlates with

an abundance of CD4+ T cells and CTLs (53). Similarly, Katz

et al.,2009 observed that high density of CTLs was positively

correlated with a 10-year survival rate after CRLM resection, and

in multivariate analysis, a high CD8+/low CD4+ phenotype was

significantly associated with better long-term survival (54).
4.2 Immune evasion mechanisms of CRC
cells involving exosomes

Research indicated (55)that small extracellular vesicles (sEVs) are

secreted by CRC cells. These sEVs, when absorbed by macrophages,

enhance M2 polarization and PD-L1 expression. This process

escalates the population of PD-L1+CD206+ macrophages and

diminishes T cell activity within the TME CRC. Subsequent studies

have identified miR-21-5p and miR-200a within sEVs as crucial in

macrophage regulation. By influencing the PTEN/AKT and SCOS1/

STAT1 pathways, these miRNAs foster M2 polarization and PD-L1

expression in macrophages. This leads to a decrease in CD8+ T cell

activity and promotes tumor progression (Figure 1). Hence, focusing

on sEV-miRNAs specific to CRC and PD-L1 in TAMs could emerge

as an innovative approach to treat CRC and boost the effectiveness of

anti-PD-L1 treatments.
5 Emerging field of immunotherapy

In the TME, various immune cells such as tumor-infiltrating

lymphocytes, TAMs, and TANs play a role. Immunotherapy offers

new opportunities for the treatment of solid tumors, especially

therapies targeting immune checkpoints. Although there has been

progress in immunotherapy for colorectal cancer, there are still

obstacles. In clinical trials, immunotherapeutic drugs for metastatic

colorectal cancer generally show moderate effects, especially in

patients with microsatellite stable tumors (5). Challenges include

the lack of biomarkers to predict the response to immunotherapy, the
Frontiers in Immunology 05
relationship between tumor mutation burden and treatment

response, the association of immune cells in the TME with

treatment outcomes, and the expression of suppressive immune

nucleic acid toxic molecules (56). Significant results have been

achieved in the treatment of colorectal cancer patients with

microsatellite instability (MSI-H)/DNA mismatch repair

deficiencies (dMMR) using PD-1 inhibitors such as nivolumab and

other immune checkpoint inhibitors (57). Tumor-infiltrating

lymphocytes, particularly CD8+ T cells, play an important role in

anti-tumor activity. However, tumor cells evade immune attack by

expressing inhibitory immune checkpoint receptors such as PD-1,

CTLA-4, and LAG-3, as well as regulatory T cell immune suppressive

molecules like TGF-b and IL-10. In colorectal cancer, the expression

of PD-1 and CTLA-4 on T cells and regulatory T cells is associated

with a poor prognosis. Therefore, immune checkpoint molecules are

potential targets for immunotherapy in colorectal cancer. Blocking

immune checkpoints opens a new era in cancer treatment. Targeting

immune checkpoints in the tumor microenvironment of colorectal

cancer is a novel cancer treatment method that changes the function

of immune cells. The response of patients is related to pro-tumoral

and anti-tumoral immune cells in the TME (such as TILs, TAMs, and

TANs) (58, 59) (Table 1). Anti-PD-1, anti-PD-L1, and anti-CTLA-4

are promising immune checkpoint blockers in colorectal cancer.

Furthermore, the emergence of new immune checkpoints like

TIM-3 and LAG-3, which can inhibit T or NK cell activity (60), is

noteworthy. Combining immune checkpoint blockers with other

treatments has shown positive results and may become part of

successful colorectal cancer treatment. Immune checkpoint blockers

have made some progress in cancer treatment, but still face challenges

such as treatment resistance and immune toxicity. Therefore,

combining them with other treatment strategies like immune

adjuvants and tumor vaccines may enhance their effects. In

addition, there are numerous potential targets for immunotherapy

in colorectal cancer (CRC), such as the IL-33/ST2 axis (61–63),

MDSCs (64), and KRAS (65–67). Immune checkpoint blockers in

tumor immunotherapy have broad application prospects and provide

a new direction for treatment.

Currently, various immunotherapy strategies are under

research, including non-specific immunotherapy, specific

immunotherapy, and cell therapy. One or more of these strategies

are expected to be used in the clinical treatment of colorectal cancer

in the future. Developing effective immunotherapy strategies is

crucial for addressing colorectal cancer. Future research will focus

on immune escape mechanisms, the immune function of

lymphocytes, and the impact of individual genetic polymorphisms

on treatment response.
6 Discussion

The development and metastasis of colorectal cancer (CRC) are

closely related to the interactions between immune cells and

molecules in the tumor microenvironment (TME). The different

immune cells mentioned in this review, such as Tumor-Associated

Macrophages (TAMs), CD4+ T cells, Dendritic Cells (DCs),

Regulatory T cells (Tregs), and Tumor-Associated Neutrophils
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(TANs), each play specific roles and mechanisms in the metastasis

of CRC. For instance, the dual nature of M1 and M2 macrophages

in TAMs in promoting and inhibiting tumor progression highlights

the complexity of the immune system in cancer development.

Moreover, the role of CD4+ T cells in liver metastasis of CRC

and the critical role of DCs in antigen presentation further

emphasize the diversity and importance of immune cells in

the TME.

The immune evasion mechanisms of colorectal cancer cells are

a key area in cancer research. CRC cells evade the immune system’s

surveillance and attack through various mechanisms, such as the

secretion of sEVs, upregulation of PD-L1 expression, and the action

of CTLA-4. These findings not only reveal the complexity of tumor

immune evasion but also provide potential targets for developing

new immunotherapy strategies.

The development of immunotherapy has brought new hope for

the treatment of colorectal cancer. The application of immune

checkpoint inhibitors, especially in patients with high

microsatellite instability CRC, has shown significant therapeutic

effects. However, these treatments have limited effects in patients

with microsatellite stable tumors, highlighting the need for more

personalized and targeted treatment approaches. Combining

immune checkpoint inhibitors with other treatment methods,

such as targeted therapy and chemotherapy, may improve

treatment effectiveness and reduce drug resistance.

Future research should focus on a deeper understanding of

immune escape mechanisms, improving the function of immune

cells, and exploring the impact of individual genetic polymorphisms

on the response to immunotherapy. Additionally, new therapeutic

strategies, such as specific immunotherapies and cell therapies, are

expected to play a significant role in the treatment of colorectal

cancer. Integrating these aspects of research can not only deepen

our understanding of the CRC immune microenvironment but also

pave the way for developing more effective treatment strategies.

In summary, the treatment of colorectal cancer is a multifaceted

and multilevel challenge that requires the integration of knowledge

and technology from different fields. By gaining a deeper

understanding of the complex relationship between the immune
Frontiers in Immunology 06
system and CRC, we can move towards developing more effective

and precise treatment methods.
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