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Integrated multiomic analysis
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glioblastoma: implications for
immunotherapy, targeted
therapy, and chemotherapy
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1Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University,
Beijing, China, 2Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University,
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Introduction: Glioblastoma (GBM) presents significant challenges due to its

malignancy and limited treatment options. Precision treatment requires

subtyping patients based on prognosis. Disulfidptosis, a novel cell death

mechanism, is linked to aberrant glucose metabolism and disulfide stress,

particularly in tumors expressing high levels of SLC7A11. The exploration of

disulfidptosis may provide a new perspective for precise diagnosis and

treatment of glioblastoma.

Methods: Transcriptome sequencing was conducted on samples from GBM

patients treated at Tiantan Hospital (January 2022 - December 2023). Data from

CGGA and TCGA databases were collected. Consensus clustering based on

disulfidptosis features categorized GBM patients into two subtypes (DRGclusters).

Tumor immune microenvironment, response to immunotherapy, and drug

sensitivity were analyzed. An 8-gene disulfidptosis-based subtype predictor was

developed using LASSOmachine learning algorithm and validated onCGGA dataset.

Results: Patients in DRGcluster A exhibited improved overall survival (OS)

compared to DRGcluster B. DRGcluster subtypes showed differences in tumor

immune microenvironment and response to immunotherapy. The predictor

effectively stratified patients into high and low-risk groups. Significant

differences in IC50 values for chemotherapy and targeted therapy were

observed between risk groups.

Discussion: Disulfidptosis-based classification offers promise as a prognostic

predictor for GBM. It provides insights into tumor immune microenvironment and

response to therapy. The predictor aids in patient stratification and personalized

treatment selection, potentially improving outcomes for GBM patients.
KEYWORDS

disulfidptosis, integrated multiomic analysis, immunotherapy, glioblastoma,
machine learning
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Introduction

Glioblastoma multiforme (GBM), the most common primary

malignant tumor of the central nervous system in adults, poses

significant therapeutic challenges. Current standard treatments yield

limited efficacy, with a 5-year overall survival rate of only 6.8% (1).

First-line therapy typically involves maximal safe tumor resection,

followed by radiotherapy (RT) and concurrent temozolomide (TMZ)

chemotherapy. While combination therapy extends median overall

survival (OS) compared to radiotherapy alone, with durations of 14.6

months and 12.1 months, respectively, the outcomes remain

constrained. Limited options exist for recurrent GBM, including

second-line surgery, radiotherapy, alkylating agent chemotherapy,

and bevacizumab treatment. Unfortunately, from the onset of

progression or recurrence, the median OS is merely 6 to 9 months

(2). Urgent exploration of novel therapeutic strategies for recurrent

GBM is imperative.

Previous studies have underscored the profound association

between the prognosis of glioblastoma patients and the regulatory

patterns of cell death, such as apoptosis, ferroptosis (3), and copper-

dependent cell death (4). In this context, disulfidptosis has emerged as

a recently revealed mechanism, inducing cell death through the

accumulation of disulfide bonds leading to the collapse of the actin

cytoskeleton. Proteins crucially implicated in disulfidptosis, such as

SLC7A11 and NCKAP1 (5), are closely linked to the occurrence and

progression of glioblastoma. Disulfide stress triggers disulfide cross-

linking within cytoskeletal proteins, initiating cell contraction,

membrane instability, and subsequent cell death. Insufficient glucose

uptake and excessive cysteine intake both induce disulfidptosis. This

form of cell death, subject to modulation by drugs targeting proteins

like SLC7A11 and NCKAP1, holds potential therapeutic value (6).

Immunotherapy, as a novel approach harnessing the patient’s

immune system to combat tumors, has shown significant progress in

various cancers (7). Although breakthroughs in GBM treatment

remain elusive, recurrent GBM following prior radiotherapy and

chemotherapy tends to exhibit higher mutational loads and

immunogenicity (8), offering a glimmer of hope for immunotherapy.

Future research directions encompass a deeper understanding of GBM

biology, the immune microenvironment, and the development of

innovative treatment combinations (8).

There is a dearth of research exploring the correlation between

disulfidptosis and the immunemicroenvironment in GBM, along with

its effects on functional outcomes and responses to immunotherapy,

targeted therapy, and chemotherapy drugs.We collected samples from

26 GBM patients undergoing surgical treatment at the Tiantan

Hospital, Capital Medical University from January 2022 to

December 2023, conducted transcriptome sequencing, and
Abbreviations: GBM, glioblastoma; CCL3L1, C-C Motif Chemokine Ligand 3

Like 1; PTN, Pleiotrophin; CACNA1A, Calcium Voltage-Gated Channel Subunit

Alpha1 A; ISG15, Interferon-Stimulated Gene 15; GPNMB, Glycoprotein Nmb;

S100A9, S100 Calcium Binding Protein A9; HSP, Heat Shock Protein; MDSC,

Myeloid-Derived Suppressor Cell; APOC, Apolipoprotein C; M1/M2, M1

macrophage/M2 macrophage; APC, Antigen Presenting Cell; IFN, Interferon;

TAM, Tumor-associated macrophages; MDSC, Monocytic-derived suppressor

cells; MIF, Macrophage migration inhibitory factor.
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integrated data from the CGGA and TCGA databases. Utilizing

disulfidptosis characteristics, we employed consensus clustering to

classify GBM patients into two subtypes (DRGcluster A and B) with

distinct survival outcomes, functional annotations, and clinical

features. Through comprehensive analysis, we revealed disparities in

genomic variations, tumor microenvironments, and immune genomic

patterns between the two subtypes, concurrently identifying distinct

benefits of chemotherapy, targeted therapy, and immunotherapy.

Leveraging the LASSO machine learning algorithm, we developed a

disulfidptosis high-low-risk subtype predictor comprising 8 genes,

subsequently validated for survival in GBM cohorts from CGGA and

TCGA. The pRRophetic algorithm facilitated subtype analysis,

offering a potential means to identify patients more likely to

respond positively to chemotherapy, targeted therapy, and

immunotherapy. The objective of our study is to enhance

personalized survival prognostication through an innovative

disulfidptosis molecular classification, thus offering enhanced

therapeutic alternatives for physicians and GBM patients.
Materials and methods

Patient cohorts and multiomic
data collection

Gene expression data, clinical information, and follow-up data

for glioblastoma (GBM) patients were obtained from The Cancer

Genome Atlas (TCGA) via the UCSC Xena platform (https://

xenabrowser.net/). Concurrently, RNA sequencing (RNA-Seq)

data from GBM patients generated using the Illumina HiSeq

platform were retrieved from the Chinese Glioma Genome Atlas

(CGGA) database (http://www.cgga.org.cn). After excluding

samples with incomplete clinical information and a total survival

period of less than 3.5 months, we ultimately enrolled 135 GBM

patients from TCGA and 314 from the CGGA database, ensuring

the integrity of scientific data. Demographic and follow-up data for

GBM patients are presented in Table 1. Furthermore, somatic

mutation data of 390 GBM patients were analyzed and visualized

using the maftools and GenVisR packages in R. Tumor Mutational

Burden (TMB), a potential biomarker for immunotherapy

response, was defined as the total number of nonsynonymous

mutations per megabase in the coding region. Copy Number

Alteration (CNA) data of 628 GBM patients were also obtained

from the TCGA dataset, with significant amplifications or deletions

across the genome identified using GISTIC 2.0. Circos plots were

generated using the RCircos package in R to visualize chromosomal

gains and losses. CNA burden was defined as the total number of

genes with copy number changes in each sample.
Sample collection from Tiantan Hospital,
Capital Medical University

From January 2022 to December 2023, we collected 26 fresh

frozen GBM specimens with complete clinical information. We

excluded patients with incomplete clinical data and those with a
frontiersin.org
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survival time of less than 3.5 months. Diagnoses were confirmed

through histopathological examination, and clinical information

was obtained via electronic medical records or telephone follow-up.

Demographic and follow-up data for these 26 GBM patients are

shown in Table 1. The study was approved by the Ethics Committee

of Tiantan Hospital, Capital Medical University (Ethical Code:

YW2022-025), and adhered to the ethical standards of the

Helsinki Declaration and its later amendments. Informed consent

was obtained from all participants through agreements with TCGA,

CGGA member institutions, and Tiantan Hospital.
Transcriptomic next-generation
sequencing of Tiantan samples

We performed RNA sequencing on Tiantan Hospital samples

using the Illumina HiSeq platform. RNA integrity and quantity

were assessed using the Agilent 2100 Bioanalyzer. Library

construction involved mRNA enrichment, fragmentation, cDNA

synthesis, end-repair, A-tailing, and sequencing adapter ligation.

Libraries were size-selected, PCR amplified, and quantified.

Sequencing reads were aligned to the hg38 reference genome

using STAR, and gene expression levels were quantified using

featureCounts and FPKM.
Tumor immune microenvironment (TIME)
patterns and immunogenomic features in
glioblastoma (GBM)

Utilizing expression data (ESTIMATE), we assessed GBM

samples to evaluate the tumor microenvironment and predict

tumor purity as well as the abundance of infiltrating stromal and

immune cells. ESTIMATE generates four scores: Immune Score

(reflecting the abundance of immune cells), Stromal Score

(reflecting the abundance of stromal cells), ESTIMATE Score

(reflecting non-tumor constituents), and Tumor Purity.

Additionally, we applied the CIBERSORT deconvolution

algorithm, based on linear support vector regression, to quantify

the composition of 22 types of tumor-infiltrating immune cells

(TIICs) based on the gene expression profiles of GBM samples.

Single-sample Gene Set Enrichment Analysis (ssGSEA) was utilized

to quantify the enrichment levels of these immune gene sets.

Subsequently, unsupervised hierarchical clustering based on

ssGSEA scores of 29 immune markers categorized GBM patients

into different clusters, i.e., immune subtypes.
Differential analysis between DRGcluster A
and B groups

To explore a novel molecular classification of GBM patients

based on Differential Expressed Genes (DEGs), we employed

unsupervised consensus clustering using the k-means machine

learning algorithm. We selected 32 genes related to disulfidptosis,

identified from published literature and GeneCards (e.g., FLNA,
Frontiers in Immunology 03
FLNB, MYH9, TLN1, ACTB, MYL6, MYH10, CAPZB, DSTN,

IQGAP1, ACTN4, etc.). The consensus clustering was performed

with 1000 iterations, each involving 80% data sampling. The

optimal number of clusters was comprehensively determined by

the relative change in the area of the Cumulative Distribution

Function (CDF) curve, the Proportion of Ambiguous Clustering

(PAC) algorithm, and consensus heatmap. We compared the

clinicopathological parameters within different clusters to further

explore the association between disulfidptosis subtypes and clinical

characteristics of GBM patients. Based on consensus analysis, GBM

patients were classified into DRGcluster A and B groups. The

overall survival (OS) of patients in DRGcluster A and B was

assessed using Kaplan-Meier survival analysis, and survival

differences were evaluated using a two-sided log-rank test.
Analysis of differential gene expression
between DRGcluster A and B groups using
limma package in R

We employed the limma package in R to screen for Differential

Expressed Genes (DEGs) between DRGcluster A and B groups. P-

values were adjusted using the default Benjamini-Hochberg False

Discovery Rate (FDR) method. DEGs with FDR < 0.01 and |fold

change (FC)| > 1.5 were considered significant. Subsequently,

functional annotation and pathway enrichment analyses of DEGs

were performed using the WebGestaltR package in R, including

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analyses. Results with FDR < 0.05

were considered statistically significant.
Gene set variation analysis (GSVA)

We assessed the most significantly enriched molecular

pathways in disulfidptosis subtypes using the GSVA package in R.

Differential analysis of KEGG pathway enrichment scores between

the two subtypes was conducted using the limma package in R.

KEGG pathways with |fold change (FC)| > 1.5 and FDR < 0.05 were

considered the most significantly enriched molecular pathways

between the two disulfidptosis subtypes.
Prediction of response to chemotherapy,
targeted therapy, and immunotherapy

We predicted the response of GBM samples to chemotherapy

and targeted therapy using the pRRophetic package. The response

was determined by the half-maximal inhibitory concentration

(IC50) for each GBM sample. After integrating the expression

profiles of cell lines (training set) and GBM samples (test set),

regress ion analys is est imated the IC50 for common

chemotherapeutic and targeted drugs in GBM patients. Predictive

accuracy was evaluated using 10-fold cross-validation. Considering

the potential limitations of TIDE in predicting treatment responses

in cancer types other than melanoma and non-small cell lung
frontiersin.org
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TABLE 1 Demographics and clinicopathological features of GBM patients in the CGGA, TCGA and Tiantan cohort.

Tiantan cohort(n=26)
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0 0
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3 (27.3%) 5 (33.3%)
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Variables

CGGA cohort(n=314) TCGA cohort(n=135)

DRGcluster B
N=178

DRGcluster A
N=136

p.overall DRGcluster B DRGcluster A p.over

N=61 N=74

Age: 0.515 1

~64 160 (89.9%) 126 (92.6%) 40 (65.6%) 49 (66.2%)

65~ 18 (10.1%) 10 (7.35%) 21 (34.4%) 25 (33.8%)

Gender: 0.031 1

Female 60 (33.7%) 63 (46.3%) 20 (32.8%) 24 (32.4%)

Male 118 (66.3%) 73 (53.7%) 41 (67.2%) 50 (67.6%)

Chemotherapy: 0.62 1

YES 144 (80.9%) 113 (83.1%) 45 (73.8%) 51 (68.9%)

NO 27 (15.2%) 17 (12.5%) 14 (23.0%) 17 (23.0%)

unknow 7 (3.93%) 6 (4.41%) 2 (3.28%) 6 (8.11%)

Radiotherapy: 0.152 0.567

YES 147 (82.6%) 105 (77.2%) 50 (82.0%) 61 (82.4%)

NO 21 (11.8%) 25 (18.4%) 9 (14.8%) 7 (9.46%)

unknow 10 (5.62%) 6 (4.41%) 2 (3.28%) 6 (8.11%)

X1p19q: <0.001 NA

Non-Codel 177 (99.4%) 115 (84.6%) 59 (96.7%) 70 (94.6%)

Codel 1 (0.56%) 18 (13.2%) 0 0

unknow 0 (0.00%) 3 (2.21%) 2 (3.28%) 4 (5.41%)

MGMT: <0.01 0.443

Unmethylated 79 (49.4%) 44 (34.9%) 22 (36.1%) 38 (51.4%)

Methylated 63 (39.4%) 67 (53.2%) 22 (36.1%) 26 (35.1%)

unknow 18 (11.2%) 15 (11.9%) 17 (27.9%) 10 (13.5%)

IDH: <0.001 0.025

Wildtype 157 (88.2%) 74 (54.4%) 58 (95.1%) 60 (81.1%)

Mutant 16 (8.99%) 57 (41.9%) 1 (1.64%) 10 (13.5%)
a
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cancer, we analyzed differential expression of immune molecular

markers in different DRGcluster groups and high/low-risk groups

to predict responses to relevant immunotherapies. Results with p-

value < 0.05 were considered statistically significant.
Machine learning construction and
validation of a High/Low-Risk Disulfidptosis
Subtype Predictor

Gene sets associated with glioblastoma occurrence from the

WGCNA model and those showing significant differences between

DRGcluster A and B patients were selected and visualized using

Venn diagrams. A total of 314 CGGA GBM patients were used as a

training set, and 135 TCGA GBM patients as a test set. In the

training set, the most relevant features associated with the groups

were selected using LASSO regression analysis in the glmnet

package in R, constructing a predictor named “High/Low-Risk

Disulfidptosis Predictor”. The performance of the predictor was

studied through standard and calibration plots. Finally, survival

analysis in the test set validated the predictive functionality of the

High/Low-Risk Disulfidptosis Predictor.
Quality control of scRNA-seq data

We collected a total of 42 samples from 16 GBM patients from

GSE182109 for analysis. Python package Scanpy (V1.8.2) (9) was

used to merge the raw count matrix of each sample and

subsequently conduct a quality control analysis. For gene filtering,

genes that were expressed in less than 3 cells were removed. For

cell filtering, cells were selected with the following principles:

(1) the number of expressed genes was from 200 to 10000, (2) the

mitochondrial RNA content was lower than 20%, and (3) the total

counts of each cell ranged from 100 to 50,000. Then, Scrublet

(https://github.com/swolock/scrublet) (10) was used to detect

potential doublets in each sample (doublet_score<0.3). Finally, a

total of 227,584 single-cell transcriptomes were retained after

quality control.
Dimensionality reduction and clustering

Gene express ion was normal ized us ing funct ion

sc.pp.normalize_total(adata, target_sum=1e4) and log1p shifted.

Highly variable genes (HVGs) were generated with the parameter

(min_mean=0.0125, max_mean=3, min_disp=0.5) and 2414 HVGs

were selected. Principal component analysis (PCA) on the gene

expression matrix and used the first 50 principal components (PCs)

for UMAP. The batch effect removal used BBKNN (https://

github.com/Teichlab/bbknn) (11).
Gene signature score analysis

In this study, we used the function score_genes in Scanpy with

default parameters to quantify the activity of gene sets in
T
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macrophages and microglia. The gene sets for evaluating

macrophages and microglia were gained from Zhang et al. (12)

and Lawson el al (13).
Statistical analysis

Inter-group statistical comparisons for continuous data were

performed using independent Student’s t-tests, c2 tests for

categorical data, and Mann-Whitney U tests for comparing

categorical and non-normally distributed variables. The Kruskal-

Wallis test was used for multi-group comparisons. Pearson

correlation was employed to assess relationships between

normally distributed variables, while Spearman correlation was

used for non-normally distributed variables. Statistical analyses in

this study were conducted using SPSS 27.0, Perl, R 4.3.1, and R 4.1.3.

Two-sided p-values < 0.05 were considered statistically significant.

The R packages used can be obtained from the website http://

bioconductor.org/. The overall workflow of this study is shown in

Supplementary Figure 1.
Results

Association between disulfidptosis
classification and clinical features

Utilizing unsupervised consensus clustering, we explored a

novel molecular classification of glioblastoma multiforme (GBM)

patients based on differential expression patterns of 32

disulfidptosis -associated genes. The optimal clustering number

was determined as two (k=2) based on relative changes in the

cumulative distribution function (CDF) area, PAC algorithm, and

consensus heatmap, exhibiting high consistency across TCGA,

CGGA, and Tiantan samples (Figure 1A). Subsequently, all GBM

patients were categorized into two groups, DRGcluster A and B. We

further investigated the association between different groups and

clinical features (Figure 1B and Table 1). As shown in Figure 1B, in

the CGGA database, the proportion of males was higher in the

DRGcluster A group, indicating a significant gender difference

(p=0.031). In the DRGcluster B group, a higher tendency toward

IDH mutation (P<0.001), 1p19q chromosomal codeletion

(P<0.001), and MGMT promoter methylation (P=0.01) was

observed, demonstrating significant group differences (Figure 1B).

In the TCGA GBM cohort, we also found a significant group

difference in IDH mutation, with the DRGcluster B group

showing a higher tendency toward IDH mutation. Additionally,

we observed that mesenchymal patients were more likely to be in

the DRGcluster A group, while neural tumor patients were more

likely to be in the DRGcluster B group. We summarized the data

from Tiantan as well, where no significant clinical feature

differences were observed between DRGcluster A and B groups.

Notably, the DRGcluster B group showed a higher occurrence of

chromosome 7 amplification and chromosome 10 deletion,

consistent with the data from the TCGA database. Moreover, we

presented the process of transcriptome sequencing for the 26
Frontiers in Immunology 06
clinical samples collected in our study, highlighting the similarity

in data processing procedures with TCGA and CGGA datasets,

ensuring data uniformity (Figure 1C).

Combining copy number alteration (CNA) analysis and

somatic mutation analysis, we conducted an in-depth analysis of

genes included in the disulfidptosis cell subtypes. The results

revealed mutations in genes such as MYH3, FLNA, FLNB, ABI2,

MYH10, OXSM, and TLN1D, with MYH exhibiting a 3% somatic

mutation rate, predominantly in the form of frame-shift insertions,

missense mutations, and multi-hits. Most gene mutations were

missense mutations (Figure 1D). In Figures 1E, H, we presented

the CNV frequency statistics for the 32 genes, indicating their

chromosomal locations. Genes were located on chromosomes 1, 2,

3, 4, 6, 7, 9, 10, 11, 12, 14, 15, 17, 19, 20, 22, and X, with most genes

experiencing deletions as the primary CNV change. Additionally,

we used the CGGA database to analyze the expression differences of

the 32 disulfidptosis-associated genes in WHO II, III, and IV

populations, revealing significant expression differences (p<0.001).

Differential analysis of gene expression data from GBM tumor and

normal patients in the TCGA database also confirmed these results

(Figures 1F, G), demonstrating the relevance of the gene set

included in the disulfidptosis cell subtype to the occurrence and

development of GBM. Subsequently, we used a heatmap to analyze

the differential expression of disulfidptosis -associated genes

between different DRGcluster groups, showing significant

differences and consistent findings across CGGA, TCGA, and

Tiantan datasets (Figure 1I). We used the corr.test function in the

CGGA and TCGA database to calculate the correlation of

transposed gene expression Data (Figure 1J), with purple nodes

indicating risk factors and green nodes indicating favorable factors.

IQGAPI, PDLIM1, FLNA, MYH9, and TLN1 were significant risk

factors (p<0.001), and no significant differences were observed in

favorable factors. Pink lines represented positive correlations, while

blue lines represented negative correlations. There was a close

correlation (p<0.0001) among the 32 genes, indicating the

profound research value of this disulfidptosis gene set.
The association between DRGclusters and
the immune microenvironment pattern

Firstly, we conducted a quantitative analysis of the overall

immune activity of GBM using the ssGSEA technique, focusing on

29 immune-related gene sets. An unsupervised hierarchical clustering

method was utilized to categorize patients from CGGA, TCGA, and

Tian Tan databases into different immune subtypes. In this

classification, the high-immunity group (Immunity_H) refers to

tumors with the highest enrichment scores, classified as “immune-

active.” Conversely, the low-immunity group (Immunity_L) includes

tumors with the lowest enrichment scores, identified as “immune-

inactive.” Notably, the Immunity_H subtype was more prevalent in

DRGcluster A, whereas Immunity_L was more common in

DRGcluster B. This finding was validated in studies from CGGA,

TCGA, and Tian Tan samples (as shown in Figure 2A).

Subsequently, the tumor immune environment (temporal)

patterns were assessed using ESTIMATE and CIBERSORT
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algorithms. In DRGcluster A, higher immune, stromal, and

ESTIMATE scores (P < 0.001) were observed, suggesting a lower

level of immune and stromal cell infiltration in DRGcluster B (as

depicted in Figure 2B). Moreover, tumors in DRGcluster B

exhibited higher purity. Additionally, high-immunity tumors

showed significantly higher immune and stromal scores,

indicating a richer content of immune and stromal cells in these

tumors. Data from TCGA and Tian Tan also demonstrated high

consistency. It is worth mentioning that changes in the tumor
Frontiers in Immunology 07
microenvironment are closely related to the occurrence

of disulfidoptosis.

Furthermore, we quantified the abundance of 22 types of

immune cells using the CIBERSORT algorithm (refer to

Figures 2C–E). Analysis from the CGGA database indicated

significant associations between different T cell subgroups

(including regulatory T cells (Tregs), gd T cells, CD4 memory

resting T cells, activated NK cells, plasma cells, M0 macrophages,

and monocytes) in the DRGcluster groups experiencing
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FIGURE 1

Association between disulfidptosis classification and Clinical Features (A) Based on 32 genes associated with disulfidptosis, glioblastoma multiforme
(GBM) patients were stratified into two subgroups (k = 2) through consensus clustering analysis. Left panel displays data from CGGA database, top
right panel from TCGA database, and bottom right panel from Tiantan database. (B) Clinical characteristics differentiating patients in DRG cluster A
and B across the three databases are presented through a heatmap analysis. (C) The transcriptome sequencing workflow for Tiantan patient samples
is provided by Beijing Nuohe Zhiyuan Biotechnology Co., Ltd. (D) Frequency and types of mutations in disulfidptosis-associated genes in TCGA
database. (E) Circos plot illustrating the genomic distribution of disulfidptosis genes on different chromosomes. (F) Violin plots depicting the
expression differences of disulfidptosis genes in patients classified under WHO II, III, and IV categories. (Statistical significance denoted by p-values:
*p<0.05, **p<0.01, ***p<0.001). (G) Differential expression of disulfidptosis genes between GBM and normal brain tissues in TCGA database. (H)
Frequency and types of copy number variations (CNV) mutations in disulfidptosis genes. (I) Heatmap displaying the relationship between expression
of disulfidptosis genes, patient grouping, and clinical characteristics across CGGA, TCGA, and Tiantan databases.J. Prognostic network diagram
elucidating the association between DRGclusters and the prognosis of GBM. (Risk factors denoted by high-risk genes; favorable factors indicated by
low-risk genes; The size of the node corresponds to the P value).
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disulfidoptosis. In the TCGA database, DRGcluster B showed more

significant infiltration of M0 macrophages and resting NK cells,

consistent with CGGA’s findings. DRGcluster A, on the other hand,

exhibited higher infiltration of M1 and M2 macrophages. Although

there was no significant difference in M2 macrophage infiltration

between the two groups, both CGGA and TCGA data showed more

pronounced M2 macrophage infiltration in group A compared to

group B.

In Figures 2D, E, the CGGA database analysis focused on the

proportion differences of various types of immune cells between the
Frontiers in Immunology 08
Immunity_L and Immunity_H subtypes. Significant differences in

the proportions of B cells, plasma cells, various T cells (CD8, CD4),

NK cells, and macrophages were observed between these subtypes,

highlighting the differing immune cell infiltrations in Immunity_L

and Immunity_H. HLA genes play a crucial role in the immune

system’s recognition of foreign substances, as their expression levels

affect the immune response to cancer cells. The data clearly showed

significant differences in the expression levels of various HLA genes,

apart from HLA-L, between the Immunity_L and Immunity_H

subtypes, revealing the importance of high and low immunity
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FIGURE 2

The association between the DRGclusters and the immune microenvironment pattern (A) A heatmap was used to illustrate the relationship between
DRGclusterA and B subgroups of patients from the CCGA, TCGA, and Tiantan cohorts, and their association with high/low immune groups and
immune scores. (B) Evaluation of the differences in tumor microenvironment scores between DRGcluster (A, B) subgroups in the CCGA, TCGA, and
Tiantan cohorts. (C) Comparison of immune cell infiltration differences between DRGcluster (A, B) subgroups in the CGGA and TCGA cohorts.
(D) Box plots depicting differences in immune cell infiltration among patients with different immune subtypes. (E) Differential expression of HLA
family genes in patients stratified by high and low immune groups. (F) Scatter plots comparing the expression levels of multiple immune-related
genes in different DRGcluster subtypes. (G) Differences in tumor mutation burden among patients in different DRGcluster subgroups. (H) Survival
curve analysis demonstrating the survival probabilities of patients in different immune subtypes and combined DRGcluster subtypes. (I) A heatmap
illustrating the gene mutation profiles in samples from different DRGcluster subgroups of patients.
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subtypes in the immune response of GBM. In Figure 2F, it was

evident that the expression of molecules like CD80, CD86, CTLA4,

PDCD1, PDCD1LG2, and CD274 was higher in the DRGcluster A

group than in the DRGcluster B group, with significant differences

in the expression of these checkpoint molecules between the two

groups. This suggests that patients in the DRGcluster A might be

more suitable for treatment with immune checkpoint inhibitors to

more effectively activate the immune response. We conducted data

analysis on both the TCGA database and 26 samples from Tian Tan

Hospital simultaneously, and found that their trends were roughly

similar, with most P-values being statistically significant. This result

validates the conclusions we obtained from the analysis of the

CGGA database previously (shown in the Supplementary

Figures 2A–F).

Figure 2G showed no significant difference in the tumor

mutation burden (TMB) between DRGcluster A and B.

Interestingly, when patients were stratified based on high/low

TMB and DRGclusters, the Kaplan-Meier survival curves

indicated a higher survival rate in the high TMB group, with a p-

value of 0.009 (Figure 2H). Finally, Figures 2I presented the gene

variation scenarios between DRGcluster A and B, focusing on

mutations, amplifications, and deletions. The presence of various

key tumor-driving molecules, including IDH, in these groups

highlighted the importance of these immune landscapes and gene

variations in deepening our understanding of the impact of

disulfidoptosis on the immune microenvironment and

tumor development.
The relationship between DRGcluster A
and B groups and GBM survival and
molecular pathways

In this study, we applied consensus clustering to classify

populations in the CGGA and TCGA databases into DRGcluster

A and B groups. Subsequent Kaplan-Meier survival analysis in both

databases revealed that the OS (Overall Survival) of the DRGcluster

A group was significantly better (CGGA, log-rank P=0.002; TCGA,

log-rank P=0.041). This finding corresponds with earlier immune

analysis results, indicating that the DRGcluster A group,

characterized by higher immune activity, exhibited improved

survival (Figure 3A). We also presented the correlation analysis of

overall survival time among GBM patients with different clinical

features and DRGcluster subgroups in Table 2.

In Figures 3B, C, we conducted GSVA (Gene Set Variation

Analysis) comparisons between DRGcluster A and B in the CGGA,

TCGA databases, and data from Tiantan patients. In Figure 3D, we

merged the GSVA analyses from all three databases, identifying 16

enriched intersecting pathways. All these pathways were positively

correlated with the DRGcluster A group and primarily associated

with regulation of glucose metabolism, immune stress modulation,

apoptosis, and lysosomal function. Enrichment analysis revealed

upregulation of genes related to glycosaminoglycan degradation in

the DRGcluster A samples, suggesting active glycosaminoglycan

metabolism, positively correlated with the development of
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disulfidptosis. This indicates that cellular metabolic regulation

during disulfidptosis may represent an adaptive response of GBM

under stress conditions.

Additionally, in the DRGcluster A samples, elevated gene

expression levels were observed in pathways such as

KEGG_GALACTOSE_METABOLISM, KEGG_OTHER_

GLYCAN_DEGRADATION, and KEGG_AMINO_SUGAR_

AND_NUCLEOTIDE_SUGAR_METABOLISM, all closely related

to abnormal sugar metabolism. These pathway enrichments,

positively correlated with DRGcluster A, suggest significant

adjustments and changes in cellular metabolic pathways during

disulfidptosis. In the DRGcluster A group, pathways including

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES,

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION,

KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION,

and KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION

were upregulated, indicating higher immune activity in these

patients. This may reflect an interaction between disulfidptosis

and the immune system, leading to immune activation. Genes

related to KEGG_LYSOSOME were also positively correlated with

DRGcluster A, underlining the lysosome’s key role in cellular waste

management, particularly under conditions of disulfidptosis.

In Figure 3E, GSEA (Gene Set Enrichment Analysis) was

performed on Tiantan data, selecting six pathways for

demonstration. This analysis showed high consistency with the

GSVA results. For instance, Glycosaminoglycan Degradation

(hsa00531) and Galactose Metabolism (hsa00052) pathways had

the highest Enrichment Scores (ES) around 0.7, indicating

significant upregulation of some genes in these pathways in the

DRGcluster A group. The Amino Sugar and Nucleotide Sugar

Metabolism (hsa00520) pathway had an ES peak near 0.6.

Complement and Coagulation Cascades, and Antigen Processing

and Presentation (hsa04612) pathways also showed gene

upregulation, with the highest ES points around 0.5. The

Pathogenic Escherichia coli Infection (hsa05130) pathway had

an ES below 0.5, suggesting a moderate upregulation of genes

in this pathway in the DRGcluster A group, though not

significantly prominent.

In our study, we utilized the TCGA and CGGA databases to

conduct GO and KEGG pathway analyses. The GO analysis revealed

114 pathways that were significantly enriched in both datasets,

indicating a substantial consistency in functional annotation

between TCGA and CGGA. Similarly, the KEGG analysis

identified 170 common pathways, further supporting the

concordance in functional annotations between the two datasets.In

the GO analysis, certain biological processes such as immune

response, cell signaling, and nervous system development exhibited

a higher proportion of genes and significance. This suggests that these

biological processes may play a crucial role in the process of

disulfidptosis. Regarding cellular components and molecular

functions enrichment, disulfidptosis was associated with cellular

structures such as post-synaptic membrane, synaptic vesicle

membrane, neurite membrane, and immune globulin complexes in

circulation. Molecular functions related to immune globulin receptor

binding, GABA-gated chloride ion channel activity, GABA receptor
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activity, antigen binding, and neurotransmitter-gated ion channel

activity involved in the regulation of post-synaptic membrane

potential were highlighted.The significance of GABA receptor

activity implies that GABAergic signaling may be a key aspect in

neuroconduction-related studies. The notable significance of antigen

binding suggests that antigen binding may be a crucial point in

studies related to immune regulation (Figure 3F).

In Figures 3G, H, we employed the pRRophetic package to

analyze the TCGA database and the Cancer Therapeutics Response

Portal (CTRP) drug library. pRRophetic utilized these data to
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predict the sensitivity of DRGclusterA and B group patients to

specific drugs based on gene expression patterns. The results

demonstrated significant differences in sensitivity to various

drugs, including most chemotherapy drugs such as cisplatin,

gemcitabine, and vinblastine, as well as targeted drugs like

lapatinib, dasatinib, and sunitinib (p < 0.001). Group A exhibited

lower IC50 values, suggesting higher sensitivity to these drugs

compared to Group B. Conversely, the targeted drug imatinib

showed higher IC50 values in DRGclusterA (p < 0.001),

indicating lower sensitivity in Group A compared to Group B.
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FIGURE 3

The relationship between DRGcluster (A, B) GBM Survival and Molecular Pathways (A) Survival analysis plot comparing the survival times of patients
in DRGcluster (A, B) subgroups from CGGA and TCGA cohorts. (B, C) Heatmaps displaying differences in Gene Set Variation Analysis (GSVA) among
samples from different DRGcluster subgroups in CGGA, TCGA, and Tiantan cohorts. (D) Venn diagrams illustrating common or unique elements in
GSVA analysis among different DRGcluster subgroups in CGGA, TCGA, and Tiantan samples. (E) GSEA analysis of different DRGcluster subgroups in
Tiantan samples. (F) Venn diagrams depicting common or unique elements in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses among different DRGcluster subgroups in CGGA and TCGA samples. (G, H) Displaying treatment responses specific to
chemotherapy and targeted drugs.
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The establishment of a disulfidptosis high
and low-risk model and the prediction of
immunological landscape and survival risk

We utilized Weighted Gene Co-Expression Network Analysis

(WGCNA) to correlate gene modules with tumor and normal

symptoms characteristics of GBM patients. By comparing

transcriptome data of 5 normal brain tissues from the TCGA

database with 170 GBM transcriptome data, we identified a gene

set in the blue module closely related to the onset of the disease

(0.84, P=(7e−38)), which may play a key role in the occurrence of

GBM (Figure 4A). In Figure 4A, a volcano plot displays the

differential genes between DRGclusterA and B groups in CGGA

and TCGA (genes with an expression difference ratio greater than

1.5 and P less than 0.05 are considered different). Visualizing these

differential expression genes helps us quickly identify key genes

related to disulfidptosis in GBM. TCGA data showed 1369

significant differential genes, CGGA data showed 1071, and in

WGCNA’s module_blue, 1061 key genes closely related to the

disease’s onset. A VENN diagram shows the common and unique

genes among these three sets. The TCGA cohort is Western, and the

CGGA cohort is Chinese. Intersecting these two cohorts’ data, we

identified 105 common genes across different populations, which

are more representative. We then entered these 105 genes into a

LASSO analysis model, with the CGGA cohort as the experimental

group and the TCGA cohort as the control group. After LASSO

regression analysis, we obtained a gene set of 8 genes constituting

the new disulfidptosis subtype in GBM. The risk score is calculated

as: riskscore=CHRNA9 gene expression ×0.0459645965233746 +

HLF gene expression ×-0.0755093015765612 + HPCAL4 gene
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expression ×0.00777741984274284 + PDPN gene expression

×0 .0152203432079201 + PVALB gene expre s s ion ×

-0 . 0339601783414598 + RPRM gene exp r e s s i on ×

-0 .00499112274274145 + SSTR2 gene expre s s ion ×

-0 . 0356426271018637 + STOX1 gene expre s s ion ×

-0.0387054324569233 (gene expression levels used FPKM

data format).

KM survival analysis compared the survival time of patients in

the CGGA and TCGA databases, with patients in the high-risk

group showing significantly poorer survival (CGGA, p < 0.001;

TCGA, p = 0.02) (Figure 4B). In Figure 4C, we conducted a

correlation analysis between survival time and risk scores to

assess the effectiveness of the risk model. Both CGGA and TCGA

showed high consistency, with survival time significantly shortened

as risk scores increased (CGGA, R = -0.23, P < 2.7e-05; TCGA, R =

-0.17, P = 0.05). In Figure 4D, univariate and multivariate analyses

were performed on the experimental group data. In the univariate

analysis, age (p = 0.026), IDH status (p = 0.04), chemotherapy (p <

0.001), 1p19q status (p = 0.024), and risk score (p < 0.001) were

statistically significant and had an important impact on GBM

survival. In the multivariate analysis, chemotherapy (p = 0.003)

and risk score (p < 0.001) were statistically significant. The HR value

of the risk score was greater than 3 in both univariate and

multivariate analyses, indicating that a higher risk score correlates

with a higher risk of death in patients. In Figure 4E, factors such as

gender, IDH, MGMT, age, radiotherapy, chemotherapy, and risk

score were entered into a nomogram chart, where each factor was

scored. By calculating these scores, a total score can be estimated,

thereby predicting the patient’s survival probability at specific time

points. As shown in the Figure 4E, when the total score is between
TABLE 2 Univariate and multivariate cox proportional hazards analysis of clinicopathological variables based on overall survival (OS) in the CGGA
cohort, TCGA cohort.

For
OS variables

CGGA cohort (n = 314) TCGA cohort (n =135)

Univariate
analysis

Multivariate
analysis

Univariate
analysis

Multivariate
analysis

P-
value

HR
(95%
CI)

HR (95% CI)
P-
value

P-
value

HR
(95%
CI)

P-
value

HR
(95%
CI)

Age 0.51
1.1
(0.77-1.7)

– – 0.00044 2.3 (1.4-3.6) 0.011 1.9 (1.2-3.2)

Gender 0.66
1.1
(0.82-1.4)

− − 0.4
0.83
(0.54-1.3)

− −

Chemotherapy 0.000086 1.9 (1.4-2.7) 2 (1.4-2.8) 0.00011 0.076
1.5
(0.96-2.4)

– –

Radiotherapy 0.096
1.3
(0.95-1.9)

– – 0.00081 2.6 (1.5-4.7) 0.00028 3.2 (1.7-6)

IDH mutation status 0.04
0.74
(0.55-0.99)

0.84 (0.6-1.2) 0.31 0.0048
0.23
(0.082-0.64)

0.09
0.34
(0.099-1.2)

MGMT promoter
methylation status

0.088 0.79 (0.6-1) – – 0.087
0.64
(0.38-1.1)

– –

DRGcluster subtype 0.0028
0.69
(0.54-0.88)

0.75 (0.56-0.99) 0.044 0.088
0.69
(0.45-1.1)

– –
f

OS, overall survival; GBM, glioblastoma; HR, hazard ratio; CI, confidence interval.
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300-350, the patient’s 6-month survival probability is 0.636, 1-year

is 0.449, and 1.5-year is 0.111. We then compared the actual

observed survival probability with the nomogram-predicted

survival probability through survival curves, where green, blue,

and red lines represent 0.5-year, 1-year, and 1.5-year patient

survival, respectively. The Figure 4E shows that the observed

survival probability (dotted line) is close to the nomogram-

predicted survival probability (solid line), indicating the

nomogram’s effective prediction.
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In Figure 4F, we displayed the correlation between various

immune cell types (such as T cells, NK cells, monocytes, etc.) and

the 8 risk model genes. CHRNA9 showed significant correlation

with M0 macrophages, activated and dormant NK cells (p < 0.001),

HLF with M0 macrophages (p < 0.01), T cells follicular helper (p <

0.001), PDPN with monocytes (p < 0.01), and HPCAL4, PDPN,

RPRM all significantly correlated with T cells gamma delta (p <

0.01). CHRNA9, HLF, HPCAL4, PDPN, and STOX1 all showed

significant correlation with M0 macrophages (p < 0.05). This
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FIGURE 4

The establishment of a disulfidptosis high and low-risk model and the prediction of immunological landscape and survival risk (A) Utilizing WGCNA
analysis, we identified a gene set most correlated with GBM occurrence. We then identified a set of genes showing significant expression differences
between DRGcluster A and B subgroups in CGGA and TCGA cohorts, resulting in 105 genes. LASSO analysis was performed to establish a
disulfidptosis high/low-risk prediction model. (B) Kaplan-Meier curves were employed to compare the survival time differences between high and
low-risk groups for disulfidptosiss in CGGA and TCGA samples. (C) Scatter plots were used to illustrate the relationship between risk scores and
survival in CGGA and TCGA samples. (D) Univariate and multivariate survival analyses were conducted on CGGA samples. (E) Nomogram and
calibration plots were generated to demonstrate the predictive efficacy of survival based on various clinical indicators and risk scores. (F) The
correlation between risk model genes and various immune cells was explored. (G) Expression differences of immune-related indicators in high and
low-risk groups for disulfidptosiss were examined, along with their correlation with risk scores.
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indicates that NK cells, M0 macrophages, and certain T cell subsets

(such as follicular helper) may play an important role in the

development of disulfidptosis, and are highly active in regulating

gene expression. In the context of disulfidptosis, these immune cells

and corresponding genes have a joint response relationship. In

Figure 4G, box plots and scatter plots showed the distribution and

correlation strength and significance of immune-related indicators

(CD80 (B7-1), CD86 (B7-2), CD274 (PD-L1), PDCD1 (PD-1),

CTLA-4, PDCD1LG2 (PD-L2)) between high and low-risk

groups. The Figure 4G shows that patients in the high-risk group

have higher expression of immune markers (P < 0.001). At the same

time, risk score and immune marker expression show a strong

positive correlation (P < 0.001, R ≥ 0.23). This suggests that patients

in the high-risk group may have better treatment outcomes

with immunotherapy.

We conducted data analysis on both the TCGA database

simultaneously, and found that their trends were roughly similar,

with most P-values being statistically significant. This result

validates the conclusions we obtained from the analysis of the

CGGA database previously (shown in the Supplementary

Figures 3A–E).
Clinical application and immune analysis of
disulfidptosis risk groups

In Figure 5A, the scatter plot demonstrating the correlation

between disulfidptosis risk score and stem cell score reveals that

higher risk scores are associated with lower stem cell scores,

indicating a significant correlation (P=3.8e-10, R=-0.51).

Figure 5B assesses the distribution differences in gender, age,

treatment (radiotherapy, chemotherapy), and genetic markers

(IDH, 1p/19q, MGMT) among populations in high and low

disulfidptosis risk groups. It was found that patients with IDH

mutation, 1p19q co-deletion, and MGMT methylation are more

likely to be in the high-risk group for disulfidptosis (p < 0.001),

suggesting that these biomarkers may be related to disulfidptosis

occurrence and could serve as predictive factors for disulfidptosis

risk, guiding personalized treatment. In Figure 5C, the violin plots

compare the immune environment scores between high and low

risk groups for disulfidptosis, showing significantly higher scores in

the high-risk group (p < 0.001), which may imply a correlation

be tween changes in the immune env i ronment and

disulfidptosis risk.

Figure 5D compares the responses to common chemotherapy

and targeted treatments in high and low disulfidptosis risk groups.

Lapatinib, a selective inhibitor of the HER2 target, has shown

inhibitory effects on HER2-positive GBM cells in some early in

vitro and animal studies, but this does not necessarily translate into

significant clinical treatment effects. The Figure 5D reveals that

patients in the disulfidptosis risk group have a higher IC50 value for

Lapatinib compared to those in the high-risk group (p < 0.001),

indicating that patients in the high disulfidptosis risk group may

have a better response to Lapatinib, and the disulfidptosis process
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might affect the treatment response to Lapatinib. Cisplatin,

commonly used in second-line and subsequent treatments for

GBM, is shown to have significantly better responsiveness in the

high-risk group. Additionally, an interesting phenomenon was

observed in our study: patients in high and low disulfidptosis risk

groups show significant differences in response to metformin

treatment (p < 0.01). In Figure 5E, the heatmap combining the

expression of the eight genes constituting the disulfidptosis risk

model with clinical indicators shows significant differential

expression of the eight model genes between high and low-risk

groups. Figure 5F, utilizing TISCH website data analysis, display the

expression of the PDPN gene in different immune cells. Higher

expression is observed in glioblastoma cells, monocytes,

macrophages, and T cell subgroups (such as CD8Tex), while

lower expression is noted in low-grade gliomas and other

immune cells in the immune environment, suggesting that high

expression of PDPN may be related to the development, invasion,

and immune response of glioblastoma. Immunohistochemistry

(IHC) images downloaded from the HPA database show higher

expression of PDPN protein in high-grade gliomas compared to

low-grade gliomas (Figure 5G).

Then the 42 samples from 16 GBM patients generated 227,584

single-cell transcriptomes after the quality control. Data was

normalized and merged using Scanpy, and visualized via uniform

manifold approximation and projection (UMAP) (Figure 5H). For

Initial identification of disease type, based on expression levels of

canonical marker genes (Figure 5I, and genes included: PTPRC for

immune cell; CD4, CD8A and MS4A1 for lymphocytes; CD68 for

myeloid cell; MPBP for oligodendrocyte; GFAP for malignancy;

PECAM1 for endothelial cell; ATCA2 for mural cell). As shown in

the Figure 5I, the malignancy and myeloid cell mainly expressed

the PDPN.

In the myeloid cell, we used the canonical marker (TEME19 and

P2RY12 for microglia) to distinguishmicroglia from the blood-derived

monocytes/macrophages. And then, the microglia were dissected into

6 group (Figures 5J, K). A subpopulation unregulated(S100A9

+_Microglia: S100A8 and S100A9), an immune regulatory microglia

(GPNMB+_Microglia: GPNMB and CD9), formerly reported as TAM

promoting cancer metastasis and stemness in macrophage (14), a

chemokinase microglia subtype(CCL3L1+_Microglia:CCL4 and

CCL3L1 etc.), an ISG microglia cluster(ISG15+_Microglia:ISG15,

IFI6 and IFI44L), a precursor-like microglia(PTN+_ Microglia: PTN,

PTPRZ1 and SOX2), secreting PTN to significantly promote tumor

invasion (15) and a subgroup(CACNA1A+_Microglia) highly

expressed CACNA1A with unclear function.

As for the macrophages/monocytes, 7 subtypes were identified

(Figure 5L), including Chemo+_Macrophage (higher expression of

CXCL2 and CXCL3), APOC+_Macrophage(higher expression of

APOC, IBSP and TGFBI (16)), HSP+_Macrophage characterized by

HSPA6 and HSPB1, Lysosome_Macrophage upregulating CTSB,

CTSD and CTSZ), CNS-associated Macrophage identified by

MRC1,F13A1 and STAB1 (17), monocytes derived suppressor cell

(MDSC) determined by higher expression of MIF and lower

expression of mature signature and monocytes.
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Discussion

Glioblastoma multiforme (GBM) is considered the most

malignant and deadly intracranial tumor, posing significant
Frontiers in Immunology 14
therapeutic challenges due to limited treatment options (18).

Given the pronounced heterogeneity in the prognosis of GBM

patients, subtype classification is crucial for precision medicine

(19). The standard first-line chemotherapy regimen for GBM
A B
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FIGURE 5

Clinical Application and Immune Analysis of Disulfidptosis Risk Groups (A) Correlation analysis between disulfidptosis risk scores and stem cell
scores. (B) Distribution differences of clinical indicators in high and low-risk groups for disulfidptosis in CGGA samples. C.Analysis of immune
environment differences between high and low-risk groups. (D) Variations in treatment responses for specific chemotherapy and targeted
therapeutic drugs among patients in high and low-risk groups. (E) Association analysis between the expression of risk model genes in high and low-
risk groups and clinical indicators. (F) Utilizing the TISCH website to analyze the differential gene expression of PDPN in different immune cells and
GBM tumor cell subgroups. (G) Downloading immunohistochemistry (IHC) slides from the HPA database to demonstrate the differential expression
of PDPN protein in high-grade (left) and low-grade (right) samples, with the left slide indicating high expression and the right slide showing no
expression. (H) Reclassify the collected tumor single cells from all patients. (I) Distribution of the PDPN gene in single-cell subpopulations within
tumors and the microenvironment. (J) Single cell myeloid subpopulations. (K) Further defining the functional status of myeloid cells using cell
markers. L. Scoring of cellular functional processes in macrophage and microglia cells. CCL3L1, C-C Motif Chemokine Ligand 3 Like 1; PTN,
Pleiotrophin; CACNA1A, Calcium Voltage-Gated Channel Subunit Alpha1 A; ISG15, Interferon-Stimulated Gene 15; GPNMB, Glycoprotein Nmb;
S100A9, S100 Calcium Binding Protein A9; HSP, Heat Shock Protein; MDSC, Myeloid-Derived Suppressor Cell; APOC, Apolipoprotein C; M1/M2, M1
macrophage/M2 macrophage; APC, Antigen Presenting Cell; IFN, Interferon; TAM, Tumor-associated macrophages; MDSC, Monocytic-derived
suppressor cells; MIF, Macrophage migration inhibitory factor.
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typically includes temozolomide (TMZ) and antimetabolites such as

temsirolimus (20). However, treatment responses for GBM are

inconsistent, and resistance to these drugs is gradually becoming

a challenge. Researchers are actively seeking new chemotherapeutic

agents to enhance treatment efficacy. Clinical trials are also

exploring novel drug combinations and therapies. Some GBM

patients undergo immune checkpoint inhibitor therapy, such as

PD-1/PD-L1 blockade, to bolster the immune system’s attack on

tumors. Nevertheless, GBM often evades immune surveillance,

limiting the effectiveness of immunotherapy. Personalized

immunotherapy vaccines, utilizing the patient’s own tumor tissue

or cells, represent an emerging treatment approach to stimulate the

immune system’s response against tumors (21). Some GBM

patients exhibit overexpression of epidermal growth factor

receptor (EGFR) (22). Drugs like lapatinib are designed to inhibit

EGFR, but the clinical outcomes in studies remain inconsistent.

Pathway inhibitors such as everolimus targeting the PI3K/AKT/

mTOR pathway are also employed in an attempt to halt

glioblastoma multiforme growth. Despite some progress, GBM

treatment remains a formidable challenge. Researchers

continuously seek more effective treatment modalities, including

gene therapy, immunotherapeutic approaches (23), and other

innovative methods, to improve patient survival and quality of

life. Clinical trials and personalized treatment strategies are crucial

for better understanding and addressing the complexity of

GBM (23).

Recently discovered disulfidptosis, a novel form of cell death, is

closely associated with aberrant tumor glucose metabolism,

particularly in tumors with elevated SLC7A11 expression.

Previous studies have indicated that gliomas exhibit high

SLC7A11 expression, heightened metabolism, and glucose

deficiency. Consequently, we delved into the role of disulfidptosis

in glioblastoma multiforme. Disulfidptosis represents a regulated

form of cell death controlled by proteins such as SLC7A11 and

NCKAP1, along with drugs possessing disulfide reductase activity.

Under glucose-deficient conditions, cells with elevated SLC7A11

levels undergo abnormal accumulation of disulfide bonds, such as

cysteine. This accumulation triggers disulfide stress, elevating the

disulfide content in the cell’s cytoskeleton, causing structural

damage, and ultimately leading to cell death. Recent research

highlights the pivotal role of SLC7A11-mediated redox status in

various aspects of tumor growth, including multidrug resistance,

tumor-associated disulfidptosis, and iron-dependent cell death.

Notably, regulatory proteins such as SLC7A11 and NCKAP1,

critical in disulfidptosis, also play essential roles in glioma onset

and progression. This suggests that disulfidptosis may indeed be a

significant contributor to the pathogenesis of GBM.

We propose a novel classification of GBM based on the

characteristics of tumor disulfidptosis. DRGclusterA group

exhibited higher expression levels of immune checkpoint

molecules, including CD80 (24), CD86 (25), CTLA4 (26),

PDCD1, PDCD1LG2, and CD274 (27), compared to the

DRGclusterB group, with statistically significant differences in the

expression of these checkpoints between the two clusters. PD-1

ligand 2 (PDCD1LG2), also known as PD-L2, and programmed cell

death 1 ligand 1 (CD274 or PD-L1) were among the identified
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checkpoint molecules. PD-L2 is primarily expressed on antigen-

presenting cells such as dendritic cells and macrophages, while PD-

L1 is expressed on various cell surfaces, including cancer cells and

antigen-presenting cells, playing a crucial role in immune

regulation. CD80 and CD86 are molecules present on the surface

of antigen-presenting cells, contributing to T cell activation through

interaction with the CD28 molecule. CTLA-4, located on T cell

surfaces, acts as an inhibitory receptor, suppressing T cell activation

and immune responses. Programmed cell death 1 (PDCD1 or PD-

1) is a membrane receptor expressed on activated T cells, B cells,

and macrophages, modulating immune responses by inhibiting T

cell activation. The high expression of immune checkpoint

molecules in the DRGclusterA group suggests potential sensitivity

to immune therapy. Immune checkpoint inhibitors, such as anti-

PD-1, PD-L1, and CTLA-4 antibodies, have achieved significant

success in the treatment of various cancers. These therapeutic

approaches may be more effective for patients in the

DRGclusterA group. The low expression of immune checkpoint

molecules in the DRGclusterB group may involve the activation of

immune escape mechanisms. In-depth understanding of this

mechanism can provide clues for developing new treatment

strategies to enhance the immune response in these patients.

Simultaneously, we categorized GBM patients into two immune

subtypes: High Immunity (Immunity_H) and Low Immunity

(Immunity_L). The DRGclusterA group displayed higher

immune, stromal, and ESTIMATE scores, while the DRGclusterB

group exhibited higher tumor purity. Unsupervised hierarchical

clustering classified CGGA, TCGA, and TianTan patients into these

two subtypes, with DRGclusterA predominantly corresponding to

the high immune group and DRGclusterB to the low immune

group. In the high immune group (DRGclusterA), a significant

correlation was observed with T cell subtypes, NK cells, plasma

cells, M0 macrophages, and monocytes. The DRGclusterA group

displayed higher immune and stromal cell abundances, suggesting

that this population may be more suitable for immune checkpoint

inhibitor drugs, potentially facilitating immune system activation.

However, further clinical and foundational research is needed to

validate and deepen our understanding of these findings.

Furthermore, using pRRophetic (28), we predicted the

sensitivity of DRGclusterA and B patients to specific drugs. Based

on the provided information, DRGcluster A exhibits higher activity

in multiple pathways, including various cell signaling, metabolic

pathways, and cell cycle regulation. Here’s a further analysis of the

correlation between the increased activity in these pathways and the

enhanced drug sensitivity: (1).Increased Activity in Cell Signaling

Pathways: DRGcluster A shows higher activity in several cell

signaling pathways relevant to cancer, such as EGFR, VEGF, JAK/

STAT, P53, MAPK, and TGF-beta. These pathways play crucial

roles in proliferation, survival, and apoptosis of tumor cells.

Therefore, DRGcluster A might be more sensitive to drugs

targeting these pathways, such as Dasatinib, Sunitinib, Lapatinib,

Imatinib, etc., which could effectively inhibit their activity and

impact the growth and metastasis of glioblastoma.(2). Increased

Activity in Cell Cycle Regulation Pathways: DRGcluster A also

demonstrates higher activity in pathways related to cell cycle

regulation, apoptosis, DNA repair, etc. Aberrant activity in these
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pathways may lead to dysregulation of the cell cycle and increased

apoptosis, making DRGcluster A more sensitive to drugs affecting

the cell cycle and apoptosis, such as Cisplatin, Docetaxel, Paclitaxel,

etc. (3). Modulation of Metabolic Pathways:DRGcluster A shows

increased activity in various metabolic pathways, including glucose

metabolism, amino acid metabolism, lipid metabolism, etc. This

modulation could affect drug metabolism and intracellular

environments, thereby influencing the mode of action and

efficacy of drugs. For drugs targeting metabolic pathways, such as

Metformin, DRGcluster A may exhibit higher sensitivity. (4).

Increased Activity in Cell Adhesion and Migration Pathways:

DRGcluster A demonstrates higher activity in pathways related to

cell adhesion, leukocyte transendothelial migration, etc., which are

associated with tumor metastasis and infiltration. Therefore, drugs

targeting these pathways, such as Sorafenib, may exhibit higher

sensitivity in DRGcluster A, which could inhibit tumor

dissemination and metastasis effectively. In summary, the

heightened activity of DRGcluster A in these pathways may lead

to increased sensitivity to drugs that target these pathways. This

further supports the explanation for the enhanced sensitivity to

chemotherapy drugs like Cisplatin, Docetaxel, Paclitaxel, as well as

targeted therapy drugs like Dasatinib, Sunitinib, Metformin, etc

Subsequently, we employed LASSO machine (29) learning to

establish a disulfidptosis risk model, comparing the survival time of

GBM patients using Kaplan-Meier survival analysis. Patients in the

high-risk disulfidptosis group exhibited significantly poorer survival

outcomes. The high-risk group demonstrated higher expression levels

of immune biomarkers (P < 0.001). Strong positive correlations were

observed between risk scores and immune biomarker expression (P <

0.001, R ≥ 0.23), suggesting that patients in the high-risk group may

benefit more from immune therapy. Stem cell scores typically reflect

the presence and relative quantity of stem cells in a sample (30). Stem

cells play crucial roles in various biological processes, including tissue

regeneration, development, and the onset and progression of GBM.

Scatter plots depicting the correlation between disulfidptosis risk

scores and stem cell scores showed a significant negative correlation

(P = 3.8e-10, R = -0.51). This indicates that higher disulfidptosis risk

scores are associated with lower stem cell scores, suggesting that

biological processes occurring in patients at high risk for

disulfidptosis may lead to a reduction in the quantity or activity of

stem cells. Modulating stem cell activity could potentially reduce the

risk of disulfidptosis. Decreased stem cell scores under disulfidptosis

conditions may serve as an early biological indicator for predicting

the occurrence of disulfidptosis.

We also compared the common chemotherapy and targeted

treatment responses in the high and low disulfidptosis risk groups.

Lapatinib, a selective inhibitor of the HER2 target, has shown

inhibitory effects on HER2-positive GBM cells in some early in

vitro and animal studies. However, this efficacy has not necessarily

translated into significant clinical outcomes.Patients in the high-risk

disulfidptosis group may have a better response to Lapatinib, and the

process of disulfidptosis may influence the therapeutic response to

Lapatinib (31), Cisplatin, commonly used in second-line and

subsequent treatments for GBM, showed a significantly better

response in the high-risk group compared to the low-risk group,

suggesting that patients with lower disulfidptosis risk may need to
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consider alternative treatment strategies or adopt combination

therapy. In our study, an interesting phenomenon was also

observed regarding the treatment response to metformin, with

significant differences between the high and low disulfidptosis risk

groups. Previous research has suggested that metformin could be a

potential anti-tumor drug, affecting tumor cells through various

mechanisms, including inhibiting cell proliferation, regulating

energy metabolism, and influencing tumor stem cells. The

differential response to metformin provides insights into further

studying the anti-tumor mechanisms of metformin in specific

subgroups of GBM. Metformin could be considered as a

supplementary treatment for patients in the high-risk disulfidptosis

group or for combination therapy, potentially enhancing overall

treatment efficacy.

In our risk model, PDPN (Podoplanin), a gene encoding the

epidermal growth factor receptor (EGFR) ligand, was identified as a

predictive factor (32). Podoplanin is commonly associated with tumor

invasion and metastasis. In the immune system, PDPN is also related

to immune regulation and inflammatory processes (33). The single-

cell analysis data revealed elevated expression of the PDPN gene in

different immune cells, such as GBM cells, monocytes, and

macrophages. Higher PDPN protein expression was observed in

high-grade gliomas compared to low-grade gliomas, as shown in

immunohistochemistry images downloaded from the HPA database.

This suggests that high expression of PDPN may be associated with

the development, invasion, and immune response of glioblastoma

multiforme, indicating its potential relevance to the invasive nature,

recurrence, and poor prognosis of tumors.
Conclusions

The results of this study underscore the significant association

between GBM patients and disulfidptosis. The establishment of our

DRGcluster grouping and disulfidptosis risk model demonstrates its

effectiveness in evaluating GBM prognosis, cellular functions,

tumor microenvironment, and somatic cell mutations. These

findings provide hope for tailoring GBM treatment strategies and

selecting appropriate medications.Future research could delve into

exploring novel therapeutic targets stemming from the identified

cellular mechanisms and somatic mutations. Moreover, the

application of our risk model in clinical settings may facilitate

personalized treatment approaches for GBM patients, potentially

improving their overall prognosis and quality of life.
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SUPPLEMENTARY FIGURE 1

The flow chart of the article.

SUPPLEMENTARY FIGURE 2

The association between the DRGclusters and the immune microenvironment

pattern S2A. Differential expression of HLA family genes in patients stratified by

high and low immune groups in the TCGA cohort. S2B.Box plots depicting
differences in immune cell infiltration among patients with different immune

subtypes in the TCGA cohort. S2C. Scatter plots comparing the expression levels
of multiple immune-related genes in different DRGcluster subtypes in the TCGA

cohort. S2D. Differential expression of HLA family genes in patients stratified by
DRGcluster A and B groups in the Tiantan cohort. S2E. Box plots depicting

differences in immune cell infiltration among patients with different DRGcluster

subtypes in the Tiantan cohort.S2F. Scatter plots comparing the expression levels
of multiple immune-related genes in different DRGcluster subtypes in the

Tiantan cohort.

SUPPLEMENTARY FIGURE 3

The establishment of a disulfidptosis high and low-risk model and the prediction

of immunological landscape and survival risk S3A. calibration plotswere generated

to demonstrate the predictive efficacy of survival based on various clinical
indicators and risk scores in the TCGA cohort. S3B.Evaluating the predictive

efficiency of models using ROC curves in the CGGA cohort. S3C.Evaluating the
predictive efficiency of models using ROC curves in the TGGA cohort.

S3D.Nomogram was generated to demonstrate the predictive efficacy of
survival based on various clinical indicators and risk scores. S2E. Scatter plots

comparing the expression levels of multiple immune-related genes in different

disulfidptosis risk subtypes in the TCGA cohort.
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