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Chimeric antigen receptor (CAR) -T cell therapy has achieved tremendous

efficacy in the treatment of hematologic malignancies and represents a

promising treatment regimen for cancer. Despite the striking response in

patients with hematologic malignancies, most patients with solid tumors

treated with CAR-T cells have a low response rate and experience major

adverse effects, which indicates the need for biomarkers that can predict and

improve clinical outcomes with future CAR-T cell treatments. Recently, the role

of the gut microbiota in cancer therapy has been established, and growing

evidence has suggested that gut microbiota signatures may be harnessed to

personally predict therapeutic response or adverse effects in optimizing CAR-T

cell therapy. In this review, we discuss current understanding of CAR-T cell

therapy and the gut microbiota, and the interplay between the gut microbiota

and CAR-T cell therapy. Above all, we highlight potential strategies and

challenges in harnessing the gut microbiota as a predictor and modifier of

CAR-T cell therapy efficacy while attenuating toxicity.
KEYWORDS

gut microbiota, CAR-T cell therapy, immunotherapy, antitumor efficacy, toxicity
Introduction

Immunotherapy, which includes a variety of approaches, such as tumor vaccines,

immune checkpoint inhibitors (ICIs), and adoptive cell therapy (ACT), has made

tremendous advances in cancer treatment in recent decades (1–3). Chimeric antigen

receptor T (CAR-T) cell therapy, as the most concerned treatment in immunotherapy, has

impacted the history of cancer therapy and attracted increasing amount of attention

worldwide (4). CARs are versatile synthetic receptors that are genetically engineered to

express in T cells. CARs comprise an ectodomain with an antigen-binding module and a

hinge, a transmembrane region, and costimulatory/activation domains (such as the
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signaling domains of CD3z, CD28 and/or CD137) (5, 6). Currently,
CAR-T cell therapy is being increasingly studied in a variety of

tumors, especially in patients with recurrent/refractory (R/R) B cell

leukemia or lymphoma (7–10). To date, a series of CAR-T cell

products, such as Kymriah, Yescarta, Tecartus and Breyanzi, have

been approved for the treatment of R/R B cell leukemia or

lymphoma (11–14). The unprecedented success of CAR-T cell

therapy in treating hematological malignancies has sparked

interest in broadening the application of CAR-T cell therapy in

solid tumors. Currently, more than 200 clinical trials investigating

CAR-T cells for the treatment of solid tumors have been launched

around the world; however, the results of applying CAR-T cells to

solid tumors have been disappointing. In most studies, only a few

patients achieved partial response (PR) (15, 16). In addition to poor

efficacy in solid tumors, several other disadvantages also limit the

wide application of CAR-T cells. CAR-T cells therapy is often

accompanied by self-reactivity mediated by on-target, off-tumor

antigen expression, increased systemic inflammation leading to

cytokine release syndrome (CRS), neurotoxicity, and suppression

of humoral immunity due to B-cell aplasia (17–19). These

disadvantages limit CAR-T cells from reaching their full

therapeutic potential and therefore highlight the critical need for

biomarkers that can predict and improve clinical outcomes with

future CAR-T cell treatments.

The gut microbiota refers to the vast collection of microbes living

in the gastrointestinal tract (20). With the development and wide

application of novel molecular technologies (such as 16S ribosomal

RNA sequencing, metagenomics and metabolomics), a multitude of

preclinical and clinical studies have been performed to explore

intricate host-microbiota interactions over the last decade (21).

First, the gut microbiota plays a key role in several physiological

processes, including immunity, metabolism, and the inflammatory

response (22, 23). Second, gastrointestinal tract dysbiosis promotes

the occurrence and progression of a variety of malignant tumors (24).

Third, the gut microbiota has been demonstrated to affect the

response to several anticancer therapeutics, such as chemotherapy,

radiotherapy, and immune checkpoint blockade (ICB) (25, 26). In

light of these findings, there is emerging interest in investigating the

role of the gut microbiota in CAR-T cell therapy. For example, in a

recent study, Smith et al. investigated the influence of the gut

microbiota on the response and toxicity of hematologic

malignancies to CD19 CAR-T cell therapy. A total of 228 patients

treated with CD19 CAR-T cells were recruited and stratified based on

exposure to broad-spectrum antibiotics, including piperacillin,

imipenem or meropenem (PIM), within four weeks prior to the

first treatment with CAR-T cells. Strikingly, patients exposed to

broad-spectrum antibiotics had significantly shorter overall survival

(OS), an increased incidence of immune effector cell-associated

neurotoxicity syndrome (ICANS) and a trend toward an increased

incidence of CRS compared to patients without broad-spectrum

antibiotic exposure (27). In this review, we summarize the general

aspects of CAR-T cell therapy and the gut microbiota, focus on the

current understanding of the interplay between the gut microbiota

and CAR-T cell therapy, and highlight the potential of microbiota-

based prognostic prediction and gut microbiota-based biotherapy to

potentiate CAR-T cell efficacy while attenuating toxicity.
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CAR-T cell therapy

In recent years, CAR-T cell therapy has shown unprecedented

antitumor efficacy and stands at the novel forefront of current

cancer therapy (28). CAR-T cell therapy involves a series of

complex processes, including genetically modified T cells to

express CAR toward a tumor-specific antigen (TSA) or tumor-

associated antigen (TAA) via viral and non-viral transfection

methods. After in vitro T-cell amplification, CAR-T cells will be

reinfused back into patients to eradicate tumors (29). CARs are

synthetic receptors, and the basic structure of CARs contains an

extracellular antigen-binding region that binds to the antigen

(usually a single-chain variable fragment (scFv) of an antibody), a

hinge region providing flexibility, a transmembrane region and an

intracellular signal transduction region that activates the cytotoxic

functions of CAR-T cells upon antigen recognition. Over the past

decade, the design of CARs has progressed rapidly. To date, fourth

generation CARs have been developed based on different

intracellular signals (30). First-generation CARs contain only one

CD3z signaling domain to stimulate cytotoxic CAR-T cell activity,

which mimics the process of natural biologic T-cell activation.

However, the clinical efficacy of first-generation CAR-T cells has

been disappointing in the majority of early trials because of the

short persistence and low expansion ability of CAR-T cells in vivo

(31, 32). To solve this problem, second-generation CARs, which

contain an additional costimulatory molecule, such as CD28, OX40

or 4-1BB, have been developed. The addition of a costimulatory

signal domain can recapitulate the natural costimulation of T cells

and significantly improve the antitumor ability of CAR-T cells (33,

34). To further enhance the antitumor effect of CAR-T cells, third-

generation CARs that combine multiple costimulatory molecules

have also been developed (35, 36). Fourth-generation CARs are

designed to express more powerful weapons, such as cytokines,

receptors for chemokines, and a controlled suicide gene. Compared

with second- and third-generation CAR-T cells, fourth-generation

CAR-T cells exhibit rapid expansion, high tumor killing activity,

and obvious advantages in terms of safety and persistence (37–39).

In the past decade, CAR-T cell therapy has shown remarkable

efficacy in the treatment of patients with R/R hematological

malignancies (7–10). Thus, several CAR-T cell medicines, such as

CD19-targeted Tisagenlecleucel (Kymriah®), Axicabtagene

ciloleucel (Yescarta®), brexucabtagene autoleucel (Tecartus®),

lisocabtagene maraleucel (Breyanzi®), B cell maturation antigen

(BCMA)-targeted idecabtagene vicleucel (Abecma®), and

ciltacabtagene autoleucel (Carvykti®), have been approved by the

U.S. Food and Drug Administration (FDA) and European

Medicines Agency (EMA) for the treatment of hematological

malignancies, including lymphomas, some forms of leukemia, and

most recently for the treatment of multiple myeloma (MM) (11–14,

40, 41).

Inspired by the tremendous success of CAR-T cell therapy in

hematological malignancies, researchers are gradually expanding

the application of CAR-T cell therapy to the treatment of solid

tumors. Over the years, a series of CAR-T cells targeting antigens in

solid tumor cells, including carcinoembryonic antigen (CEA),

epidermal growth factor receptor (EGFR), human epidermal
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growth factor receptor 2 (HER2), and prostate-specific membrane

antigen (PSMA), have been investigated in preclinical and clinical

settings (42–48). However, the antitumor efficacy of CAR-T cell

therapy in these solid tumor settings has been disappointing.

Several factors have impeded the utility of CAR-T cell therapy for

solid tumors, including barriers that inhibit the trafficking and

infiltration of CAR-T cells into the tumor, lack of specific tumor

antigens that are highly and uniformly expressed in tumor cells, and

hostile tumor microenvironment (TME) characterized by oxidative

stress, nutritional depletion, acidic pH, and hypoxia (15, 16, 49, 50).

Therefore, biomarkers for identifying the favorable prognostic

patients receiving CAR-T cells are urgently needed.
CAR-T cell therapy-related toxicity

In addition to the low response or high relapse rate in patients

treated with CAR-T cells, treatment with CAR-T cells also shows

severe adverse events (AEs), which include CRS, ICANS,

cardiotoxicity, hypersensitivity reactions, fatal macrophage

activation syndrome (MAS), and uveitis (17). These fatal AEs

result in doctors walking on thin ice when prescribing CAR-T

cells. CRS, which is defined as an excessive release of cytokines, such

as interleukin (IL)-1, IL-6, interferon (IFN)-g, and IL-10, following

the activation of immune cells during immunotherapy, represents

the most common AE associated with CAR-T cell therapy and

occurs in 40–93% of patients receiving CAR-T cell therapy (51).

CRS usually occurs within 1-2 weeks after CAR-T cells

administration (52, 53). Common symptoms of CRS include

fever, exhaustion, anorexia, myalgia, and arthralgia. CRS remains

a major hurdle for the widespread use of CAR-T cells, if not

properly identified and managed, CRS can be fatal and further

progresses to more severe forms of the syndrome, including cardiac

arrhythmia, tachycardia, and respiratory or multi-organ conditions

(54, 55). Another severe AE in patients treated with CAR-T cells is

ICANS, which occurs in up to 67% of leukemia patients and 62% of

lymphoma patients (17). Impaired cognition and overall confusion,

such as aphagia, lethargy, and delirium, represent the initial

symptoms of ICANS (56, 57). With the progression of the disease,

symptoms, including hallucinations, encephalopathy, seizures, and

cerebral edema, can be observed in patients treated with CAR-T cells

(58). Although the exact causes of ICANS are not fully understood,

blood brain barrier disruptions, the influx of cytokines into the

central nervous system (CNS), and microglial and myeloid

activation within the CNS are regarded as key factors in the

development of ICANS (59–61). Although a series of treatment

options, including intravenous hydration corticosteroids,

monoclonal antibodies against the IL-6 receptor, IL-1 receptor

antagonist, or targeting granulocyte-macrophage colony-

stimulating factor (GM-CSF), have been approved to relieve

these AEs, toxicity is still a major challenge for the wide

application of CAR-T cells. Therefore, methods for assessing

and predicting potential toxicities before administration are also

urgently needed (62).
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The gut microbiome and cancer

The gut microbiota, which refers to the vast collection of

microbes inhabiting in the gastrointestinal tract, is involved in

several key processes of human health, including providing

nutrients and vitamins, protecting against pathogens, helping the

development of the immune system and maintaining epithelial

mucosa homeostasis (22, 23, 63). The balance between human

cells and the gut microbiota is critical for maintaining the host’s

health status. The gut microbiota can be modulated through several

methods, including consuming dietary fibers, taking probiotics, or

performing physical activity (64–68). In contrast, antibiotics,

proton pump inhibitors (PPIs), smoking, and chronic stress may

impair bacterial variability (69–72). Recently, several studies have

suggested that the gut microbiota of cancer patients is very different

from that of healthy individuals, and the role of the gut microbiota

as a contributor to carcinogenesis has been well studied (73, 74). To

date, the exact mechanisms through which the gut microbiota

contributes to oncogenesis are not fully understood; however,

several possible mechanisms can account for the process: (1)

direct oncogenic effects of microorganisms and their products; (2)

increased circulating pro-carcinogenic metabolites; and (3)

disruption of cancer immunosurveillance through pro-

inflammatory and immunosuppressive pathways (75).

In addition to its pro-carcinogenic properties, recent preclinical

and few clinical studies suggest that the gut microbiota can

modulate the response and susceptibility to side effects of

different therapeutic strategies, including surgery, chemotherapy,

radiotherapy and immunotherapy (76, 77) (Figure 1). Although the

underlying mechanisms are not well understood, some of them

have been described as TIMER framework mechanisms, including

translocation, immunomodulation, metabolism, enzymatic

degradation and reduced diversity (78, 79). In this section, we

summarize the role of the gut microbiota in modulating the efficacy,

resistance and toxicity of cancer therapies.
Chemotherapy

Recently, the gut microbiota has been demonstrated to be a key

factor affecting the efficacy, pharmacokinetics, and toxicity of

chemotherapy (80, 81). To date, a series of mechanisms, including

xenometabolism, immune interactions, and altered community

structure, have been proposed to account for the impact of the gut

microbiota on chemotherapy efficacy (79). The gut microbiota can

directly modify the metabolism of antitumor drugs, which is linked to

an increase in toxicity and a decrease in treatment efficacy (82, 83).

For example, the toxicity of irinotecan, a topoisomerase I inhibitor

widely used to treat colorectal cancer, is dependent on

glucuronosyltransferases in the liver. The active form of irinotecan,

SN-38, can be detoxified into the inactive form SN-38-G by

glucuronosyltransferases (84). However, in a in vivo rat model,

Bacteroides species and other bacteria that express b-glucuronidase
(such as Faecalibacterium prausnitzii and Clostridum spp.), can
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convert SN-38-G back into SN-38 (85). This process is associated

with the accumulation of SN-38 in the gut, which leads to diarrhea. In

addition, toxicity is preventable with broad-spectrum antibiotics or

inhibitors of b-glucuronidase in in vivo studies (86). On the other

hand, dysbiosis of the gut microbiota have also been suggested to be

correlated with severe side effects, such as intestinal mucositis

induced by doxorubicin, 5-FU or irinotecan (87, 88). For example,

several studies in mice have shown that 5-FU therapy induces

intestinal dysbiosis by increasing the abundance of Staphylococcus

and Clostridium species and decreasing the abundance of

Enterobacteriaceae, Lactobacillus and Bacteroides, thus exacerbating

severe side effects in murine cancer models and in cancer patients

(89). In addition to its role in reducing the toxicity of chemotherapy,

the efficacy of chemotherapy can also be modulated by the gut

microbiota (90, 91). Possible mechanisms include remote immune

modulations by the gut microbiota and/or bacterial translocation to

lymphoid organs. Several studies have also suggested that the gut

microbiota provides a tumor microenvironment that can favor the

toxic effect of drugs on cancer cells and sustain anticancer adaptive

immunity following drug-induced immunogenic cell death (84). In a

pioneer in vivo study, Iida et al. reported that oxaliplatin and cisplatin

had reduced antitumor efficacy and chemoresistance in germ-free or

antibiotic-treated mice, compared to specific-pathogen-free (SPF)

mice (92). The gut microbiota primes myeloid cells in tumors to

produce reactive oxygen species (ROS) via NADPH oxidase 2

(NOX2), which are important for DNA damage and apoptosis in

response to platinum compounds. In addition, several in vivo studies

have demonstrated that cyclophosphamide (CTX) can modulate the

immune microenvironment of tumors by reducing regulatory T cells

(Tregs) and increasing Th1 and Th17 cells in a manner dependent on

the gut microbiota (90, 91, 93). The translocation of Enterococcus

hirae to lymph nodes and the accumulation of Barnesiella

intestinihominis in the colon promoted cancer immunity following

CTX treatment. Although further clinical studies are needed

to evaluate these innovative findings, the gut microbiota has
Frontiers in Immunology 04
been demonstrated to be an essential biomarker for cancer

chemotherapy efficacy.
Radiotherapy

Radiotherapy, which directly induces DNA damage through the

production of ROS or reactive nitrogen species (RNS), is another

important treatment option for cancer patients (80, 94). Moreover,

radiotherapy can also induce local immunogenic effects and

stimulate the innate immune system (95, 96). However, the

tumor response after radiotherapy is heterogeneous, and the

causes of this heterogeneity remain unclear. Recently, growing

evidence has suggested that the gut microbiota may contribute to

the interpatient heterogeneity of radiotherapy. In a in vivo mouse

study, Cui et al. investigated the role of the circadian rhythm in the

effect of radiotherapy and reported that mice with a normal 12-h

dark/12-h light cycle had significantly better survival than did those

with different cycles (8-h dark/16-h light or 16-h light/8-h dark)

(97). In this process, alteration of the gut microbiota was

suggested to account for the radio-resistance. Moreover, several

other studies have suggested that depletion of the gut microbiota by

broad-spectrum antibiotics results in an expansion of the

Saccharomycetes class of fungi, which decreases radiotherapy

efficacy by inhibiting tumor immunity by signaling through the

b-glucan receptor Dectin 1 (98). Another hypothesis concerns the

link between radio-resistance and gut microbiota-involved

autophagy regulation. In a cohort study, Digomann et al. reported

that several autophagy-related proteins were correlated with the

clinical prognosis of patients with head and neck squamous cell

carcinoma treated with radiotherapy (99).

On the other hand, radiotherapy side effects alter quality of life

and are integral parts of treatment decisions. The gut microbiota

plays a key role in radio-induced toxicity. In a study, Ferreira et al.

reported a close correlation between the gut microbiota abundances
FIGURE 1

The gut microbiota modulates the response and susceptibility to side effects in response to different therapeutic strategies.
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and radiation enteropathy (100). In patients with radiation

enteropathy, the composition of Clostridium, Roseburia and

Phascolarctobacterium were significantly increased. In another

study, a significant alteration in the Firmicutes/Bacteroidetes ratio

was observed in patients with pelvic radiation-induced diarrhea

(101). In a mouse model, fecal transplantation improved

gastrointestinal tract function in irradiated mice and protected

against radiation-induced death (102). Taken together, these data

suggested that the gut microbiota plays a key role in the modulation

of radiosensitivity and radiation-induced toxicity. However, further

preclinical and clinical studies are needed to determine the detailed

underlying mechanisms involved.
Immunotherapy

Immunotherapy, which includes ICB therapy that inhibits

programmed cell death protein 1/programmed cell death ligand 1

(PD-1/PD-L1) and cytotoxic T lymphocyte-associated antigen-4

(CTLA-4) signaling, tumor vaccines, and ACT, represents a hotspot

of cancer therapy (103). Despite the remarkable effectiveness of

immunotherapy in a subset of patients, most patients treated with

immunotherapy will experience primary or acquired resistance (104,

105). Furthermore, immune-related adverse events (irAEs) are another

challenge that limits the wide application of immunotherapy (106).

Recently, accumulating evidence has pinpointed the indispensable roles

of the gut microbiota in cancer immunotherapy. In a murine

melanoma model generated by Paulos et al., the antitumor efficacy of

CD8+ T cells was strongly increased after total body irradiation

through the translocation of gut bacteria into mesenteric lymph

nodes (107). This effect could be attributed to the fact that

irradiation induces the release of microbial lipopolysaccharide (LPS),

which activates the innate immune response and enhances the efficacy

of antitumor CD8+ T cells. Antibiotic treatment or LPS neutralization

can significantly decrease the antitumor response. In another in vivo

study, Iida et al. reported that the efficacy of anti-IL-10/CpG

oligodeoxynucleotide (ODN) immunotherapy was impaired by

antibiotic treatment in both murine models of MC38

colon carcinoma and B16 melanoma (92). Antibiotic treatment can

decrease the gut microbiota load and the number of proinflammatory

cytokine-producing monocytes in tumors, leading to failure of

the immunotherapy response. All these studies highlighted the

important role of the gut microbiota in the antitumor efficacy

of immunotherapy.

After the relationship between the gut microbiota and

immunotherapy was recognized, an increasing number of studies

have been conducted to explore the impact of the gut microbiota on

the efficacy and toxicity of ICI therapy. Although the underlying

mechanisms are not well understood, growing evidence confirms

the central role of remote lymphoid and myeloid cell modulation by

the gut microbiota. In a study, GF mice or antibiotic-treated mice

were not capable of responding to the CTLA-4 antibody compared

to SPF mice (108). The gut microbiota, which includes Bacteroides

thetaiotaomicron, Bacteroides fragilis and Burkholderia cepacia, was

suggested to be associated with the antitumor efficacy and toxicity

of anti-CTLA-4 inhibitors. After oral administration of Bacteroides
Frontiers in Immunology 05
spp., the antitumor efficacy of the anti-CTLA-4 inhibitor was

restored, with an increase in intratumoral mature DCs and an

increase in the Th1 response in tumor-draining lymph nodes.

Moreover, the microbiota composition could predict the status of

solid tumor responders and nonresponders to anti-PD-1/PD-L1

therapy. In a study conducted by Gopalakrishnan et al., enrichment

of Faecalibacterium species in the gut microbiota of melanoma

patients was associated with a high response to anti-PD-L1 therapy,

while enrichment of Bacteroides thetaiotaomicron, Escherichia coli,

and Anaerotruncus coli hominis was found mainly in nonresponders

(109). Fecal microbiota transplantation (FMT) via responder patients

into GF mice improved ICI efficacy, which was associated with

increased numbers of intratumoral mature DCs, IFN-g+CD8+ and/

or CD4+ antitumor T cells and decreased numbers of intratumoral

CD4+FoxP3+ Tregs (109–111). In total, these promising results

strongly support the use of microbial targeting in antitumor

immunotherapy to enhance tumor efficacy.
Influence of the gut microbiota on the
effectiveness of CAR-T cell therapy

Currently, CAR-T-cell therapy is one of the most promising

cancer therapies and has led to unprecedented responses in patients

with R/R hematologic malignancies, including lymphoma,

leukemia, and MM. In the past decade, the correlation between

the gut microbiota and the antitumor efficacy of CAR-T cells has

been explored in a series of preclinical and clinical studies, and it is

not unexpected that the gut microbiota represents a key factor in

predicting and determining the outcomes of CAR-T-cell therapy.

Smith et al. conducted the first human study to investigate the

influence of the gut microbiota on the response and toxicity of

CD19 CAR-T-cell-based therapies (27). A retrospective cohort of

228 patients from the Memorial Sloane Kettering Cancer Center

(MSKCC) and University of Pennsylvania who were treated with

second-generation CD19 CAR-T cells was established; 137 of these

patients were non-Hodgkin lymphoma (NHL) patients, 91 of whom

were acute lymphocytic leukemia (ALL) patients. Then, they

analyzed the fecal microbiota composition of patients receiving

CD19 CAR-T-cell therapy and hypothesized that the microbiota is

associated with antitumor efficacy and toxicity. The baseline stool

samples obtained prior to CAR-T-cell therapy were heterogeneous

for bacteria at the phylum level, as indicated by a decreased

Shannon index for alpha diversity compared to that of healthy

controls. The authors stratified patients based on exposure to

antibiotics, given that antibiotics are commonly used to treat

secondary infections in these patients. Indeed, 60% of the patients

received antibiotics, and 20.6% of them specifically received broad-

spectrum antibiotics such as piperacillin/tazobactam, imipenem/

cilastatin, and meropenem (PIM), which target anaerobic gut

commensal bacteria. Using OS and progression-free survival

(PFS) as indices of treatment response, the authors found that

PIM exposure prior to CAR-T-cell therapy was correlated with

worse OS and PFS. To further validate this hypothesis, the authors

established a prospective cohort of 48 NHL or ALL patients with

matched baseline gut microbiota profiles and found that response
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(measured as complete response (CR) on day 100 post treatment) to

CAR-T-cell therapy was positively correlated with baseline

microbiota diversity and enrichment of specific bacterial taxa, such

as Ruminococcus, Faecalibacterium, and Bacteroides. In another

recent study by Stein-Thoeringer et al., a large cohort of lymphoma

patients receiving second-generation CD19 CAR-T cells (122 were

treated with axicabtagene ciloleucel (axi-cel), 49 received

tisagenlecleucel (tisa-cel) and 1 received lisocabtagene maraleucel

(liso-cel)) in Germany and the U.S. were established (112).

Consistent with the findings of previous studies, an association

between exposure to antibiotics prior to CAR-T-cell infusion and

increased incidences of cancer relapse/disease progression and a

decrease in OS was also observed. Moreover, based on machine

learning methods used to explore microbiome-based predictions of

treatment outcomes, Bacteroides, Ruminococcus, Eubacteria, and

Akkermansia spp. were identified as major potential drivers of

therapy responsiveness. Similarly, Hu and colleagues also revealed

significant differences in the enrichment of Bifidobacterium,

Prevotella, Sutterella, and Collinsella between MM patients treated

with second-generation BCMA CAR-T cells in complete remission

and those in partial remission (113). However, in a study investigating

how vancomycin-induced gut microbiota dysbiosis affects CAR-T-

cell therapy, the results were different (114). Vancomycin is a

branched tricyclic peptide antibiotic that targets mostly gram-

positive bacteria. When administrated orally, vancomycin is poorly

absorbed and does not reach an effective dose systemically due to its

large size. In this study directed by Uribe-Herranz et al., mice

receiving vancomycin in combination with murine CD19bbz CAR-

T-cell therapy showed an increased tumor response and tumor-

associated antigen (TAA) cross-presentation compared with those

of mice receiving CD19 CAR-T-cell therapy alone, both in lymphoma

and melanoma murine models. FMT from healthy human donors to

preconditioned mice recapitulated the results obtained in naive gut

microbiota mice. 16s Metagenomic analysis demonstrated that oral

vancomycin affected the composition of human gut microbiome of

engrafted avatar mice, with a significant decrease of alpha diversity

and significant expansion of vancomycin-resistant bacteria (such as

Enterobacteriaceae and Sutterellaceae). The decrease or depletion of

gram-positive bacteria included several families, genera, and species,

including Ruminococcaceae and Lachnospiraceae, which are known

to impair antigen presentation. Similarly, under clinical conditions,

compared with unexposed patients, B-ALL patients treated with

CD19 CAR-T cells and exposed to oral vancomycin had greater

CAR-T-cell peak expansion. Taken together, although research on the

role of the gut microbiota in CAR-T-cell therapy is still in its infancy,

these findings suggest the tremendous potential of the gut microbiota

as a noninvasive prognostic marker for CAR-T-cell therapy.
Interactions between the gut
microbiota and toxicities related to
CAR-T cell therapy

In addition to the effect of the gut microbiota on the antitumor

efficacy of CAR-T cells, the gut microbiota was also demonstrated to
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alter the development of toxicity in patients treated with CAR-T

cells. Smith and colleagues investigated the role of the gut

microbiota in the toxicity of CAR-T cells in a multicenter study

of patients with B-cell lymphoma and leukemia (27). In a

retrospective cohort (n= 228), they found that exposure to

antibiotics, particularly PIM, was associated with shorter survival

and increased neurotoxicity. Multiple bacterial species were

associated with the absence of toxicity, but microbes associated

with toxicity were unidentifiable according to the linear

discriminant analysis effect size. The nonoxidative branch of the

pentose phosphate pathway was upregulated in patients with

reported toxicities, indicating that metabolites from these

bacterial taxa may serve as biomarkers for side effects after CD19

CAR-T-cell therapy (112). In another recent study by Hu et al.,

researchers investigated second-generation BCMA CAR-T-cell

toxicity in patients with relapsed/refractory MM, NHL, or ALL

(113). Microbiota changes were longitudinally monitored

throughout CAR-T-cell therapy. Stool samples were collected

prior to CAR-T-cell infusion, during CAR-T-cell infusion but

prior to the development of CRS, during active CRS, and up to

fourteen days after CAR-T-cell infusion. Severe CRS was associated

with changes in the abundance of several gut microbiota species. As

indicated by the Shannon index, there was a significantly decreased

abundance of Bifidobacteria. Alpha diversity was observed after

CAR-T-cell infusion. Furthermore, an increase in the abundance of

the Actinomyces and Enterococcus genera was also suggested to be

associated with an increased incidence of CRS. Overall, antibiotic

exposure and subsequent alteration of the gut microbiota are

associated with increased toxicity, including CRS and ICANS, and

with worsened CAR-T-cell responses.
Potential strategies for modifying the
gut microbiota to enhance the
therapeutic efficacy of CAR-T cells

As mentioned above, the gut microbiota has been demonstrated

to be an extrinsic factor that can predict and prospectively dictate

the efficacy and toxicity of CAR-T-cell therapy, providing a novel

target for improving the efficacy of CAR-T-cell therapy. Currently,

several potential strategies, including FMT, administration of

defined taxa and diet, have been demonstrated to improve the

treatment efficacy while decreasing the toxicity of ICIs therapy

through modulation of the gut microbiota. In this section, we

focused on the development and future application of these

potential strategies to optimize the microbiota composition to

improve the efficacy of CAR-T-cell therapy and decrease the

incidence of AEs (Figure 2).

FMT

FMT represents the transfer of fecal microbial content from a

healthy donor to the intestine of a recipient and has been widely

tested in the treatment of resistant Clostridium difficile infection, other
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opportunistic infections and inflammatory bowel diseases (115, 116).

Moreover, FMT has also demonstrated to improve the efficacy of a

series of cancer therapies. For example, Gopalakrishnan et al.

established melanoma-bearing GF mice and orally transferred the

fecal microbiota of responder or nonresponder patients to anti-PD-1

therapy into these mice. Ultimately, mice treated with FMT from

responder patients had significantly reduced tumor size (median

tumor volume: 403.7 mm3 vs. 2301 mm3) and improved responses

compared to those treated with FMT from nonresponder patients

(109). Recently, the results of several clinical trials incorporating FMT

to improve cancer therapy have been published. In a clinical trial led

by Dr. Davar (NCT03341143), investigators assessed whether

resistance to anti-PD-1 therapy can be overcome by changing the

gut microbiota in patients with advanced melanoma (117). The

patients received FMT from seven donors (including four with

complete response (CR) and three with partial response (PR)) in

combination with pembrolizumab treatment. The objective response

rate (ORR) was 20% (3 PRs out of 15 patients), whereas the percentage

of patients with durable SDs lasting >12 months was 20% (3 out of 15

patients). Another phase I clinical trial (NCT03353402) showed

similar results, and the ORR in patients receiving FMT and PD-1

inhibitors was 30% (3 out of 10, including two PRs and one CR) (118).

In addition to overcoming resistance to ICIs in patients with refractory

cancer, FMT also showed promising efficacy in enhancing the

antitumor efficacy of ICIs in first-line treatment settings in a recent

study of previously untreated patients with advanced melanoma.

(NCT03772988). The ORR was 65% (13 of 20, including 4 (20%)

CRs), and only five patients (25%) experienced grade 3 irAEs from

FMT combined with the PD-1 inhibitor. Responders experienced an

enrichment of immunogenic bacteria and a loss of deleterious bacteria

following FMT (119). As mentioned above, significant correlation of

gut microbiome with treatment outcome and CRS grade of CAR-T

therapy has been observed. Thus, it is reasonable that FMT can also

help to rescued the diversity and function of gut microbiota in cancer

patients. Although additional evidence is needed, combination with

FMT provides a promising way to enhance the efficacy and safety of

immunotherapy and may also constitute a potential strategy for

enhancing the antitumor efficacy of CAR-T-cell therapy in the

near future.
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Diet, prebiotics and probiotics

In addition to antibiotics and FMT, which can directly

modulate the gut microbiota, diet is a critical means of regulating

microbial composition and function. In recent decades, several

different dietary strategies, including long-term caloric restriction,

intermittent fasting, short-term starvation, high-fiber diets,

ketogenic diets and fermented food, have been widely studied in

the context of cancer and have been demonstrated to improve the

antitumor efficacy of cancer therapy (120). Despite several

limitations, dietary intervention represents a tractable strategy for

modulating the function of the gut microbiota (121–125). For

example, a high-fiber diet has been demonstrated to be associated

with a better response and survival rate when treated with ICIs in

preclinical models and in clinical cohorts and was considered to be

correlated with enhanced T-cell activation and monocytic

reprogramming within the TME (126). In addition, caloric

restriction can promote memory T cell accumulation in the bone

marrow and enhance T cell immunity to bacterial infection and

tumors in T cell adoptive transfer models (127). The ketogenic diet

has represented another popular diet in recent years. Ketone body

3-hydroxybutyrate can induce T cell immunity, thereby enhancing

the antitumor effect of anti-PD-1 therapy in in vivo mice model

(128). In addition to diet modulation, several naturally occurring

soluble fibers, such as inulin and pectin, can be found in many

vegetables and fruits. These fibers are called prebiotics and cannot

be digested by gastrointestinal enzymes but can be fermented by

bacteria (129, 130). Recently, prebiotics have been shown to affect

the functional status of the gut microbiota in preclinical models. For

example, oral inulin-gel treatments increase the abundance of

short-chain fatty acid (SCFA)-producing microorganisms and

amplify the antitumor efficacy of anti-PD-1 therapy (131). Pectin

feeding can also enhance the ability of mice transplanted with the

fecal microbiota of a patient with cancer to respond to anti-PD-1

therapy by expanding the fiber-fermenting and SCFA-producing

microbiota (132). All these data suggested that traditional

diet modulation or dietary components, such as prebiotics,

may represent a promising way to improve immunotherapy

responsiveness by targeting the microbiota.
FIGURE 2

Potential strategies for harnessing the gut microbiota to potentiate CAR-T-cell efficacy while attenuating toxicity.
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The concept of probiotics, which refers to the specific

transplantation of single microbial species and/or designer microbial

consortia to enhance the response to ICIs and other forms of cancer

treatment, has also emerged as an important research field (133). In

1993, a multicenter, randomized controlled study of 223 patients with

uterine cervix carcinoma treated with a combination of heat-killed

Lactobacillus casei strains (LC9018) and radiation therapy revealed that

tumor regression was enhanced through the induction of an immune

response against cancer cells (134). Since then, the potential

applications of combination probiotics/cancer treatment have

sparked interest in future studies. For example, in a small, open-label

trial, 58% of patients with metastatic renal cell carcinoma (RCC)

treated with CBM588 (a formulation that includes a strain of

Clostridium butyricum) in combination with ICIs responded to

treatment, whereas 20% of patients received only ICIs (135).

Additionally, PFS was significantly prolonged in CBM588-treated

patients to 12.7 months compared with 2.5 months in patients

receiving ICB alone, thus highlighting that the addition of

bifidogenic bacterial products can improve the clinical outcome of

patients with RCC. Despite several limitations, there are tremendous

opportunities to develop informed, ‘next-generation’ probiotics, as

recent studies suggest that specific microorganisms in the gut may

enhance antitumor immune responses in part through the induction of

highly therapeutic TLSs in the TME, which have been favorably

associated with patients’ response to ICIs across cancer types (136,

137). Together, these lines of investigation open up new possibilities for

transplanting and targeting specific therapeutic microorganisms and

can also be applied to enhance the antitumor efficacy of CAR-T cells in

the future.
Targeting gut microbiota-
derived metabolites

Gut microbiota-derived metabolites represent a variety of small

molecules produced or transformed by intestinal microorganisms

that not only exert direct effects in the intestine but also modulate the

function of cells in remote organs. Unlike gut bacteria, which are

predominantly located in the luminal compartment of the intestine,

gut microbiota-derived small molecules can easily cross the epithelial

layer and diffuse through the entire circulation (138). It is estimated

that 5 and 10% of all plasma metabolites are derived from the gut

microbiota; however, these products generated by the gut microbiota

were considered merely dead-end byproducts of their metabolic

pathways for a long time (139, 140). In the past decade, gut

microbiota-derived metabolites have received increasing attention

in cancer research (141–143). For example, short-chain fatty acids

(SCFAs), which are synthesized by the bacterial fermentation of

dietary fiber, are the most abundant class of microbial metabolites

and are composed of carboxylic acids with aliphatic tails of 1-5

carbons (144). Bacterial SCFAs, such as acetate (C2), propionate

(C3), butyrate (C4) and valerate (C5), play key roles in regulating

anticancer immunity and cancer immune surveillance (145). Butyrate

reportedly enhances the therapeutic efficacy of anti-PD-1 agents by

increasing CD4+ and CD8+ T-cell infiltration in the TME in tumor-
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cancer (CRC) patients (132). Moreover, replenishing butyrate prior

to anti-PD-1 treatment was sufficient to improve the therapeutic

efficacy in nonresponders. Similarly, He and colleagues indicated that

the SCFA butyrate could directly potentiate the antitumor CD8+ T-

cell response via ID2-dependent IL-12 signaling, suggesting the

potential beneficial role of butyrate supplementation in anticancer

immunity therapy (146). In a study directed by Luu et al, microbiota-

modulated SCFA, may also enhance the antitumor action of cytotoxic

lymphocytes and CAR-T cells through metabolic and epigenetic

remodeling of CAR-T cells. Mechanically, they found that in vitro

treatment of CTLs and CAR-T cells with pentanoate and butyrate

increases the function of mTOR as a central cellular metabolic sensor,

and inhibits class I histone deacetylase activity, which increased

expression of effector molecules such as CD25, IFNg, and TNFa in

syngeneic murine melanoma and pancreatic cancer models (147,

148). In addition to SCFA, Other microbial-derived metabolites,

signaling through aryl hydrocarbon receptors (AhR), may also play

a role in contributing to CD8+ T cell exhaustion by upregulating

inhibitory receptors and downregulating cytokine production,

thereby altering the ability of T cells to kill tumor cells.

Supplementation or inhibition of such microbially secreted

bioactive metabolites may potentially be used to reinvigorate the

immune response (149, 150). Taken together, gut microbiota-derived

metabolites represent another promising target to enhance the

efficacy and safety of CAR-T-cell therapy in the future.
Current challenges and
future perspectives

In the past decade, immunotherapy has made significant progress

and has gradually become the most important treatment for tumors.

CAR-T-cell therapy represents the most promising treatment option

for cancer, and a series of CAR-T-cell products have been approved

for the treatment of R/R B-cell leukemia or lymphoma. Although

promising in terms of efficacy, several limitations still exist, including

poor efficacy in solid tumors and toxicity, such as CRS and ICAN. In

contrast to the stability of the human genome, the modifiable nature

of the gut microbiota renders it a promising opportunity for CAR-T-

cell therapy. Recently, the role of the gut microbiota in cancer therapy

has been established, and growing evidence has suggested that

targeting the gut microbiota is a promising method for enhancing

the antitumor efficacy of CAR-T-cell therapy. As mentioned above,

FMT, microbiota-derived metabolites, diet, prebiotics and probiotics

have been explored in several studies and are regarded as effective

strategies for enhancing the antitumor efficacy of CAR-T cells

through modifying the composition and function of the

gut microbiota.

Although it is believed that modulating the gut microflora will

likely be a promising method for managing CAR-T-cell therapy,

several potential challenges should be mentioned. First, most of the

evidence supporting the relationship between the microbiota and

immunotherapy has been obtained from mouse models. As the gut

microbiota in mice is not identical to that in humans and the innate
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and adaptive immune systems of mice are also different from those

of humans, a deeper comprehension of the underlying molecular

mechanisms and additional humanized animal models or clinical

trials are needed to further explore the underlying correlation.

Second, the exact mechanisms underlying the correlation between

the gut microbiota and cancer genesis/therapy have not been fully

characterized, and evidence of causation between them is still

lacking. However, further in vitro and in vivo studies are needed

to determine the causal mechanisms involved. In the context of

CAR-T-cell therapy, transferring defined microbiota constituents

from responders and nonresponders into GF cancer mice would

enable us to elucidate the causal contribution of the gut microbiota

and its bioactive metabolites. Interindividual microbiota variability

represents another formidable challenge in identifying the impacts

of CAR-T-cell therapy and AEs on the gut microbiota and their

bioactive metabolites. Indeed, the microbiota populations of CAR-

T-cell-treated patients reported by Smith et al. and Hu et al. are

quite different (27, 113). In different trials, varying taxa have been

associated with impaired immunotherapy responsiveness,

indicating that defining a generalizable CAR-T-cell therapy

optimizing the microbial signature will be difficult. Thus,

multicentric clinical trials with high-quality training and

validation sets for identifying CAR-T-cell therapy-related gut

microbiota are urgently needed. Moreover, artificial intelligence

technologies can be used in this process. Fecal microbiota transfer

into CAR-T-cell-resistant individuals may optimize responsiveness

and even lead to the conversion of nonresponders to responders.

However, as a living body, such treatment can pose risks of

introducing potentially harmful bacteria into patients who are

already severely immunocompromised, and it is difficult to

guarantee its safety. Thus, identification and isolation of defined

microbiota that mediate such favorable effects may offer a safer,

more reproducible, and universal treatment option. Another

challenge is the complex physiological conditions (such as gastric

acid and diverse enzymes) that might digest or deactivate microbial

agents before they reach the action site. Thus, the appropriate

delivery route and dose should also be optimized.
Conclusions

CAR-T-cell therapy has revolutionized the history of cancer

treatment. However, several disadvantages, such as low efficacy and

high toxicity, limit the widespread application of CAR-T cells in

solid tumors. Recently, an increasing number of studies have

highlighted the key role of the gut microbiota in affecting the
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efficacy of cancer therapies and their side effects. Similarly,

overwhelming preclinical and clinical evidence also supports a

critical role of the gut microbiota in the response to and toxicity

of CAR-T-cell therapy, which indicates that modulating the gut

microbiota is a promising therapeutic strategy for enhancing the

antitumor efficacy and attenuating the toxicity of CAR-T-cell

therapy. Currently, research on microbial therapy for cancer is

still in its infancy, and further mechanistic dissection via cellular

and animal studies as well as validation with larger longitudinal

clinical cohorts are needed. Despite these challenges, targeting the

gut microbiota remains a promising strategy for improving CAR-T-

cell therapy in the future.
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