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Cancer stem cells (CSCs), accounting for only a minor cell proportion (< 1%)

within tumors, have profound implications in tumor initiation, metastasis,

recurrence, and treatment resistance due to their inherent ability of self-

renewal, multi-lineage differentiation, and tumor-initiating potential. In recent

years, accumulating studies indicate that CSCs and tumor immune

microenvironment act reciprocally in driving tumor progression and

diminishing the efficacy of cancer therapies. Extracellular vesicles (EVs), pivotal

mediators of intercellular communications, build indispensable biological

connections between CSCs and immune cells. By transferring bioactive

molecules, including proteins, nucleic acids, and lipids, EVs can exert mutual

influence on both CSCs and immune cells. This interaction plays a significant role

in reshaping the tumor immune microenvironment, creating conditions

favorable for the sustenance and propagation of CSCs. Deciphering the

intricate interplay between CSCs and immune cells would provide valuable

insights into the mechanisms of CSCs being more susceptible to immune

escape. This review will highlight the EV-mediated communications between

CSCs and each immune cell lineage in the tumor microenvironment and explore

potential therapeutic opportunities.
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Introduction

Cancer stem cells (CSCs), also known as tumor initiating

(propagating) cells, despite constituting a relatively small

population of the tumor cells, play a pivotal role in fueling tumor

growth due to their self-renewal and multi-lineage differentiation

ability (1–4). This concept, introduced several decades ago, has

stimulated extensive studies aimed at decoding the clinical

observations through CSCs (5–9). Patients who show initial

partial or complete remission through anti-cancer treatments by

chemotherapy or radiation may eventually experience tumor

relapse or metastasis, conditions that tend to be markedly

intractable owing to the increased resistance to therapies (10, 11).

This phenomenon is likely attributed to CSCs’ resilience against the

therapeutic regimens. Besides, CSCs also contribute to intratumoral

heterogeneity (ITH) by differentiating to all kinds of cancer cells

with different phenotypic features, some of which can disseminate

to other parts of the body (12–14).

CSCs intricately interact with cancer supporting cells especially

immune cells in the tumor ecosystem, sculpting a conducive niche

and employing mechanisms for immune evasion and

immunosuppression, including activating immune escape pathways

and suppressing antigen processing and presentation proteins (15).

CSCs also overexpress programmed cell death 1 ligand 1 (PD-L1) on

the cell surface, an incredibly important immune checkpoint protein

that counteract the antitumor immune response (16, 17). Unraveling

how CSCs engage with cancer-associated immune cells is gaining

increasing attention, as these interactions hold considerable potential

as immunotherapeutic targets.

Extracellular vesicles (EVs) are small lipid bilayered membrane

vesicles composing of two main subgroups, exosomes and

microvesicles (MVs) (18–20). These vesicles range in size from a few

tens of nanometers tomultiple micrometers (21, 22). Secreted by all cell

types, EVs are responsible for the transfer of functional biological

cargos including nucleic acids, proteins, and lipids between cells,

mediating critical intercellular communication (23, 24). EVs are

irreplaceably involved in modulating various innate and adaptive

immune processes including antigen presentation, activation of T

cells and B cells (25–27). Within the tumor ecosystem, EV-mediated

communication is preferentially characterized by EVs produced by

CSCs being internalized by other cells, a process integral for the

dissemination of CSC-specific traits, which is essential for shaping

the tumor immune microenvironments. For example, pancreatic CSC-

derived EVs carry agrin protein to increase YAP activation to promote

tumor cell proliferation (28). EVs from colorectal CSC could transfer

metastatic properties to the non-CSCs via miR-200c (29). CSC-derived

EVs are likely to interact with immune cells enriched in the CSC niche,

including MHC-II expressing macrophages and programmed cell

death 1 (PD1) positive T cells, potentially promoting tumor

progression through immunosuppression (30). Conversely, immune

cell-derived EVs enhance CSC stemness and propagation (31–33). The

reciprocal transfer of EVs between CSCs and immune cells operate in

concert to create a tumor-supporting niche.

In this review, we will summarize and discuss the recent

findings on the biological functions of CSC-derived EVs, with a

focus on their immunological role through engagement with
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various types of tumor-associated immune cells, and how EV-

mediated interactions between CSCs and immune cells contribute

to shaping the tumor immune microenvironments.
Overview of CSCs

ITH is a major obstacle in cancer treatment, leading to aggressive

tumor growth and treatment failures (34–36). Elucidating the sources

of ITH is of great significance to overcome therapy resistance. ITH

present in two forms, spatial heterogeneity, which involves the unequal

distribution of tumor subpopulations across different regions, and

temporal heterogeneity, which refers to genetic diversity within a

tumor over time (34, 37). Technological advances such as

multiregional sampling, liquid biopsy, single-cell sequencing, and

spatial transcriptome provide insights into decoding the intricate

compositions of ITH (38–40). Single-cell transcriptomic analysis of

various types of tumors have uncovered distinct subpopulations of

tumor cells, each characterized by varying levels of differentiation and

stemness (41–44). Of note, various driving forces are emerging to be

responsible for ITH, encompassing genome instability and clonal

evolution (45, 46), metabolic adaptation (47), epithelial-mesenchymal

transition (EMT) (48) as well as environmental factors such as hypoxia

(49) and inflammation (50). Among these, the existence of CSCs plays

a pivotal role in the development and maintenance of ITH (13, 51).

Here comes the concept of CSCs, a subset of tumor cells capable

of self-renewal, tumor-initiating, multi-lineage differentiation,

therapy-resistance, metastasis, relapse, etc. (7, 52–54) (Figure 1).

The CSC theory posits that tumors are hierarchically structured,

with CSCs at the top (7, 55–57). Nevertheless, recent findings (2, 13,

58) have revealed that CSCs and non-CSCs are dynamic and can

transition between states in response to specific stimuli, complicating

tumor eradication. Initially identified in hematological malignancies,

CSCs are now recognized in various solid cancers (59–62). Three

hypotheses explain CSC origins (63, 64): transformation of non-

cancerous stem cells through a series of oncogenic mutations (65),

acquisition of pluripotency by progenitor cells (66), and

dedifferentiation of differentiated cells (67).

Certain surface markers such as CD133, CD44, epithelial cell

adhesion molecule (EPCAM), and intracellular markers such as

aldehyde dehydrogenase (ALDH) have been identified for CSCs

(68–72). ALDH is an enzyme mediating aldehyde detoxification,

which is assessed by the ALDEFLUOR assay, is instrumental in

drug resistance (73–75). However, these markers are not solely

specific to CSCs, and some CSCs don’t exhibit these markers at all

(9, 76, 77). Moreover, CSCs typically constitute less than 1% of the

tumor mass, and such scarcity further complicates their isolation

and identification (77).

Besides markers, the characterization of CSCs requires surrogate

functional assays (78–80). Current well-known surrogate methods

include in vitro tumorsphere formation and in vivo limiting-dilution

tumorigenicity assays (81–83). In vitro tumorsphere formation assay

evaluates the ability of cells to grow and form spheres in a three-

dimensional, anchorage-independent culture environment (84, 85).

In vivo limiting-dilution tumorigenicity assay, which tests the tumor-

initiating capacity of cells by transplanting them into
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immunocompromised mice and observing tumor formation, is

considered the gold standard for CSC research (86, 87).

CSCs contribute to therapy resistance through several

mechanisms (88–90), including high levels of multi-drug efflux

ATP-binding cassette transporters, slow-cycling state, enhanced

DNA repair capacity, apoptosis evasion, immune-privileged

property, etc. Furthermore, EMT activation is tightly associated

with the formation of CSCs (91). Consequently, CSCs consist of

heterogenous subtypes occupying different locations and exhibiting

varied EMT characteristics within the primary tumor (92, 93),

further complicating their therapy resistance.

Additionally, it is important to emphasize that CSCs have been

found to actively reshape the tumor microenvironment into

immunosuppressive state, facilitating their own growth and

proliferation while evading the therapeutic elimination (15, 94,

95). This interaction is significantly mediated by EVs, powerful

cell-cell communicators that plays a crucial role in modulating the

immune microenvironment (96). Through EVs, CSCs transferring

a diverse array of biological cargos to surrounding or distant

immune cells, eliciting immunosuppressive responses that

protects CSCs and fosters tumor progression (28).
The landscape of EVs: classifications
and molecular constituents

EVs are lipid-bilayer membrane structures secreted by virtually

all living cells, encompassing two main subtypes, exosomes and
Frontiers in Immunology 03
MVs, whose sizes ranging from about 50 nm to 5 µm (97, 98)

(Figure 2). EVs contain cellular bioactive components like proteins,

lipids, metabolites, and nucleic acids, reflecting their cell of origin

and functioning as mediators of intercellular communication (99,

100). EVs perform multifaceted functions including waste disposal,

signal cargo delivery to alter recipient cell physiology, and

mediating interactions between cells and extracellular matrix

(101–105). Furthermore, they can also facilitate long-distance

communication via blood or lymph (106, 107). Separating

different EV subtypes is challenging due to overlapping

properties, with methods like differential centrifugation, size-

exclusion chromatography, and immunoprecipitation used in

combination to improve specificity (108).

Exosomes stand out as the most well-studied subtype of EVs

with a size ranging between 40–160nm, primarily due to their

unique biogenesis, small size, and specific molecular content (109).

Exosomes play a pivotal role in cellular communication and cancer

research. Originating from endosomal compartments within cells,

they carry an array of biomolecules which reflect their cellular

origin and can influence recipient cell behavior. This makes them

key players in tumor progression and ideal for targeted drug

delivery and biomarker discovery in cancer diagnostics and

therapeutics (110–112). Their small size, specific content, and

stability in bodily fluids enhance their potential, making them

promising candidates in the medical and scientific exploration

of cancer.

Contrasting with exosomes, which originate from endosomal

pathways, MVs are formed by budding directly off the plasma
FIGURE 1

Overview of cancer stem cells (CSCs). This illustration delineates the fundamental characteristics of CSCs, encompassing their resilience against
standard anti-cancer treatments. CSCs possess a remarkable ability for self-renewal, ensuring the perpetuation of the cancer cell population. CSCs
are also capable of multi-lineage differentiation, which contributes to the cellular complexity and heterogeneity of tumors. Furthermore, CSCs are
often implicated in tumor relapse due to their ability to remain dormant and then re-initiate tumor growth. Lastly, their role in metastasis is
underscored by their potential to disseminate and form new tumors at distant sites, which is a hallmark of advanced cancer stages. These CSC
characteristics are critical for understanding tumor behavior and developing targeted therapeutic strategies.
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membrane and are generally larger, with sizes spanning from 200–

5000 nm (97, 113). MVs refer to a diverse group of membrane-

derived vesicles, including microparticles, oncosomes, or

ectosomes, and is less characterized EV subtype whose cargo

trafficking mechanisms are still under investigation (114). Besides

functional cargos as RNAs, proteins, lipids, and metabolites, MVs

could also mediate the transfer of mitochondria between cells (115),

which boosts ATP production in the recipient cells. Studies have

shown that cancer cell-derived MVs participate in tumor

progression (116, 117), while MVs from radiation treated cancer

cells exert antitumor effect through immunogenic death pathway

(118). These findings suggest a promising functional role of MVs in

cancer therapeutics.
CSC-derived EVs in oncogenic events

EVs generated from CSCs are instrumental in enhancing

tumorigenesis, advancing metastasis, and fostering therapy

resistance across various types of cancers by transferring associated

vicious traits indicative of donor cell (29, 119–122) (Table 1).

Colorectal CSCs secrete EVs enriched with glycoprotein CD147

can subsequently trigger signaling pathways associated with

tumorigenesis in recipient cancer cells (128). Besides, miR-200c in

EVs from colorectal CSCs could convey metastatic traits to accelerate

tumor progression (29). In triple-negative breast cancer, CSCs release

EVs that can stimulate specific cancer-associated fibroblasts and

remodel endothelial cells, accelerating invasiveness and preparing

distant metastatic niches (129). Lung CSCs could transfer their strong

metastatic properties to the whole tumor mass through exosomal

lncRNA Mir100hg/miR-15a-5p/glycolysis pathway (130). Gastric

CSCs induce tumor cells to gain malignant and metastatic

behaviors and stemness features via EVs internalization (131),

possibly due to a gastric CSCs marker gene DCLK1, which could

transfer the migratory property to the recipients (132). Melanoma

CSCs secrete EVs that enhance metastatic ability of non-stem cancer
Frontiers in Immunology 04
cells via miRNA-592, which activates the MAPK/ERK signaling

pathway (125). Breast CSC-derived EVs carry ARRDC1-AS1 to

promote breast cancer malignancy by modulating miR-4731–5p/

AKT1 axis to foster tumor growth and aggressiveness (123). In

addition, CSCs secrete certain tumor suppressors out the cells by

EVs. Acute myeloid leukemia stem cells secrete more miR-34c-5p out

to attenuate senescence through RAB27B-mediated exosome

trafficking (133).

EMT and angiogenesis are essential mechanisms of tumor

metastasis (134, 135), with CSC-derived EVs engage in the

regulation of these processes. Renal CSC-derived exosomes,

carrying miR-19b-3p, trigger EMT in renal tumors and enhance

distant metastasis (136). EVs from glioma CSCs containing vascular

endothelial growth factor A (VEGF-A) significantly boost

angiogenesis and increase vascular permeability in brain

endothelial cells, indicating significant contribution of CSC-

derived EVs to the tumor’s vascular development (137, 138).
CSC secretome and immune modulation

The concept of secretome, now updated to extend beyond

merely proteins, have led to the recognition of EVs as the

nanostructured/microstructured secretome, composing a complex

assembly of bioactive molecules with significant implications for

intracellular communications and dynamics inside the tumor

microenvironment (TME) (139–141). Furthermore, CSC

secretome covers a diverse spectrum of bioactive molecules

released out of cells, including various soluble factors like growth

factors, cytokines, chemokines, and proteins (142–144). Delineating

the roles these secretome compositions play on immune

interactions will provide an integrated understanding of crosstalk

between CSC and immune cells, setting the stage for the subsequent

sections that focus on the specific roles of EVs in this interplay.

CSC secretome has profound impact on tumor growth and

TME modulation (Table 2). Secretome profiles of melanoma CSCs
FIGURE 2

Extracellular vesicles (EVs). EVs encapsulate a diverse array of bioactive molecules, including surface proteins, cytosolic proteins, nucleic acids (both
DNA and RNA), metabolites, lipids, and peptides. EVs are classified into exosomes and microvesicles based on origin of formation and their size.
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include proteins enriched with cell proliferation, cell survival and

negative regulation of apoptosis (145). Breast CSCs actively secrete

CXCL1, a chemokine that plays a crucial role in stimulating their

proliferation and enhancing their capacity for self-renewal,

contributing significantly to the progression and aggressiveness of

breast cancer (146). Glioma CSCs generate and release immune

cytokines such as soluble colony-stimulating factor (sCSF-1),

transforming growth factor (TGF)-b1, C-C motif chemokine 2

(CCL2), VEGF, macrophage inhibitory cytokine-1 (MIC-1), and

galectin-3 into TME, contributing to the suppression of innate

immunity characterized by the induction of immunosuppressive

macrophages and regulatory T cells and effector T cell apoptosis

(147, 148). CSCs release macrophage migration inhibitory factor

(MIF), which binds with C-X-C motif chemokine receptor 2

(CXCR2) presenting on myeloid-derived suppressor cell

(MDSCs), leading to production of arginase 1, thereby
Frontiers in Immunology 05
suppressing CD8+ T cells (150). Also, previous studies revealed

that the glioma CSCs could trigger B7-H4 expression in both tumor

and immune cells through IL6-STAT3 pathway activation and

stimulate PD-L1 expression within the TME (147, 149). These

cytokines, chemokines and immune checkpoint proteins work

synergistically to lead to immunosuppression.
Exploring EV-mediated interactions
between CSCs and immune cells in
the TME: implications for
tumor immunity

The TME is a complex and dynamic battlefield consisting of

cancer cells, CSCs and cancer supporting cells, serving as a critical

zone for the interplay between immune cells and CSCs (Figure 3A).

This environment is a hub where diverse immune cells from both

innate and adaptive immune systems converge (151, 152).

Dendritic cells (DCs) are key in antigen presentation and the

initiation of immune responses, while macrophages, also involved

in antigen presentation, display ambiguous effects on tumors by

either fostering or inhibiting their growth. MDSCs predominantly

suppress immune activity, facilitating tumor immune evasion.

Natural killer (NK) cells, adept at autonomously destroying

cancer cells, and neutrophils, whose impact on cancer can vary

from hindering to promoting tumor progression. In terms of the T

cell population, subsets including cytotoxic T lymphocytes (CTLs)

are directly responsible for recognizing and eradicating cancer cells,

highlighting their critical role in antitumor immunity. T helper 17

(Th17) cells, a subset of CD4+ helper T cells, known for their

secretion of interleukin-17 (IL-17), exhibit a dual role in cancer by

either promoting inflammation that can support tumor growth or

recruiting effector T cells, NK cells and DCs into TME that enhance

antitumor responses.

Mounting evidence have shown that EVs released by cancer

cells, especially CSCs, are capable in modulating both innate and

adaptive immune responses, thereby facilitating to establish pro-

tumorigenic and pro-metastatic immune niches through their

interactions with various immune cell types within TME (153–
TABLE 2 Biological functions of CSC secretome.

Donor
cell

Secreted
molecules

Function Reference

Melanoma
CSCs

Proteins
related to cell
proliferation
and survival

Sustain cell survival, while
Theo supplement induce

CSC differentiation

(145)

Breast
CSCs

CXCL1 Stimulate CSC proliferation
and enhance self-renewal

(146)

Glioma
CSCs

sCSF-1, TGF-
b1, CCL2,
VEGF,
MIC-1,
galectin-3

Induce phenotypes of Treg
and immunosuppressive

macrophage, and stimulate
effector T cell apoptosis

(147–149)

MIF Suppress CD8+ T cell activity (150)
TABLE 1 CSC-derived EVs in oncogenic events.

Cancer
type

EV cargo Function Reference

Breast
cancer

ARRDC1-AS1 Promote the
malignant progressive
phenotypes via the
miR-4731–5p/
AKT1 axis.

(123)

miR-197 Promote epithelial-
mesenchymal
transition thus
increase BC cells
proliferation
and metastasis

(124)

HNSCC _ EVs have a selective
impact on specific
immune cells to

modulate anti-cancer
immune response

(30)

Pancreatic
cancer

Agrin protein Promote YAP activity
via LRP-4 to
contribute to

tumor progression

(28)

Melanoma miR-592 Increase the
metastatic ability of
MPCs via miR-592/
PTPN7/MAPK axis

(125)

Colorectal
cancer

miR-200c Enhance invasion,
metastasis and

stemness associated
with PI3K/Akt/
mTOR activation

(29)

Ovarian
cancer

_ Promote the
migration ability and
pro-tumorigenic
phenotype MSCs

(126)

NSCLC APE1 shRNA Reverse Erlotinib
resistance of NSCLC
via inhibiting IL-6/
STAT3 signaling

(127)
HNSCC, head and neck squamous cell carcinoma. NSCLC, non-small cell lung cancer.
Symbol “-” indicates that the corresponding study did not specify the function at the EV cargo
level, but rather at the whole EV level.
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156). Understanding the diverse functions and interactions of these

immune cells with CSCs through EVs provides insight into the

complex nature of cancer and opens avenues for innovative

therapeutic strategies (Figure 3B, Table 3).
Macrophage

Tumor-associated macrophages are a diverse group of

macrophages usually originating from circulating monocytes,

recruited to TME (170). In some solid tumors, macrophages can
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constitute more than 50% of the tumor mass (171, 172), and the

abundance of infiltrated macrophages usually associated with

distinct clinical prognosis (173). Contrary to the notion of them

being a homogenous population, macrophages exhibit a wide range

of behaviors and characteristics, influenced by the specific type,

stage, and immune context of the tumors they infiltrate (174). This

variability extends to their roles, which are generally categorized

into two subpopulations: classically activated (M1 or M1-like) and

alternatively activated (M2 or M2-like) macrophages (175).

Macrophages engage in mutual interactions with tumor cells and

other cells like platelets, neutrophils, and various T cells, while also
B

A

FIGURE 3

Crosstalk between CSCs and immune cells through EVs within tumor microenvironment (TME). (A) TME composition. The tumor ecosystem
encompasses a diversity of cell types including cancer cells, CSCs, immune cells, and non-cellular component like extracellular matrix and blood
vessels, all of which are integral to TME. (B) The effect of EVs on CSCs and immune cells. These EVs transport biological signals that prime immune
cells to undergo various functional alterations such as immunosuppressive phenotype acquisition, cytotoxicity inhibition and DC activation, and in
turn, immune cells exert certain influence on CSCs such as promotion of growth and metastasis. CSC, cancer stem cell. NETs, neutrophil
extracellular traps. DC, dendritic cell. MDSC, myeloid-derived suppressor cell. Some elements in Figures 1–3 were created with BioRender.com.
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suppressing NK and CD8+ T cell activation. These interactions

present numerous targets for therapies aimed at promoting an anti-

tumor response (176). Emerging research has unveiled intricate

communication pathways involving CSC-derived EVs that

orchestrate a complex interplay with macrophages in various

cancer types, profoundly supporting the immunosuppressive

microenvironment and tumor progression (30, 157, 158).

CSC-derived EVs promotemacrophage to exhibit M2 phenotype.

Glioblastoma CSC-generated exosomes (GDEs) preferentially target

monocytes to promote their conversion into immunosuppressive M2

macrophages within TME, a process characterized by upregulated

PD-L1 expression due to the components of the STAT3 pathway

carried by these GDEs (157). Oral squamous CSC-derived small EVs

transport the lncRNA UCA1 which, by sequestering miR-134,

modulates the PI3K/AKT pathway via LAMC2 to drive

macrophages toward an immunosuppressive M2 phenotype, thus

promoting tumor growth and inhibiting T-cell function (158). CSC-

derived EVs in head and neck squamous cell carcinoma (HNSCC)

specifically interact with M2 macrophages and PD1+ T cells, crucial

immune constituents enriched in CSC niche, contributing to

immunosuppression landscape that impedes effective HNSCC

therapy (30).

The EV communication routes can be bidirectional and

reciprocal between CSCs and macrophages, with M2

macrophage-derived EVs enhancing the tumorigenic potential of
Frontiers in Immunology 07
pancreatic CSCs. This enhancement is mediated through the

transfer of miR-21–5p, which suppresses KLF3 expression to

promote stemness (33). Furthermore, activated M2 macrophages

promote ovarian CSC propagation through IL-6 and IL-10 cytokine

secretion in TME (31).
DC

DCs, as professional antigen-presenting cells, play a pivotal role

in the immune response within the TME. They are essential in

capturing foreign antigens and presenting them to T cells via

multiple ways including direct, cross-presentation and cross-

dressing (177), thereby activating the adaptive immune system to

mount an effective killing against tumors. Specifically, EVs also have

the capacity to deliver tumor antigens to DCs, a phenomenon

known as cross-dressing, which has garnered significant recent

attention in research (178). DCs can activate T cell proliferation

by co-culture with colon CSC-derived exosomes, possibly due to the

increased ratio of IL-12 to IL-10 (159).

However, the cargo of CSC-derived EVs not only transfer tumor

antigens for immune activation but deliver a diversity array of

functional cargo that actively hinder DC function as well. A study

focusing on renal CSC-derived EVs, particularly those expressing

CD105, significantly disrupt the maturation of monocyte-derived
TABLE 3 EV communications between CSCs and immune cells.

Donor cell Recipient cell EV cargo Function Reference

Glioblastoma
CSCs

Macrophages STAT3
pathway components

Induce M2 macrophage phenotype (157)

Oral CSCs Macrophages lncRNA UCA1 Induce M2 macrophage phenotype (158)

HNSCC M2 macrophage and PD1+
T cells

— Promote immune evasion (30)

Macrophages Pancreatic CSCs miR-21–5p Promote CSC stemness (33)

Macrophages Ovarian CSCs IL-6, IL-10 Promote CSC proliferation (31)

Colon CSCs DCs Activate T cell proliferation (159)

Renal CSCs DCs and T cells HLA-G Inhibit DC maturation and T cell function (160)

Colon CSCs Neutrophils Tri-phosphate RNAs Sustain neutrophil survival and recruit them to advance
cancer progression

(161)

Melanoma CSCs Neutrophils — Increase pro-tumor effect of neutrophils (162)

MDSCs Ovarian, breast and
pancreatic CSCs

— Promote CSC stemness and propagation (163–165)

MDSCs Colorectal CSCs S100A9 Promote CSC stemness and survival (32)

Esophageal CSCs T cells OGT Increase PD-1 in T cells to be immunosuppressive (166)

HNSCC CSCs PD1+ T cells — Promote immune escape (30)

Brain CSCs T cells tenascin-C Inhibit T cell-induced immune response (167)

Colorectal CSCs T cells miRNA-146a-5p Decrease CD8+ T cell infiltration (168)

Glioma CSCs T cells — Inhibit T cell proliferation, activation and Th1
cytokine production

(169)
Symbol “-” indicates that the corresponding study did not specify the function at the EV cargo level, but rather at the whole EV level.
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DCs and the activation of T cells. Notably, this disruption is more

pronounced than the situations in non-stem tumor cells. This

immune escape effect is largely attributed to the expression of

human leukocyte antigen (HLA)-G by the CSCs, which is then

packaged and released by EVs (160).
Neutrophil

Neutrophils are pivotal immune cells within TME that exhibit

both tumor-inhibiting and tumor-promoting actions, including the

stimulation of tumor growth, angiogenesis, tissue invasion, and

metastasis. Neutrophils can also undermine the immune system’s

response to cancer by recruiting regulatory T cells and suppressing

the activity of natural killer cells, highlighting their significance as

potential therapeutic targets in the treatment of cancer (179, 180).

Colorectal CSC-derived exosomes carry tri-phosphate RNAs which

are capable of inducing the expression of IL-1b in neutrophils,

sustaining their prolonged survival through a pattern recognition-

NF-kB signaling axis (161). The primed neutrophils are

subsequently attracted to the TME by CXCL1 and CXCL2,

advancing the progression of colorectal cancer (161).

As the hallmarks of protumor N2 neutrophils, neutrophil

extracellular traps (NETs) are networks composed of extracellular

DNA fibers decorated with granule proteins that are released by

neutrophils, which can trap and kill foreign pathogens (181–183).

In recent years, it has been acknowledged that NETs play a tumor-

promoting role in cancer and facilitate the progression and

metastasis by trapping cancer cells (184, 185). The secreted

factors or EVs of melanoma CSCs increase the formation of

NETs, which in turn reinforce the stemness properties of CSCs

(186). NETs are implicated in enhancing CSC-like features and

fostering the transition to EMT state in breast cancer (162).
MDSC

As immunosuppressive cells, MDSCs represent a heterogeneous

population of immature cells recognized for their capacity to impede

T cell responses and facilitate the advancement of cancer (187, 188).

MDSCs have the ability of increasing CSC population and

promoting stemness properties. MDSCs could induce the

formation of CSCs, sustain their survival and propagation, and

enhance the metastatic growth of tumors (189). MDSCs could

increase stemness of ovarian CSCs by inducing miRNA101

expression in CSCs (163). For breast cancer, elevated stem-like

properties were observed with the IL-6-STAT3 pathway activation

in MDSCs, and the degree of MDSC infiltration positively

correlated with the number of CSCs (165). In pancreatic cancer,

activation of pSTAT3 in MDSC could increase CSC population and

promote EMT (164).

Current studies suggest that EVs originating from MDSCs and

CSCs could serve as mutual catalysts, amplifying each other’s

functional capabilities in a reciprocal manner. In colorectal

cancer, MDSCs also sustain the survival and stemness of CSCs
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due to the exosomal S100A9 released from MDSCs (32). Glioma

CSC-derived exosomes promote the presence of monocytic MDSCs,

by stimulated the expression of arginase-1 and IL-10 in immature

CD14+ monocytes (169).
T cell

In immune defense against cancer, T cells, particularly CTLs,

also cytotoxic CD8+ T cells, are critical for cancer detection and

eradication. CD4+ T cells support this process by promoting the

activation and growth of CD8+ T cells and can sometimes directly

target tumor cells themselves, thus also playing a vital role in the

efficacy of cancer immunotherapies (190).

CSC-derived EVs contribute to immune evasion in cancer by

suppressing T cell functions. Renal CSC-derived EVs have been

proven to significantly hinder T cell activation and proliferation,

primarily owing to HLA-G secretion, contrast to EVs from non-

stem renal cancer cells (160). The investigation into the impact of

EVs derived from esophageal CSCs on T cell dynamics revealed that

EVs overload O-linked b-N-acetylglucosamine transferase (O-

GlcNAc transferase, OGT). Upon uptake by neighboring CD8+ T

cells, OGT within these EVs leads to an increased expression of PD-

1 in the T cells, and shield CSCs from immune-mediated

destruction, thereby contributing to the immune evasion (166). In

HNSCC, CSC-derived EVs specifically interact with PD1+ T cell,

suggesting a direct involvement in modulating T cell behavior

which plays a crucial role in cancer immune evasion mechanism

(30). In addition, extracellular matrix protein tenascin-C in EVs

from brain CSCs can inhibit T cell immunity (167). For colorectal

CSCs, miRNA-146a-5p in their exosomes has a notable impact on

the distribution of T cells in cancer patients. Specifically, patients

with higher levels of serum exosomal miR-146a-5p showed fewer

number of tumor-infiltrating CD8+ T cells (168)

CSC-derived exosomes have a selective impact on different T cell

subtypes. In glioma, EVs from CSCs suppress activation,

proliferation, and Th1 cytokine production in effector T cells, while

regulatory T cells remain largely unaffected. Notably, these exosomes

enhance the proliferation of CD4+ T cells, illustrating their complex

role in modulating immune responses in glioma (169). However, the

effects of exosomes released by CSCs on other subsets of T helper cells

such as Th17 cells have yet to be understood.
Developing EV-based anti-cancer
immunotherapeutic strategies

EVs are favored for therapeutic delivery due to their superior

biocompatibility and ability to penetrate biological barriers (191,

192). These years, EVs have been developed as targeted delivery

systems to disrupt CSC functions by transporting RNA-based

therapeutics into CSCs. EVs can be engineered to carry siRNAs

that target key signaling pathways such as Wnt/b-catenin in liver

cancer, leading to the suppression of CSC proliferation (193). In

non-small cell lung cancer, EVs delivering APE1 shRNA have
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demonstrated potential in overcoming drug resistance (127).

Furthermore, EVs designed to silence genes can reduce resistance

to sorafenib treatments in liver cancer, promising to enhance

patients’ clinical outcomes (194).

Notably, researchers have been making persistent efforts to

develop engineered EVs as immunotherapeutic strategies to

combat immunosuppressive state fueling by cancer cells and

immune cells (159, 195–198). Xu et al. has developed a bispecific

EVs (BsEVs) engineered from DCs that target tumor antigen CD19

on tumor cells and block the PD-1 checkpoint, thus bolstering

cancer immunotherapy (197). These BsEVs show remarkable

tumor-homing capabilities and can substantially remodel the

tumor’s immune landscape, demonstrating their potential in

personalized and versatile cancer treatments. Innovatively,

chimeric exosomes, produced by M1 macrophage-tumor hybrid

cells, naturally targeting to lymph nodes and tumors, enhancing T

cell response, and overcoming immunosuppression. This dual-

action immunostimulatory exosome strategy can alleviate tumors

and enhance survival in animal studies and shows potential in

personalized immunotherapy, especially when used with PD-1

inhibitors (199). Moreover, a dual-functional exosome delivery

system that employs bone marrow mesenchymal stem cell-

derived exosomes loading with galectin-9 siRNA and the

immunogenic cell death trigger oxaliplatin, promises to enhance

immunotherapy. This system aims to achieve win-win idea of both

counteracting the immunosuppressive actions of M2 macrophages

and simultaneously improving tumor targeting (200).

However, the immunotherapeutic approaches using EVs to

target CSCs is still in its early stage and requires further in-depth

and comprehensive research. Naseri et al. established a DC-based

therapeutic strategy using colon CSC-derived exosomes as antigen

sources, aiming to increase proliferation and activation of T cells

specifically for killing CSCs (159). Besides leverage EVs for support,

disrupting the interactions of CSC-derived EVs with macrophages

emerges as a potential therapeutic choice. Colon CSC-derived

exosomes, containing molecules like IL-6, p-STAT3, TGF-b1, and
beta-catenin, are known to promote the generation of cancer-

associated fibroblasts and M2 macrophages. Ovatodiolide, a

bioactive compound, has been found to reduce these harmful

components in exosomes, consequently weakening chemotherapy

resistance (201). This suggest that ovatodiolide could serve as an

effective agent against colon cancer through disrupting the

exosomal supply CSCs provide to immunosuppressive cells.

Future directions for targeting CSCs and the tumor immune

microenvironment are pointed to be focused on integrating EVs with

cutting-edge cancer therapeutic strategies, such as differentiation

therapy and synthetic lethality, aiming to provide more effective

and precise cancer treatments. Differentiation therapy is an

innovative approach that exploits the plasticity of CSCs by

inducing them to differentiate into less malignant, more

differentiated cells, making them more susceptible to cytotoxic

drugs (202, 203). Acting as biocompatible natural carriers, EVs are

promising to be engineered to deliver differentiation-inducing and

immune activating molecules to target CSCs and immune

microenvironment, thereby synergistically eliminating refractory
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CSC pool. Synthetic lethality (SL) is defined as the simultaneous

inactivation of two genes lead to cell death, whereas the loss of either

gene alone is not lethal (204, 205). A prime example is the use of

PARP inhibitors in combination with BRCA1/2 mutations, which

results in the targeted death of cancer cells (206). Multifunctional

engineered EVs present a promising delivery mechanism for SL-

based therapy, as co-delivering multiple therapeutic agents that target

separate pathways essential CSC survival and immune responding

within the same EVs can enhance the efficacy of SL approaches. To

conclude, EV-based therapies offer a versatile and targeted approach

to treating cancer by addressing both CSCs and the tumor

immune microenvironment.
Discussion

CSCs have been recognized as crucial targets in oncology due to

their irreplaceable roles in tumor growth, metastasis, and the

potential for developing more effective cancer therapies by

disrupting CSC-specific pathways. The interaction between CSCs

and immune cells significantly influences cancer progression, offering

therapeutic avenues to modify the immune environment and exploit

immune cells for CSC eradication. EVs, as masters of intercellular

communication, not only shed light on the complex dynamics of cell

interactions but also offer platforms for bioengineering as

cutting-edge immunotherapeutic tools, harnessing their natural

communication ability to modulate immune responses and

precisely combat against CSCs. Specifically, compared with EVs

derived from non-malignant stem cell such as mesenchymal stem

cells which are known for regenerative and anti-inflammatory

properties (207, 208), CSC-derived EVs possess superior cancer

therapeutic capacities due to their inherent tumor-targeting

specificity, tumor immune modulation activity, and higher uptake

efficiency by cancer cells (209). These characteristics makes CSC-

derived EVs exceptionally advantageous as potential mediators for

cancer therapeutic payload delivery.

In this review, we have provided current research on EV-

mediated communications of CSCs with individual subtype of

immune cells in a wide spectrum of cancers. In terms of clinical

translation, it is noteworthy that preclinical investigations into

ovatodiolide have highlighted its potential as a disruptor of the

deleterious feedback loop between CSCs and immunosuppressive

macrophages, heralding an augmentation in the therapeutic efficacy

for patients with colon cancer undergoing chemotherapy.

Despite the advancements discussed in our review, it is critical to

emphasize that our understanding of the interactions between CSCs,

EVs, and immune cells is still in its infancy. Especially understudied

are the roles of NK cells, Th17 cells, and B cells in this tripartite

communication, which is surprising given their crucial roles in the

immune response to cancer. Take NK cells for example, as cytotoxic

lymphocytes in the innate immune system, they possess the ability to

eliminate cells infected by viruses or cancer cells (210). NK cells are

powerful in cancer immunotherapy because of being able to swiftly

attack cancer cells, thereby boosting both the immediate and long-

term immune defense against tumors (211, 212). Previous studies
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(213–216) have found that while CSCs with reduced MHC-I

expression and certain CSC markers can activate NK cells’

cytotoxic functions, leading to their effective elimination in various

cancers, CSCs also employ numerous mechanisms to suppress NK

cell-mediated immune responses, such as downregulating activation

ligands or entering a dormant state to evade detection. This intricate

dynamic between NK cells and CSCs suggests a potential role for EVs

in mediating their interactions. Recognizing this, we advocate for a

concerted effort to deepen the investigation into CSC-EV-immune

cell interactions. Furthermore, the field of CSC research necessitates

to advance precise isolation techniques that consider the

heterogeneity of CSCs, including the development of

comprehensive identification strategies including refined cell

surface markers. Timely initiation of preclinical and clinical trials,

grounded in laboratory findings, is imperative to substantiate the

therapeutic efficacy and expedite the translation of research into

improving patient survival and quality of life.
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