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Background: Studies have shown that tumor cell amino acid metabolism is

closely associated with lung adenocarcinoma (LUAD) development and

progression. However, the comprehensive multi-omics features and clinical

impact of the expression of genes associated with amino acid metabolism in

the LUAD tumor microenvironment (TME) are yet to be fully understood.

Methods: LUAD patients from The Cancer Genome Atlas (TCGA) database were

enrolled in the training cohort. Using least absolute shrinkage and selection

operator Cox regression analysis, we developed PTAAMG-Sig, a signature based

on the expression of tumor-specific amino acid metabolism genes associated

with overall survival (OS) prognosis. We evaluated its predictive performance for

OS and thoroughly explored the effects of the PTAAMG-Sig risk score on the

TME. The risk score was validated in two Gene Expression Omnibus (GEO)

cohorts and further investigated against an original cohort of chemotherapy

combined with immune checkpoint inhibitors (ICIs). Somatic mutation,

chemotherapy response, immunotherapy response, gene set variation, gene
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set enrichment, immune infiltration, and plasma-free amino acids (PFAAs) profile

analyses were performed to identify the underlying multi-omics features.

Results: TCGA datasets based PTAAMG-Sig model consisting of nine genes,

KYNU, PSPH, PPAT, MIF, GCLC, ACAD8, TYRP1, ALDH2, and HDC, could

effectively stratify the OS in LUAD patients. The two other GEO-independent

datasets validated the robust predictive power of PTAAMG-Sig. Our differential

analysis of somatic mutations in the high- and low-risk groups in TCGA cohort

showed that the TP53 mutation rate was significantly higher in the high-risk

group and negatively correlated with OS. Prediction from transcriptome data

raised the possibility that PTAAMG-Sig could predict the response to

chemotherapy and ICIs therapy. Our immunotherapy cohort confirmed the

predictive ability of PTAAMG-Sig in the clinical response to ICIs therapy, which

correlated with the infiltration of immune cells (e.g., T lymphocytes and nature

killer cells). Corresponding to the concentrations of PFAAs, we discovered that

the high PTAAMG-Sig risk score patients showed a significantly lower

concentration of plasma-free a-aminobutyric acid.

Conclusion: In patients with LUAD, the PTAAMG-Sig effectively predicted OS,

drug sensitivity, and immunotherapy outcomes. These findings are expected to

provide new targets and strategies for personalized treatment of LUAD patients.
KEYWORDS

prognostic gene signature, amino acid metabolism pathway, lung adenocarcinoma,
multi-omics analysis, TP53 mutation, plasma-free a-aminobutyric acid
1 Introduction

Amino acid metabolism is crucial for tumor cell development

and progression as a nitrogen and energy source in biosynthesis (1–

3). Alterations in this metabolism, driven by intrinsic and extrinsic

factors, impact both tumor and immune cells and shape cell fate,

survival, proliferation, and metastasis (4–7). Tumor cells adapt to

amino acid deficiencies in the tumor microenvironment (TME) by

enhancing the uptake or synthesis of amino acids and regulating

enzymes and transport proteins (8–10). Tumor cells compete to

supply these resources to immune cells and inhibit their functions,

aiding immune evasion (11). Additionally, catabolic processes play

a critical role in the antitumor immune response (12–14).

Conversely, immune cells influence tumor cell metabolism by

releasing metabolites, including cytokines. For example, the

release of interferon (IFN)-g by activated T and natural killer

(NK) cells can inhibit specific amino acid metabolic pathways in

tumor cells, ultimately leading to tumor regression (15, 16).

The metabolic reprogramming of immune cells is closely related

to the prognosis of patients with tumors and the efficacy of

immunotherapy. Our previous clinical study on the metabolomics

of approximately 200 cancer patients found significant differences

in plasma-free amino acids (PFAAs) profile in patients with five

types of cancer, including lung cancer, compared with healthy
02
controls, even in those with asymptomatic early-stage diseases

(17). The role of amino acid metabolism in immunotherapy is

increasingly recognized, with studies demonstrating its importance

in predicting survival in cancer patients treated with immune

checkpoint inhibitors (ICIs) by circulating L-arginine, as well as

predicting prognosis, immunogenicity, and efficacy of

immunotherapy based on glutamine metabolism in lung

adenocarcinoma (18, 19). We recently reported that a

multivariate model with PFAAs and tryptophan metabolites in

plasma might be helpful in stratifying patients who will benefit

from PD-1 inhibitors (20). Accurate and direct evaluation of the

predictive ability of amino acid metabolism on patient prognosis

and exploring related mechanisms requires studying the expression

of amino acid metabolism genes in tumor tissues. However, the

relationship between the expression of genes in amino acid

metabolism and prognosis of lung adenocarcinoma (LUAD)

needs to be comprehensively investigated, and further studies are

needed to confirm and explore this relationship in depth.

To pave the way for the development of personalized

treatment strategies, we developed a novel prognostic signature,

PTAAMG-Sig, based on the expression levels of genes involved

in amino acid metabolism associated with overall survival (OS)

in the LUAD, which could predict OS, drug sensitivity, and

immunotherapy outcomes.
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2 Materials and methods

2.1 Data collection from public databases

Data from 420 LUAD and 59 non-neoplastic lung tissues,

including RNA sequencing, whole exome sequencing (WES),

and patient clinical information, were retrieved from The Cancer

Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/)

in June 2020. The “maftools” R package was used to analyze

WES data for somatic variants. Immunohistochemical staining

(IHC) corresponding to TCGA-LUAD patients was acquired

from the Human Protein Atlas (HPA) database (https://www.

proteinatlas.org/) and the Clinical Proteomic Tumor Analysis

Consortium (CPTAC) database (https://proteomics.cancer.gov/

programs/cptac/). Microarray profiles of mRNA expression and

clinical information of 353 patients were combined from the Gene

Expression Omnibus (GEO) datasets GSE31210 and GSE50081.

Another database containing data on 443 patients with LUAD was

obtained from the GEO dataset GSE68465. We also obtained

information from 24 non-small cell lung cancer (NSCLC) patients

treated with PD-1 blockade combined with chemotherapy from the

GEO GSE207422 dataset.
2.2 Original cohort

A clinical study on patients with advanced or recurrent stage

III/IV NSCLC who were treated with cytotoxic chemotherapeutic

reagents in combination with ICI therapy (pembrolizumab or

atezolizumab) was performed from 2020 to 2022 at Kanagawa

Cancer Center (KCC, Yokohama, Japan) and Kurume University

Hospital (KU, Fukuoka, Japan). The treatment response of the

patients was determined according to the Response Evaluation

Criteria in Solid Tumors (RECIST) 1.1. From the cohort, 20

patients whose formalin-fixed paraffin-embedded (FFPE) tumor

tissues were available for RNA sequencing, were involved in the

present study. We named this cohort the KCC-ICI. For these

patients, the concentrations of PFAAs in the peripheral venous

blood before the start of treatment were examined. OS was defined

as the period from the date of treatment to the date of death from

any cause.
2.3 Construction of the amino acid
metabolism-related genes (AAMGs)
gene list

To comprehensively evaluate the role of amino acid

metabolism, we identified genes related to amino acid

metabolism. Briefly, all human genes related to 14 amino acid

metabolic pathways were listed in the Kyoto Encyclopedia of Genes

and Genomes (KEGG) (https://www.genome.jp/kegg/). The

resultant 293 genes were designated as AAMGs. The entire list of

genes by gene symbols is provided in Supplementary Table 1.
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2.4 Identification of differentially expressed
genes (DEGs) and subsequent
pathway analysis

The “DESeq2” Bioconductor R package (v1.28.1) was used to

normalize the process and identify the DEGs between the two

groups from the RNA sequencing data (fold change > 2, Padj < 0.05).

Gene set enrichment analysis (GSEA) was performed based on the

Gene Ontology (GO), KEGG, and Reactome Pathway

(REACTOME) databases. The R packages “clusterProfiler” and

“ReactomePA” were used for enrichment analysis and

visualization of the results. Statistical significance was set at a

normalized enrichment score |(NES)| > 1 and FDR < 0.05. Gene

set variation analysis (GSVA) was performed to identify

significantly correlated pathways using a reference gene set

“c2.cp.kegg.v7.4. symbols.gmt” was downloaded from the GSEA

website (https://www.gsea-msigdb.org/gsea/downloads.jsp), with

an FDR < 0.05. The abundance of immune cell infiltration,

stroma score, and immune score were determined by the

ESTIMATE algorithm using RNA sequencing data.
2.5 Prediction of drug response

Drug response data for cytotoxic drugs in human cancer cell

lines and the corresponding genomic markers were downloaded

from the Genomics of Drug Sensitivity in Cancer (GDSC) website

(http://www.cancerrxgene.org) as the GDSC v2 dataset. To predict

the drug response profiles for patients involved in TCGA-LUAD

cohort, analysis using the R package “oncoPredict” was applied to

the GDSC v2 and RNA sequencing data of each LUAD tumor of the

corresponding patient. The half-maximal inhibitory concentration

(IC50) values of drugs were calculated for each patient, which were

used to speculate how a drug inhibits certain biological or metabolic

processes (21). Response to ICIs was predicted using the tumor

immune dysfunction and exclusion (TIDE) algorithm based on the

gene expression related to T cell dysfunction and exclusion,

obtained from the TIDE website (http://tide.dfci.harvard.edu/) (22).
2.6 RNA sequencing of formalin-fixed
paraffin-embedded (FFPE) tissues

For total RNA isolation from FFPE tissues of patients, we first

marked the area of the tumor on the hematoxylin-eosin-stained

section of each tissue block. Then, total RNA was extracted from the

corresponding tumor area on the unstained serially sliced sections

with macrodissection using RNeasy FFPE Kit (Qiagen, Hilden,

Germany), according to the manufacturer’s instructions. The

amount of RNA was measured using a NanoDrop1000 (Thermo

Scientific, Wilmington, DE, USA) and RNA integrity was assessed

using the RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer

2100 system (Agilent Technologies, Santa Clara, CA). RNA samples

with 30% or greater DV200 values were subjected to RNA
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sequencing. Construction of cDNA libraries followed by RNA

sequencing was performed by Takara Bio Inc. (Shiga, Japan) as a

contract analysis using a SMART-Seq Stranded mRNA Kit

(Clontech, Palo Alto, CA, USA) and a NovaSeq sequencing

system (Illumina, San Diego, CA, USA) according to the

manufacturer’s instructions. After confirming the read quality

using FastQC, the sequence data were aligned to the human

genome GRCh37 using STAR-2.5.2a (https://github.com/

alexdobin/STAR/releases/tag/2.5.2a), and the mapped read count

of each sample was calculated using Python 2.7. Transcripts per

million (TPM) were calculated for transcription quantification

using Salmon-1.1.0 (https://combine-lab.github.io/salmon/) with

GRCh38.v99 as the reference index. Salmon estimated TPM data

were summarized to gene expression levels using the “tximport”

package(v1.22.0) for correlation analysis. Mapping to the reference

by STAR-2.5.2a and a quality check of reads for each sample were

performed using the Genomon 2 analysis pipeline (https://

github.com/Genomon-Project).
2.7 Analysis of PFAAs

Peripheral blood samples from the KCC-ICI cohort were

collected in the morning in an overnight fasting state from the

antecubital vein into tubes containing EDTA-2Na and immediately

placed on ice. Plasma was separated via centrifugation at 3000 rpm

for 15 min at 4°C and stored at −80°C until analysis. After thawing,

plasma samples were deproteinized using acetonitrile at a final

concentration of 50% before measuring amino acid concentrations

using high-performance liquid chromatography–electrospray

ionization mass spectrometry via precolumn derivatization, as

described previously (20). Concentrations of the following 21

PFAAs were measured: alanine, arginine, asparagine, citrulline, a-
aminobutyric acid (AABA), glutamate, glutamine, glycine,

histidine, isoleucine, leucine, lysine, methionine, ornithine,

phenylalanine, proline, serine, threonine, tryptophan, tyrosine,

and valine. The amino acid concentration was determined by

summing the concentrations of each of the 21 PFAAs.
2.8 Statistical analysis

For all statistical analyses, R version 4.1.0 was used, unless

otherwise noted. Heatmaps were drawn by the “ComplexHeatmap”

package with Spearman as a distance indicator; for the generation of

Kaplan–Meier (KM) curves and calculation of Cox proportional

hazard ratios, packages of the “survplot” and the “survminer” were

used. Hazard ratios (HRs) and 95% confidence intervals (CIs) were

calculated using the “Coxph” function. For the Concordance Index

(C-index) and time-dependent AUC of receiver operating

characteristic (ROC), the packages of the “dplyr” and the

“survivalROC” were used. Univariate Cox regression and least

absolute shrinkage and selection operator (LASSO) Cox

regression analyses were performed by using the “glmnet”

package in R. Wilcoxon rank sum test was used for differential

significance test between the two groups. Categorical variables
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between groups were compared using Fisher’s exact chi-square

test. A schematic overview of the study design is provided in

Supplementary Figure 1.
3 Results

3.1 Landscape of amino acid metabolism
pathway-related genes in tumor tissues
of LUAD

We compared RNA gene expression between 420 TCGA-

LUAD tumor samples and 59 non-neoplastic lung samples, and

first identified 4543 significant DEGs (fold change > 2, Padj < 0.05).

We further identified 76 DEGs that appeared in the list of AAMGs

and designated them as tumor-specific AAMGs (TAAMGs).

Among the 76 TAAMGs, 61 genes were upregulated and 15 were

downregulated in tumor tissues compared to those in non-

neoplastic lung tissues (Supplementary Figure 2A). To gain

insight into the function of TAAMGs, enrichment analysis with

KEGG pathways was carried out; cysteine and methionine

metabolism; arginine and proline metabolism; tyrosine

metabolism; glycine, serine, and threonine metabolism; alanine,

aspartate, and glutamate metabolism; biosynthesis of amino acids;

and tryptophan metabolism were the most enriched terms

(Supplementary Figure 2B).
3.2 Identification of prognosis-related
TAAMGs and development of PTAAMG-Sig

To identify TAAMGs related to patient prognosis, we first

conducted a univariate Cox proportional hazards regression

analysis using survival data of TCGA-LUAD patients and

identified 16 candidate genes associated with OS with a P < 0.05

(these prognosis-related genes were designated as “PTAAMGs”)

(Supplementary Table 2). Next, we established a prognostic

signature composed of nine key PTAAMGs (KYNU, PSPH,

PPAT, MIF, GCLC, ACAD8, TYRP1, ALDH2, and HDC) by

selecting the mostly marked genes with the optimal value of

tuning parameter (l) by ten-time cross-validation using

minimum criteria in LASSO Cox regression analysis. In addition,

we performed a collinearity test to check the independence of the

key PTAAMGs. The results showed that the multicollinearity

assumption was not violated when the variance inflation factor

(VIF) less than two. We named this novel prognostic signature

model as “PTAAMG-Sig”, and the risk score of each patient was

calculated using the expression values (EV) of optimized genes and

their multivariate Cox regression correlation coefficients. The

PTAAMG-Sig formulation was as follows: 0.0717*EV(PPAT) +

0.0649*EV(MIF) + 0.0095*EV(GCLC) + 0.1195*EV(PSPH) +

0.1262EV(KYNU) – 0.1394EV(ALDH2) – 0.0422EV(ACAD8) –

0.1782 EV(HDC) – 0.1274 EV(TYRP1). Multivariate Cox

regression analysis of the key PTAAMGs comprising the

signature showed that the expression of KYNU, PSPH, PPAT,

MIF, and GCLC contributed to poorer OS with HRs > 1, whereas
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those of ACAD8, TYRP2, ALDH2, and HDC were associated with

better OS with HRs < 1. Only KYNU had a P-value less than 0.05

(P = 0.022), indicating that it was a risk factor of this prognosis-

predicting model (Figure 1A). The KM curves for each of the nine

key PTAAMG expression levels revealed a significant association

with OS (Supplementary Figure 3). When PTAAMG-Sig was

applied to dichotomize TCGA-LUAD dataset with the risk score,

52 patients were classified into the high-risk group, with a value of

−0.366 as the risk score cutoff. The high-risk group had significantly

shorter OS than the low-risk group. Thus, PTAAMG-Sig efficiently

stratified patient OS (C-index = 0.641, HR = 2.718, 95% CI 1.937–

3.815, Log-rank P < 0.0001) (Figure 1B). We evaluated the signature
Frontiers in Immunology 05
using the ROC curve and calculated the area under the curve (AUC)

at different time points (1, 3, and 5 years). The maximum AUC

(AUCmax) of PTAAMG-Sig was 0.730 at the 1-year OS time point

(Figure 1C). We found that patients who died showed a significantly

higher risk score than those who survived (Wilcoxon rank sum test,

P < 0.01), indicating the effect of the risk score by PTAAMG-Sig on

survival status (Figure 1D). These data suggest that the model

efficiently stratifies the OS of LUAD patients. The expression

patterns of the key PTAAMGs genes used in PTAAMG-Sig

showed that the expression levels of KYNU, PSPH, PPAT, MIF,

and GCLC were significantly higher in the high-risk group, whereas

those of ACAD8, TYRP2, ALDH2, and HDC were significantly
FIGURE 1

PTAAMG-Sig model was developed from the prognostic AAMGs. (A) Forest plot of the multivariate Cox regression analyses of the key genes in the
PTAAMG-Sig model with OS. *P < 0.05; ns, not significant. (B) KM survival curve of the PTAAMG-Sig high- and low-risk patients in TCGA cohort. P-
values by log-rank test. (C) The time-dependent ROC curves of the PTAAMG-Sig risk score at 1-, 3-, and 5 years of OS. (D) Violin plot comparing the
distribution of risk scores between the alive and dead patients. Wilcoxon rank sum test, **P < 0.01. (E) Differential expressions of the key PTAAMGs in the
PTAAMG-Sig high- and low-risk groups are depicted in a boxplot. Wilcoxon rank sum test, ****P < 0.0001. Genes are ordered based on P-values.
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higher in the low-risk group (Wilcoxon rank sum test, P <

0.0001) (Figure 1E).

Based on the analysis of the HPA and CPTAC databases, we

found that the protein expression levels of PPAT, KYNU, PSPH,

ALDH2, and MIF evaluated by IHC in LUAD tumor tissues were

consistent with the mRNA expression levels of each molecule; that

is, high expression of PPAT, KYNU, PSPH, and MIF, as well as low

ALDH2 expression, was observed in tumor tissues compared with

those in the adjacent non-neoplastic lung tissues (Supplementary

Figures 4A, B). In addition, we checked the mutation landscape of

the nine genes in TCGA-LUAD tumor tissues. In total, 9.6% of

patients had nonsynonymous gene mutations, such as missense,

nonsense, frameshift insertion, or splice site mutations

(Supplementary Figure 5A). KYNU had the highest mutation rate

(3%), followed by HDC (2%). PPAT andMIF showed no mutations

in TCGA-LUAD samples. The results of the multi-omics analyses

revealed that the nine key genes exhibited consistent expression

patterns at the protein and mRNA levels and had low

mutation rates.
3.3 Validation of the predictive capability of
PTAAMG-Sig in other independent datasets

To validate the predictive capability of PTAAMG-Sig, we

investigated two independent lung cancer cohorts 2 public GEO

cohorts of 353 patients (GSE31210 and GSE50081) and another GEO

cohort of 443 patients (GSE68465). The combined GSE31210 and

GSE50081 cohorts did not enroll patients at stage III and more

advanced stages, whereas the GSE68465 cohort included stage III and

stage IV patients with patients at the earlier stages. Detailed clinical

information for TCGA and GEO cohorts is presented in Table 1.

After removing the batch effect of the gene expression files, we

performed Cox regression survival analysis in each cohort. In the

GEO cohorts, PTAAMG-Sig stratified patients into high-risk (N =

95) and low-risk (N = 258) groups with a significant correlation to

OS (HR = 2.434, 95% CI 1.176–4.497, Log-rank P = 0.012)

(Figure 2A). Time-dependent ROC analysis showed a maximum

predictive accuracy of 0.734 at the 2-year time point (Figure 2B).

Compared with the alive patients, the dead patients showed

significantly higher risk scores (Wilcoxon rank sum test,

P < 0.001) (Figure 2C). Further validation of the signature with

another GEO cohort, GSE68465, was performed because the cohort

included stages I–IV, and the composition of patient stages was

closer to that of TCGA patients. PTAAMG-Sig effectively stratified

patients in the GSE68465 into high-risk (N = 179) and low-risk

(N = 264) groups and revealed a significant association with OS

(HR = 1.635, 95% CI 1.261–2.119, log-rank P < 0.001) (Figure 2D).

Time-dependent ROC analysis showed a peak predictive accuracy

of 0.695 at one year (Figure 2E). Patients who died had significantly

higher risk scores than those who survived (Wilcoxon rank sum

test, P < 0.0001) (Figure 2F).
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3.4 Evaluation of the PTAAMG-Sig in other
independent cohorts of ICI
including therapy

TCGA cohort, and the GEO cohorts used for the validation of

the PTAAMG-Sig patients were those before introduction of ICI to

clinics. Therefore, we interrogated the efficacy of the PTAAMG-Sig

in our original cohort enrolled 20 patients with NSCLC at advanced

stages III/IV or with recurrence who received combined cytotoxic

reagents and ICI therapy (KCC-ICI cohort). Univariate Cox

regression analysis revealed no significant association between OS

and sex, age, or stage (P > 0.05) (Supplementary Table 3). The

patients were divided into high-risk (N = 7) and low-risk (N = 13)

groups based on PTAAMG-Sig, and a good stratification ability of

OS was confirmed in this cohort (HR = 4.976, 95% CI 2.265–13.379,

Log-rank P = 0.0087) (Figure 3A). The maximum predictive

accuracy of this signature was 0.842 at the 330-day time point

(Figure 3B). Surviving patients showed substantially lower risk

scores than those who died owing to PTAAMG-Sig (Wilcoxon

rank sum test, P < 0.05) (Figure 3C).

To partly strengthen the results obtained from this small cohort,

we analyzed the GEO dataset GSE207422, which enrolled

24 patients with NSCLC who received neoadjuvant PD-1

blockade in combination with chemotherapy followed by surgical

resection of the tumors (Table 1). This dataset did not include

information on OS but considered information on pathological

responses to treatment after resection of the tumor. Nine patients

were categorized as responders (with a major pathologic response

defined as less than or equal to 10% viable tumor cells identified),

and 15 were categorized as non-responders (non-major pathologic

response). The responders had significantly lower PTAAMG-Sig

risk scores than the non-responders (Wilcoxon rank sum test,

P < 0.05) (Supplementary Figure 6A). Of patients with the

PTAAMG-Sig high-risk scores, 28.6% were responders to ICI

treatment, whereas all patients with low-risk scores were

responders, and the difference was significant (chi-square test, P <

0.01) (Supplementary Figure 6B). We further combined the

KCC_ICI and GSE207422 datasets and analyzed them as a cohort

of 44 patients. The responders had significantly lower PTAAMG-

Sig risk scores than the non-responders (Wilcoxon rank sum test,

P < 0.05) (Figure 3D). Of the patients with PTAAMG-Sig high-risk

scores, 51.9% were non-responders to ICI treatment, whereas 17.6%

of the patients with low-risk scores were non-responders, and the

difference was significant (chi-square test, P < 0.01) (Figure 3E).

Further evaluation of PTAAMG-Sig was performed in

subgroups stratified by PD-L1 expression level in tumors. High

PD-L1 expression with a tumor proportion score (TPS) ≥ 50%

(n = 8) and PD-L1 positive expression with a TPS ≥ 1% (n = 13)

were not significantly associated with OS (Supplementary

Figure 7A, B). Combined with PTAAMA-Sig, we found that

the high-risk patients in the low PD-L1 group had the shortest

OS (log-rank P < 0.05) (Supplementary Figure 7C).
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3.5 Somatic gene mutation profiles of the
PTAAMG-Sig risk groups

The somatic non-synonymous mutation profiles of PTAAMG-Sig

high- and low-risk groups in TCGA-LUADwere analyzed. Among the

top 20 genes in terms of mutation frequency in each risk group, 13

genes, including TP53, TTN, CSMD3, RYR2, ZFHX4, LRP1B, USH2A,

MUC17, MUC16, SPTA1, NAV3, FLG, and XIRP2 were shared

between the two risk groups (Figure 4A). The rate of TP53 (71% vs.

47%, P < 0.001),MUC17 (40% vs.18%, P < 0.0001), TTN (69% vs. 43%,

P < 0.0001), and PCLO (33% vs. 16%, P < 0.001) mutations were

significantly higher in the high-risk group, whereas the difference in

mutations of KRAS (23% vs. 26%), TNR (23% vs. 15%), PCDH11X

(23% vs. 13%), and ANK2 (23% vs. 18%) were not significant

(Figure 4B). We further analyzed the relationship between the

significantly differentially mutated genes and OS using univariate

Cox regression analysis in the high- and low-risk groups. The results

showed that KRAS, MUC17, TTN, TNR, PCDH11X, and PCLO

mutations were positively correlated with long OS, whereas TP53

mutation was negatively correlated with long OS in the high-risk

group (HR: 3.740, Log-rank P = 0.0046) (Figure 4C). In the low-risk

group, ANK2 mutations were markedly associated with OS prognosis,

but not with other factors (Supplementary Table 4). Notably, no
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significant differences occurred between the two groups in the

mutation rates of the nine key PTAAMGs genes used in the

signature (Supplementary Figure 5B).

Although the tumor mutation burden (TMB) was considered a

biomarker for the prognosis of various cancers, TMB did not

predict OS prognosis in the TCGA training cohort. That is, the

OS of the low- and high TMB groups (divided with a cutoff value of

–0.167, calculated as log2TMB/Mb, based on the optimal AUC

cutoff) was not significantly different (HR = 2.503, 95% CI 0.061–

10.334, log-rank P = 0.190) (Supplementary Figure 7D). However,

we found that patients classified as high-risk had a greater TMB

than those in the low-risk group (Wilcoxon rank sum test, P <

0.0001) (Supplementary Figure 7E). PTAAMG-Sig and TMB

effectively stratified patients into high-risk with high TMB levels

(N = 52), low-risk with high TMB levels (N = 323), and low-risk

with low TMB levels (N = 41). Compared with low-risk with lower

TMB levels, high-risk patients with higher TMB levels had poorer

OS rates and showed a significant association with OS (HR = 8.302,

95% CI 1.917–35.952, log-rank P < 0.0001) (Supplementary

Figure 7F). These results indicate that TMB levels were one of the

factors influencing the differentiation between the high and low

PTAAMG-Sig risk groups and that PTAAMA-Sig was useful for

stratifying prognosis in the subgroup with higher TMB levels.
TABLE 1 Clinical information of patients providing comprehensive gene expression profiles of tumors.

Patient
characteristics

Training series Validation series ICI therapy series

TCGA GSE31210,
GSE50081

GSE68465 KCC_ICI GSE207422

Platform Illumina HiSeq HG-U133_
Plus_2

HG-U133A Illumina HiSeq Illumina NovaSeq

Patients, N 420 353 443 20 24

Age (years) 65.4 (9.93) 62.9 (9.39) 64.4 (10.1) 64.7 (8.27) 60.9 (10.7)

Sex:

Female 221 (52.60%) 183(51.80%) 220 (49.7%) 4 (20.00%) 5 (20.80%)

Male 199 (47.40%) 170(48.20%) 223 (50.3%) 16(80.00) 19 (79.20%)

Status:

Alive 266 (63.30%) 267(75.60%) 207 (46.7%) 17 (85.0%) –

Dead 154 (36.70%) 86 (24.40%) 236 (53.3%) 3 (15.0%) –

Stage:

I 226 (53.80%) 260(73.60%) 150(33.86%) 0 (0%) 2 (8.33%)

II 102 (24.30%) 93 (26.40%) 251(56.66%) 0 (0%) 8 (33.33%)

III 70 (16.70%) 0 (0%) 28 (6.32%) 2 (10.0%) 14 (58.33%)

IV 22 (5.20%) 0 (0%) 12 (2.71%) 15 (75.0%) 0 (0%)

Recurrence 0 (0%) 0 (0%) 0 (0%) 3 (15.0%) 0 (0%)

NE 0 (0%) 0 (0%) 2 (0.45%) 0 (0%) 0 (0%)
The clinical characteristics of patients for comprehensive transcriptome analysis are demonstrated.
Continuous variables are described with mean and standard deviation. Categorical variables are summarized as sample numbers and percentages.
Platform: Gene expression files of TCGA and KCC-ICI cohorts were obtained via RNA sequencing, and those of GEO cohorts were obtained using a microarray.
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3.6 Association of PTAAMG-Sig with the
prediction of clinical response to
chemotherapy as well as ICI therapy

To explore the relationship between PTAAMG-Sig and clinical

information, we combined its signature with common clinical

factors from TCGA-LUAD dataset. In the univariate Cox

regression analysis, sex, age, and metastasis status (M) were not

significantly associated with OS. In contrast, PTAAMG-Sig, clinical

stage, T, and N were significantly associated with OS (P < 0.05)

(Table 2). Multivariate Cox regression analysis revealed that

PTAAMG-Sig (HR: 2.297, 95% CI 1.600–3.296, P < 0.001) and

clinical stage (HR: 1.329, 95% CI 1.065–1.659, P = 0.0118) were

independent predictors of OS (Figure 5A). Smoking is an important

risk factor for lung cancer. We divided the patients into non-

smokers (less than 100 cigarettes smoked in their lifetime) and

smokers (including current smokers and current reformed
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smokers). Tobacco smoking history did not predict the OS

prognosis. OS was not significantly different between smokers and

non-smokers (HR = 0.832, 95% CI: 0.544–1.174, log-rank P =

0.400) (Supplementary Figure 8A). Smokers and non-smokers

showed no significant difference in the PTAAMG-Sig risk

distribution (chi-square test, NS: P > 0.05) (Supplementary

Figure 8B). In combination with PTAAMA-Sig, we found that in

smokers, high-risk patients showed a significantly worse OS

outcome than low-risk patients (HR = 3.399, 95% CI: 2.278–

5.073, log-rank P < 0.0001) but not in non-smokers (HR = 2.893,

95% CI: 0.844–9.920, log-rank P = 0.0771) (Supplementary

Figures 8C, D).

As PTAAMG-Sig could predict the prognosis of the LUAD

patients in three independent cohorts with different treatment

modalities, we further investigated the relationship between

PTAAMG-Sig and the prediction of response to chemotherapy

and ICI therapy. The drug sensitivity prediction of TCGA-LUAD
FIGURE 2

Validation of the prognostic PTAAMG-Sig model in independent cohorts. (A) KM survival curve of the PTAAMG-Sig high- and low-risk groups in the
GEO cohort of 353 patients with LUAD combining the datasets GSE31210 and GSE50081. P-values by log-rank test. (B) The time-dependent ROC
curves of the PTAAMG-Sig risk score at 2, 3, and 5 years of OS in the GEO cohort. (C) Violin plot comparing the distribution of risk scores between
the alive and dead patients in the GEO cohort. Wilcoxon rank sum test, ***P < 0.001. (D) KM survival curves of the PTAAMG-Sig high-risk and low-
risk groups in the GSE68465. P-values by log-rank test. (E) The time-dependent ROC curves of the PTAAMG-Sig risk score at 1, 3, and 5 years of OS
in the GSE68465 cohort. (F) Violin plot comparing the distribution of risk scores between alive and dead patients in the GSE68465. Wilcoxon rank
sum test, ****P < 0.0001.
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patients was performed on the “oncoPredict” algorithm utilizing the

data from the GDSC v2 database. Spearman rank correlation

analysis demonstrated that the predicted IC50 value of

doramapimod (p38 MAPK inhibitor), BMS-754807 (IGF-1R/InsR

inhibitor), GSK269962A (ROCK inhibitor), PF-4708671 (cell-

permeable S6K1 inhibitor), JQ1 (BET bromodomain inhibitor),

SB216763 (ATP-competitive GSK-3 inhibitor), uprosertib (AKT

inhibitor), and axitinib (multi-target inhibitor for VEGFR1,

VEGFR2, VEGFR3, and PDGFRb) were positively correlated with

the PTAAMG-Sig risk score, indicating that the PTAAMG-Sig

high-risk group had a relatively higher resistance to these

therapeutics than the low-risk group. Conversely, the PTAAMG-

Sig high-risk group showed higher sensitivity to docetaxel

(microtubule depolymerization inhibitor, docetaxela and
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docetaxelb), savolitinib (c-MET inhibitor), BI-2536 (PLK1 and

BPD4 inhibitor), paclitaxel (microtubule stabilizer), AZD7762

(ATP-competitive Chk inhibitor), AZD6738 (ATR kinase

inhibitor), and MK-1775 (Wee1 inhibitor) than the low-risk

group (Figures 5B, C).

Because genomic mutations can alter tumor immune profiles

and response to immunotherapy, we further evaluated the

predictive capability of PTAAMG-Sig for response to ICI therapy

in TCGA-LUAD patients using the TIDE algorithm. TIDE

predicted that 84.6% of TCGA-LUAD patients with PTAAMG-

Sig high-risk scores were non-responders to ICI treatment, whereas

61.4% of LUAD patients with low-risk scores were non-responders,

and the difference was significant (chi-square test, P < 0.01)

(Figure 5D). This indicates that immunotherapy was more likely
FIGURE 3

Ability of PTAAMG-Sig model to predict response to immunotherapy. (A) KM survival curves of the PTAAMG-Sig high-risk and low-risk groups in the
KCC-ICI cohort. P-values by log-rank test. (B) The time-dependent ROC curves of the PTAAMG-Sig risk score at 330, 510, and 690 days of OS in
the KCC-ICI cohort. (C) Violin plot comparing the distribution of risk scores between alive and dead patients in the KCC-ICI cohort. Wilcoxon rank
sum test, *P < 0.05. (D) Boxplot showing the distribution of the PTAAMG-Sig risk scores in patients with different immunotherapeutic responses in a
combination cohort of KCC-ICI and GSE207422. R: Responders; NR: Non-responders. Wilcoxon rank sum test, *P < 0.05. (E) The proportion
distribution of patients with immunotherapeutic responses in the PTAAMG-Sig high- and low-risk groups in a combination cohort of KCC-ICI and
GSE207422. R, Responders; NR, Non-responders. Chi-squared test, *P < 0.05.
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to be successful in patients in the PTAAMG-Sig low-risk group. In

fact, TIDE-predicted non-responders showed significantly higher

PTAAMG-Sig risk scores than responders (Wilcoxon rank sum test,

P < 0.05) (Figure 5E).
3.7 Differences in the gene expression
profile between the PTAAMG-Sig high- and
low-risk groups

To understand the functional significance of the PTAAMG-Sig

signature, stromal and immune scores were analyzed using the

ESTIMATE algorithm. The PTAAMG-Sig low-risk group showed

significantly higher stromal and immune scores than the high-risk
Frontiers in Immunology 10
group, indicating that the tumors in the low-risk group had a TME

with high stromal and immune activity (Supplementary Figure 9A).

The DEGs between the high- and low-risk groups identified using

PTAAMG-Sig were subjected to GSEA for the GO dataset. We

identified that the “Metabolism of amino acids and derivatives”

pathway was positively enriched in the PTAAMG-Sig high-risk

group (NES = −1.691, FDR < 0.001) (Supplementary Figure 9B).

Furthermore, in the high-risk group, pathways related to “DNA

replication”, “cell cycle checkpoints”, and “apoptosis” were

significantly positively enriched. In the low-risk group, the “SLC-

mediated transmembrane transport” pathway was significantly

enriched, which is possibly related to altered amino acid

transmembrane transport and metabolism. “PD-1 signaling”,

“Phosphorylation of CD3 and TCR zeta chains”, and “Cytokine-
FIGURE 4

Differential landscapes of somatic mutations between the PTAAMG-Sig high- and low-risk groups in TCGA cohort. (A) Waterfall plot showing the
somatic mutation feature of the top 20 genes in the mutation frequency in the PTAAMG-Sig high- and low-risk groups. (B) Frequencies of OS-
associated mutations were compared between the PTAAMG-Sig high- and low-risk groups. P-values by Fisher’s exact test, ns, not significant; ***P <
0.001; ****P < 0.0001. (C) KM survival curve depicting the outcome of OS in the patients with mutant and wild-type TP53 in the PTAAMG-Sig high-
risk group. P-values by log-rank test.
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cytokine receptor interaction” pathways correlated with immune

activity and ICIs treatment process were also significantly highly

enriched in the low-risk group (Supplementary Figure 9C,

Supplementary Table 5). These results demonstrate the predictive

capability of this signature for ICIs therapy.
3.8 The possibility of PTAAMG-Sig to
predict clinical response to ICIs therapy

The relationship between the PTAAMG-Sig risk scores and OS

in the KCC-ICI cohort treated with combined chemotherapy and

ICIs therapy is shown in Figure 3. We further estimated the ability

of this signature to predict patient responses to this therapy. The

responders in the treatment group had significantly lower

PTAAMG-Sig risk scores than non-responders (Wilcoxon rank

sum test, P < 0.05) (Figure 6A).

Transcriptome analysis of the tumor FFPE specimens in this

cohort demonstrated that the PTAAMG-Sig low-risk group

exhibited a significantly higher immune score than the high-risk

group. However, the stromal scores did not differ, indicating

elevated immune activity in the low-risk group (Wilcoxon rank

sum test, P < 0.05) (Figure 6B). To address the apparent differences

in immune function between them, we performed GSVA using the

Biocarta, KEGG, and Reactome databases. The PTAAMG-Sig low-

risk group showed several significantly enriched pathways related to

immune cell regulation, including T cell activation, inflamed status,

and some other immune-related pathways, such as “Classic

pathway”, “Graft versus host disease”, “Allograft rejection”, and

“Diseases associated with surfactant metabolism” (Figure 6C, left).

The heatmap exhibits Spearman’s rank correlations between the

PTAAMG-Sig risk scores and the enrichment scores of the

significantly altered pathways (Figure 6C, right). Among the

pathways, the scatter plot analysis identified the “NO2-IL12

pathway” (R = −0.525, P = 0.0175), “T cytotoxic pathway” (R =

−0.516, P = 0.0199), and “T helper pathway” (R = −0.478, P =

0.0330) as significantly negatively correlated pathways with the

PTAAMG-Sig risk scores (Figures 6C, D). Subsequently, we
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investigated the differences in T, NK, and NK-T cells between the

PTAAMG-Sig low- and high-risk groups by determining the

infiltrating immune cell population in the TME, deconvoluted

from the results of RNA sequencing. Activated CD8 T, central

memory CD4 T, central memory CD8 T, NK, and NK-T cells were

significantly increased in the low-risk group (Wilcoxon rank sum

test, P < 0.05) (Figure 6E).
3.9 Relationship between concentrations
of PFAAs and PTAAMG-Sig

The PTAAMG-Sig model was developed from the expression

profiles of genes related to amino acid metabolism pathways, based

on their significance in tumor biology and immunity. We examined

the relationship between PFAA concentration and PTAAMG-Sig

risk scores in a KCC-ICI cohort treated with combined

chemotherapy and ICI therapy. AABA was the only amino acid

whose concentration differed significantly between the high- and

low-risk PTAAG-Sig groups, with a lower concentration in the

high-risk group (Wilcoxon rank sum test, P < 0.05) (Figure 6F,

Supplementary Figure 10A). To address the target factors, we

performed Spearman rank correlation analysis, and the results

showed that the concentration of AABA was significantly

negatively correlated with MIF gene expression levels in TME

(R=-0.459, P=0.0419) (Supplementary Figures 10B, C).
4 Discussion

Prognostic gene sets obtained by screening large datasets of

tumors can provide direct and accurate information. Although

amino acid metabolism can be estimated directly by mass

spectrometry, the expression profiles of genes involved in this

metabolic process may provide a comprehensive view of the

regulatory mechanisms and pathways involved in amino acid

metabolism. Recently, researchers have focused on genes involved

in amino acid metabolism pathways and their impact on patient

prognosis by using public datasets (23, 24). In LUAD, one study

provided a signature derived from RNA sequencing data of amino

acid metabolism-related genes to predict prognosis. This signature

consisted of CPS1, AZIN2, GNMT, PSPH, RIMKLA, and SMOX

(25). Although the signature successfully predicted prognosis in

TCGA_LUAD and two other GEO datasets, a comprehensive

multi-omics understanding was lacking. In this study, based on

transcriptional profiling data from several cohorts, including our

original KCC-ICI cohort, we developed and validated a novel

signature related to amino acid metabolism to predict cancer

prognosis. Furthermore, multi-omics analyses and bioinformatics

approaches were applied to explore how somatic mutations,

immunological landscapes, and PFAA profiles differed between

high- and low-risk groups.

Notably, our study of the KCC-ICI cohort suggested that

PTAAMG-Sig has the potential to predict the clinical response of

patients to chemotherapy combined with immune checkpoint
TABLE 2 Cox regression analysis of PTAAMG-Sig and clinical factors in
TCGA cohort.

Variables Univariate Cox regression

P-value HR (95% CI)

Sex* 0.995 1.001 (0.729−1.375)

Age 0.477 1.006 (0.989−1.023)

M 0.056 1.625 (1.334−1.980)

T 1.38E−06 1.677 (1.396−2.015)

N 3.25E−08 1.792 (0.985−3.260)

Stage 1.99E−10 1.625 (1.399−1.887)

PTAAMG-Sig 7.42E−09 2.718 (1.937−3.815)
Stage All stage data were scored using the American Joint Commission on Cancer staging
system. *Sex: univariate Cox regression analysis was used as a categorical variable. Ref.
group: female.
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blockade therapy and also OS with a relatively high AUCmax at

0.842 value. To understand its predictive mechanism, we performed

transcriptome analysis of tumor tissues and investigated the

correlation between PTAAMG-Sig and deduced immune cell

infiltration or gene expression profiles. The PTAAMG-Sig low-

risk group had higher infiltration of immune cells, as estimated by

the immune score, which included activated and central memory

CD8 T cells, central memory CD4 T cells, NK cells, and NK-T cells.

Gene expression profiles were significantly enriched in immune
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regulatory pathways mediated by relevant T cell and NK cell

activation. Additionally, we found that the gene expression profile

in the low-risk group showed higher enrichment in the PD1

signaling pathway in the reactome, which provided a direct basis

for a better response to ICI therapy in this group. These findings

provide evidence for the effectiveness of immunotherapy in the low-

risk PTAAMG-Sig group.

Recently, we reported the clinical significance of PFAAs profile

and their metabolites in NSCLC patients treated with PD-1
FIGURE 5

Prediction ability of the PTAAMPG-Sig on OS and response to chemotherapy and ICI therapy in TCGA-LUAD cohort. (A) Forest plot of the
multivariate Cox regression analyses of the PTAAMPG-Sig model and important clinical factors with OS. P-values by multivariate Cox regression,
ns, not significant; *P < 0.05; *** P < 0.001. (B) Spearman rank correlation analysis between the IC50 values and PTAAMG-Sig risk scores. X-axis:
Spearman’s Rho; Y-axis: drugs; Red circle: Positive correlation; Blue circle: Negative correlation; Size of circle: −log10(P). Docetaxela, docetaxelb

were docetaxels with different drug IDs in the GDSC2 dataset. (C) Relative log2(IC50) values predicted by OncoPredict between the PTAAMG-Sig
low- and high-risk groups. Wilcoxon rank sum test, ****P < 0.0001, ***P < 0.001. Drugs were ordered based on P-values. (D) The proportion
distribution of patients with TIDE predicted immunotherapeutic responses in the PTAAMG-Sig high- and low-risk groups. R, Responders;
NR, Non-responders. Chi-squared test, *P < 0.05. (E) Boxplot showing the distribution of the PTAAMG-Sig risk scores in patients with different
immunotherapeutic responses. R, Responders; NR, Non-responder. Wilcoxon rank sum test, *P < 0.05.
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inhibitors (20). To know the PFAAs’ alteration associated with

PTAAMG-Sig, we screened PFAAs profile in the KCC-ICI cohort

to determine PFAAs’ alterations associated with PTAAMG-Sig. The

results showed that the pretreatment plasma-free AABA

concentration was significantly higher in the PTAAMG-Sig low-

risk group than in the high-risk group. AABA is produced through
Frontiers in Immunology 13
cysteine biosynthesis or metabolism of methionine, threonine,

serine, and glycine, as a byproduct (26, 27). AABA is a non-

proteinogenic amino acid, and plasma AABA levels are reported

to be associated with the progression of sepsis (26, 28).

Furthermore, AABA improves the survival of septic mice and

reduces disease severity in experimental colitis by inhibiting the
FIGURE 6

Differential landscapes of immune infiltrations between the PTAAMG-Sig high- and low-risk groups and the correlation with the concentration of
PFAAs in blood in the KCC-ICI cohort. (A) A boxplot showing the distribution of the PTAAMG-Sig risk scores in patients with different
immunotherapeutic responses. R: Responders, including Stable Disease (SD) or Partial Response (PR); NR: Non-responders, Progressive Disease (PD).
Wilcoxon rank sum test, *P< 0.05. (B) Boxplots depicting stromal and immune scores using the ESTIMATE algorithm in the PTAAMG-Sig high- and
low-risk groups. Wilcoxon rank sum test, ns: not significant; *P< 0.05. (C) Left figure: Heatmap of significantly differentially enriched pathways for
signature genes from Biocarta, Kegg, and Reactome databases based on GSVA between the PTAAMG-Sig high- and low-risk groups. Blue: low
enriched; Red: high enriched. Right figure: Heatmap of the correlations between significantly enriched pathways and the PTAAMG-Sig risk scores.
Spearman’s coefficient analysis, *P < 0.05. Blue: negative correlation. (D) Scatter plots presenting the correlations between the PTAAMG-Sig risk
scores with the enrichment scores of the “NO2IL12 pathway,” “T cytotoxic pathway,” and “T helper pathway” from the Biocarta database. Spearman’s
correlation analysis. *P < 0.05. (E) Relative abundance of activated CD4 T cells, activated CD8 T cells, central memory CD4 T cells, central memory
CD8 T cells, effect memory CD4 T cells, effect memory CD8 T cells, natural killer cells, and natural killer T cells calculated using ESTIMATE in the
PTAAMG-Sig high- and low-risk groups. Wilcoxon rank sum test, **P < 0.01, *P < 0.05. (F) Boxplot presenting concentrations of a-ABA in the
PTAAMG-Sig high- and low-risk groups. Wilcoxon rank sum test, *P< 0.05.
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polarization and function of M1 pro-inflammatory macrophages

(29). Our study found a significant negative correlation between the

expression level of MIF and AABA concentration. Previous

research has reported that MIF deficiency and treatment with the

small-molecule MIF inhibitor 4-IPP contribute to the restoration of

immunosuppressive tumor progression of tumor-associated

macrophages to M1-like polarization characteristics (30, 31). MIF

was one of the key PTAAMGs identified in our study. The present

study’s findings suggest that the elevated plasma AABA in the

PTAAMG-Sig low-risk group was associated with the M1

polarization-mediated inflammatory TME and prognostic

outcome of ICI treatment in LUAD patients.

TP53 mutations are prevalent in tumor development, not only

diminishing the tumor suppressive function of the wild-type

protein but also conferring pro-tumor activity (32). p53 plays a

vital role in regulating metabolic processes both in tumor and non-

tumor cells (33). However, its specific regulatory mechanism in

amino acid metabolism has not been fully addressed. We observed

that the rate of TP53 mutations was significantly higher in the

PTAAMG-Sig high-risk group than in low-risk group and that the

high-risk group with TP53 mutations had the worst OS prognosis.

Therefore, the combined effects of PTAAMG-Sig and TP53

mutation status in predicting the prognosis of LUAD patients

should be considered. When we used the GDSC v2 database to

predict the efficacy of chemotherapeutic drugs, the high- and low-

risk groups showed a robust diversity of sensitive drug groups. For

example, high-risk groups associated with a higher frequency of

TP53 mutations were predicted to have significant sensitivity to the

c-Met inhibitor, savolitinib. Several studies have indicated that

specific TP53 mutations can impact downstream signaling

pathways, including c-Met signaling (34). These mutations

induced c-Met expression or elevated its activity, making cancer

cells more dependent on the c-Met pathway for survival and growth

(35). Consequently, the possibility occurs that the PTAAMG-Sig

high-risk group patients with TP53 mutation, showing the worst

prognosis, benefit from c-Met inhibitors. This provides crucial

insights into the relationship between PTAAMG-Sig and

perturbed p53 function.

The established novel signature, PTAAMG-Sig, comprises nine

genes related to amino acid metabolism. Among these nine genes,

ALDH2, ACAD8, HDC, and TYRP1 were upregulated in the low-

risk group. ALDH2 encodes aldehyde dehydrogenase 2 protein

found in mitochondria that is involved in ethanol metabolism

(36). In our enrichment analysis, ALDH2 is enriched in three of

the four specific pathways related to amino acid metabolism: the

histidine metabolic pathway; tryptophan metabolic pathway; and

valine, leucine, and isoleucine metabolic pathway. ALDH2

deficiency activates oncogenic pathways via extracellular vesicles

enriched in oxidized DNA, promoting alcohol-associated

hepatocellular carcinoma (37). ALDH2 also influences the

clearance of endogenous aldehyde 4-HNE produced by ROS-

mediated peroxidation reactions. 4-HNE frequently causes a

hotspot mutation of TP53 at codon 249 in the DNA-binding
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domain in hepatocellular cancer (38). In LUAD cells, elevated

ALDH2 activity with its chemical agonist Alda-1 inhibited the

stemness, proliferation, and migration and reduced DNA damage

(39). Furthermore, ALDH2 expression in tumor cells is significantly

and positively correlated with the infiltration of immune cells,

including CD4+ T cells, CD8+ T cells, neutrophils, B cells, and

macrophages in various tumor types (40). These tumor suppressive

functions of ALDH2 are consistent with the established PTAAMG-

Sig, in which ALDH2 is associated with a good patient prognosis.

Acyl-CoA dehydrogenase family member 8 (ACAD8) is an

isobutyryl-CoA dehydrogenase that plays a role in the catabolism

of branched-chain amino acids, including valine. Limited

information is available on the role of ACAD8 in the TME,

which is regarded as a tumor-associated fibroblast-related gene

associated with good survival outcomes (41). Similar to ALDH2,

ACAD8 has been reported to be associated with a favorable

prognosis in LUAD, which is consistent with the signature that

we developed. However, TGF-b1 derived from histidine carboxylase

(HDC)-expressing myeloid-derived suppressor cells (MDSC)

promotes epithelial-mesenchymal transition in metastatic LUAD

(42). Cytokines/chemokines secreted by tumor tissues are

responsible for the expansion of HDC+ MDSC and their

transport to breast tumors (43), in contrast to our signature.

Conversely, expression of PPAT,MIF, GCLC, PSPH, and KYNU

among the nine genes was elevated in the high-risk group of the

signature associated with the poor prognosis of the patients.

Because KYNU was the only gene whose expression was

significantly and independently correlated with prognosis in

multiplex Cox regression analysis among the nine genes of the

signature, it piqued our interest as a risk factor. KYNU encodes

kynureninase, which catalyzes kynurenine (Kyn), a tryptophan

(Trp) metabolite. KYNU overexpression has been linked to the

development and prognosis of several cancers (44–47). The Kyn-

mediated Trp-Kyn-arylhydrocarbon receptor AhR pathway, which

promotes immune cell differentiation and apoptosis, is also one of

the immune escape mechanisms of cancer cells in inflammatory

tumors or so-called hot tumors with lymphocyte infiltration (48).

Recent research further linked the mutation-activated NRF2

pathway in LUAD to the upregulation of KYNU in TME,

resulting in immunosuppression and poor prognosis of the

patients (49). These findings may support that the KYNU was

involved in the established PTAAMG-Sig as a poor prognostic

parameter. Phosphoribosyl pyrophosphate aminotransferase

(PPAT), a de novo purine biosynthetic enzyme, regulates lung

cancer cell proliferation and invasion by upregulating pyruvate

kinase activity (50). Activated T cells release macrophage migration

inhibitory factor to suppress glucocorticoid-mediated production of

IL-2 and IFN-g, which promotes lung cancer cell proliferation and

the Warburg effect (51). Enforced expression of the glutamate-

cysteine ligase catalytic subunit is an effective way to promote

glutathione synthesis. GCLC expression is also related to

increased cisplatin resistance in human NSCLC xenografts in vivo

(52). Phosphoserine phosphatase (PSPH) is a key factor in the
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malignant progression of lung cancer cells and cancer drug

resistance (53). In addition to KYNU, genes encoding these

proteins may play positive roles in cancer development and are

associated with poor patient prognosis.

The variation in the purity of TCGA samples was reported to

affect the prediction of prognosis signature; therefore, we further

calculated the tumor purity score in the TCGA cohort using

mathematical algorithms (54). After adjusting for purity, we

investigated the association between the PTAAMG-Sig risk scores

and OS outcomes. PTAAMG-Sig also had a powerful effect on OS

prediction (C-index = 0.673, log-rank P = 1e–08). Given that this

tumor purity score has not yet been experimentally validated, this

concept requires further investigation.

In conclusion, based on the genes involved in amino acid

metabolism, we developed PTAAMG-Sig, which showed promise

for the prediction of OS as well as chemotherapy and immunotherapy

responses in LUAD patients. Our original cohort and a GEO cohort

demonstrated the potential for the signature to be applied in patients

treated with ICIs. Multi-omics characterization showed that

PTAAMG-Sig was associated with TP53 mutation, immune cell

alteration in the TME, and AABA concentration in the blood.

Notably, the signature was a significant independent factor for OS

prediction compared to existing ones. In addition, PTAAMG-Sig was

useful for prognostic stratification in the subgroup with higher TMB

or PD-L1 expression and smoking history. Our study provides a

strong basis for the development of new therapeutic strategies and

personalized treatment options for patients with LUAD. However,

this study has some limitations; in particular, our cohort of patients

with ICI therapy was small, and we must further validate or refine the

established signature with a larger cohort in the future. The data from

GEO (GSE31210, GSE50081, GSE68465) used for our validation

cohorts were generated using different platforms of comprehensive

transcriptome analysis than those used for the TCGA cohort; thus,

the GEO cohorts may not be comparable to the TCGA cohort.

Transcriptomic profile-based bioinformatic analysis was carried out

for estimation of immune cell distribution and activity; hence, the

relationship between our signature and immune cell alteration still

warrants further experimental validation. The specific causality

relationship of our PTAAMG-Sig and other integrated multi-omics

factors needs further investigation.
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