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Interaction of antiphospholipid
antibodies with endothelial cells
in antiphospholipid syndrome
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Antiphospholipid syndrome (APS) is an autoimmune disease with arteriovenous

thrombosis and recurrent miscarriages as the main clinical manifestations. Due

to the complexity of its mechanisms and the diversity of its manifestations, its

diagnosis and treatment remain challenging issues. Antiphospholipid antibodies

(aPL) not only serve as crucial “biomarkers” in diagnosing APS but also act as the

“culprits” of the disease. Endothelial cells (ECs), as one of the core target cells of

aPL, bridge the gap between the molecular level of these antibodies and the

tissue and organ level of pathological changes. A more in-depth exploration of

the relationship between ECs and the pathogenesis of APS holds the potential for

significant advancements in the precise diagnosis, classification, and therapy of

APS. Many researchers have highlighted the vital involvement of ECs in APS and

the underlying mechanisms governing their functionality. Through extensive in

vitro and in vivo experiments, they have identified multiple aPL receptors on the

EC membrane and various intracellular pathways. This article furnishes a

comprehensive overview and summary of these receptors and signaling

pathways, offering prospective targets for APS therapy.
KEYWORDS
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1 Antiphospholipid syndrome

Antiphospholipid syndrome (APS) is a relatively rare autoimmune disorder, with an

estimated global prevalence of around 50 cases per 100,000 people, the annual incidence is

approximately 1–2 cases per 100,000 individuals (1, 2). APS is linked to diverse

antiphospholipid antibodies (aPL) present in patients. Classical aPL include anti-b2
glycoprotein-I antibody (anti-b2GPI antibodies), anticardiolipin antibody (aCL), and

lupus anticoagulant (LA) (3). There are also some non-classical antibodies, which are

called “non-criteria” antibodies, closely related to APS, such as anti-vimentin/cardiolipin

complex, anti-PS/PT antibodies (4). Initially, these antibodies were considered only as
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diagnostic markers of this disease, a concept that still persists in the

current diagnostic guidelines (5). However, subsequent extensive

animal experiments and clinical studies have revealed that aPL are

not merely biomarkers but play a crucial role in the pathogenic

mechanism of APS (6, 7). In the past decades, the Sydney Criteria

established in 2006 have been widely recognized as the diagnostic

standard for APS, requiring at least one clinical symptom and one

positive laboratory test result for a diagnosis of APS. In 2023, new

guidelines were proposed by ACR/EULAR, the entry criteria for

APS are similar to previous one: aPL-related clinical indicators and

positive aPL test within three years. However, it has also been

updated to reflect recent advancements, the ACR/EULAR APS

classification criteria divide clinical manifestations into six

doma ins : macrova scu la r venous thromboembo l i sm ,

macrovascular arterial thrombosis, microvascular involvement,

obstetric complications, cardiac valve pathology, and hematologic

abnormalities. Laboratory criteria are categorized into three

domains: LA, aCL, and anti-b2GPI antibodies. Each clinical and

laboratory criterion is assigned a specific weight based on clinical

evidence. A diagnosis of APS can be confirmed when both the

clinical and laboratory scores reach a threshold of three points each.

The new criteria have shown excellent validation results in the

population (8, 9). However, the presence of classical aPL is not the

gold standard for the manifestation of APS symptoms. The concept

of seronegative APS was first introduced in 2003 by Hughes et al.,

who described patients exhibiting clinical symptoms such as stroke

and recurrent miscarriages, yet consistently testing negative for aPL

(10). Over time, similar concepts have emerged to describe this

same group of patients (11). Due to the unique nature of its

definition, diagnosing seronegative APS is typically exclusionary,

presenting significant challenges for clinical differentiation. The

term ‘seronegative’ refers specifically to the absence of classical aPL

in the serum. Consequently, various “non-criteria” antibodies have

garnered attention for their potential role in the pathogenesis of

APS. These commonly studied non-criteria antibodies include anti-

prothrombin/phosphatidylserine antibodies, anti-vimentin

antibodies, anti-AnnA2 antibodies, anti-AnnA5 antibodies, anti-

phosphatidylethanolamine antibodies, some IgA isotypes of

traditional antibodies, and traditional aPLs detectable only by

more sensitive methods (12–14). These antibodies either target

similar sites as traditional aPL, exerting the same effects, or they

act on other molecules within various cell activation pathways,

leading to symptoms akin to those of typical APS. Numerous

clinical studies and epidemiological data have shown that the

prevalence of these antibodies is significantly higher in APS and

seronegative APS patients, suggesting their positivity holds

diagnostic significance for seronegative APS and warrants further

investigation. Nevertheless, the diversity of detection techniques for

non-criteria antibodies and the inclusion of these antibodies in the

diagnosis of APS or seronegative APS still lack specificity

and sensitivity.

Despite recent advancements in diagnosing APS, the

pathogenesis of this disease remains elusive. The prevailing “two-

hit hypothesis” partially explains the mechanisms behind it, but the

more intricate signaling pathways underlying this disease require

further investigation. In clinical practice, APS is predominantly
Frontiers in Immunology 02
characterized by thrombosis in both arteries and veins, as well as

recurrent miscarriages. Additionally, it presents with various other

clinical manifestations such as livedo reticularis and headaches (15).

Consistent with its clinical symptoms involving multiple tissues and

organs, several cell types including endothelial cells (ECs),

neutrophils, monocytes, platelets and trophoblasts, serve as

significant targets for aPL and are integral to these clinical

features. Consequently, understanding the molecular-level

interactions of aPL with each cellular type is imperative for

advancing both the diagnosis and therapeutic approaches for

this condition.
2 Endothelial cells

ECs are among the primary target cells stimulated by aPL, and

their involvement is intimately linked to the clinical symptoms

observed in APS, such as hypercoagulability and venous and arterial

thrombosis. ECs form a cobblestone-like layer lining the inner walls

of blood vessels throughout the body, serving as central players in

maintaining cardiovascular homeostasis. They function as a semi-

selective protective barrier separating the bloodstream from the

vascular wall, facilitating the transport of oxygen and nutrients,

regulating blood flow, and maintaining tissue homeostasis (16).

Additionally, they possess endocrine functions, secreting various

cytokines and tissue factors (TF), such as IL-1, IL-6, VEGF, VCAM-

1, and ICAM-1, which are indispensable in regulating immune cell

functions and promoting angiogenesis. Among the multiple

functions of ECs, two are particularly relevant to the pathogenesis

of APS. First, ECs control thrombosis. Under physiological

conditions, in coordination with vascular smooth muscle cells,

they can freely regulate vascular dilation and contraction. In the

process of regulating vasodilation, the two most important

molecules are nitric oxide (NO) and prostaglandin I2 (PGI2). NO

is an endothelial-derived free radical gas that can be released in

response to stimuli like angiotensin II, acetylcholine, histamine, and

bradykinin, increasing cGMP levels in smooth muscle cells. PGI2, a

unique metabolite of arachidonic acid in ECs, can induce

vasodilation. Both NO and PGI2 also inhibit platelet aggregation

(17–19). Similarly, various endothelial cell-derived molecules can

constrict blood vessels via different mechanisms, such as

angiotensin II (Ang II), thromboxane A2, and endothelin-1 (20).

In a resting state, ECs’ contact with blood does not lead to platelet

aggregation. This is not only due to NO and PGI2 but also because

ECs release several substances, including antithrombin III, tissue

factor pathway inhibitor (TFPI), thrombomodulin (TM), which can

block the coagulation process, and t-PA and u-PA, which effectively

promote fibrinolysis, preventing thrombus formation. In summary,

the regulation of the thrombus formation process by ECs is both

complex and critical. ECs release various factors that play key roles

in maintaining the balance between coagulation and fibrinolysis.

When ECs are stimulated or damaged, this delicate balance can be

disrupted, leading to abnormal coagulation processes and

ultimately resulting in thrombosis (21–25). Secondly, ECs actively

take part in both adaptive and innate immune responses, possessing

functions such as pathogen associated molecular patterns
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(PAMPs)-, and danger associated molecular patterns (DAMPs)-

sensing, anti-inflammatory, cytokine release (26). ECs play an

important mediating role in coordinating and supporting the

body’s response to inflammation by regulating blood flow, white

blood cell transport and cell-cell interactions. During acute

inflammation, ECs can elevate blood flow, increase leakage of

plasma proteins into the tissue. This process helps promote the

binding and activation of neutrophils and other leukocytes, which

in turn directs their exportation to the site of inflammation. In the

context of chronic inflammation, ECs react to vascular growth

factors, facilitating the development of new blood vessels required

for sustaining inflammatory tissues (27).

Considering that APS primarily presents with thrombosis as its

main symptom, the relationship between APS and ECs has always

been a research hotspot. Research findings indicate that aPL can

trigger the activation of ECs in APS patients, resulting in an elevated

release of TF, inflammatory factors, and adhesion molecules, for

instance, ICAM-1, VCAM-1 and E-selectin. This induction is

associated with the occurrence of thrombosis and other

symptoms (15, 28–34). The established involvement of ECs in the

pathogenesis of APS suggests that they could emerge as promising

therapeutic targets for the condition. Exploring the interplay

between aPL and ECs can not only unveil the fundamental nature

of the disease but also foster advancements in disease treatments.
3 Receptors on endothelial cells

Initially, there was a prevalent belief that aPL directly bound to

anionic phospholipids on the cell membrane. However, subsequent

research has shown the involvement of multiple co-receptors in this

binding process (35–37). The majority of these aPL, in fact, target

phospholipid-binding proteins, with b2-glycoprotein I (b2GPI)
being the primary antigen of interest (7, 38, 39). b2GPI is a

glycoprotein weighing 48 kDa, also known as apolipoprotein H,

composed of five domains, encompassing four regular domains and

one atypical domain, resembling a fishhook. b2GPI has multiple

functions in the body, such as reducing triglyceride levels and

increasing the enzymatic activity of lipoprotein lipase. Most

importantly, it plays a crucial role in the regulation of the

coagulation process (40–43). N Del Papa and colleagues

demonstrated through experiments with HUVECs that human

b2GPI binds to ECs through lysine residue clusters which are

responsible for binding to anionic phospholipids, providing

epitopes for anti-b2GPI antibodies (44). Currently, there is

widespread acceptance that when anti-b2GPI antibodies exert

their effects, they always simultaneously bind to domain I of two

b2GPI molecules, forming complexes. Subsequently, the complex’s

domain V specifically attaches to cell surface receptors, with dimeric

b2GPI exhibiting significantly higher affinity for ECs than

monomeric b2GPI (40). However, the question of how complexes

formed by b2GPI and anti-b2GPI antibodies interact with the EC

membrane has been a subject of ongoing debate. In research on EC

surface receptors over the past few decades, molecules identified to

mediate this process include Toll-like receptors (TLRs), apoER2,

and other components (Table 1).
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3.1 TLRs

The TLRs are constituted by a cluster of type I transmembrane

proteins, which function as the innate immune system’s vigilant

eyes, actively monitoring and discerning diverse molecular patterns

associated with diseases. They stand as the primary defense barrier,

essential for the body’s resistance against infectious diseases.

Moreover, TLRs play a crucial role in recognizing and regulating
TABLE 1 The studies on endothelial cell receptors that mediate signals
triggered by antiphospholipid antibodies.

Receptors In vivo/
In vitro

Year Author Refs

TLRs in vitro 2003 Elena
Raschi et al.

(45)

TLR4 in vivo 2007 Silvia S
Pierangeli et al.

(46)

in vivo 2016 P Laplante et al. (47)

in vivo 2019 Meiyun
Wang et al.

(48)

in vitro 2021 Guiting
Zhang et al.

(49)

TLR2, CD14 in vitro 2011 Nathalie
Satta et al.

(50)

TLR2 in vitro 2010 Jean-Eric
Alard et al.

(51)

ApoER2 in vivo 2011 Sangeetha
Ramesh et al.

(52)

in vivo 2011 Zurina Romay-
Penabad et al.

(53)

in vivo 2014 Victoria
Ulrich et al.

(54)

in vivo 2018 Sacharidou et al. (55)

ApoER2,
Lipid rafts

in vitro 2023 Gloria
Riitano et al.

(56)

EPCR in vivo,
in vitro

2021 Nadine Müller-
Calleja et al.

(57)

Annexin II in vitro 2000 K Ma et al. (58)

in vitro 2005 Jianwei
Zhang et al.

(59)

in vitro 2006 Gabriela
Cesarman-
Maus et al.

(60)

In vivo,
in vitro

2009 Zurina Romay-
Penabad et al.

(61)

Annexin
II, TLR4

in vitro 2014 MO Borghi et al. (62)

Annexin II,
TLR4,
calreticulin,
nucleolin

in vitro 2012 Kristi L
Allen et al.

(63)

LRP6, PAR-2 in vitro 2022 Gloria
Riitano et al.

(64)
frontie
rsin.org

https://doi.org/10.3389/fimmu.2024.1361519
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Feng et al. 10.3389/fimmu.2024.1361519
processes within the adaptive immune system. They are always

found on the membrane of ECs, dendritic cells, macrophages and

other cells with special structural features including a leucine-rich

repeat (LRR) segment facilitating the recognition of PAMP/DAMP,

transmembrane helices and a TIR domain that is responsible for

initiating downstream signaling cascade (65–67). Elena Raschi and

colleagues discovered in 2003 through cellular experiments that

TLRs are involved in the process of anti-b2GPI antibodies

activating ECs (45). Among diversiform TLRs, TLR4 and TLR2

are the most relevant to the pathogenic signaling pathways in APS.

Various endogenous molecules, such as glycoproteins,

phospholipids and intracellular peptides, have the potential to

activate TLR4, and TLR4 can mediate inflammatory responses

through multiple pro-inflammatory mediators (68). In in vivo

experiment comparing mice that do not respond to LPS (LPS-/-)

with those that respond to LPS (LPS+/+), it was found that aPL

induced more significant thrombosis, elevated adhesion of

leukocytes to ECs, and higher plasma TF activity in LPS+/+ mice.

Because the signaling induced by LPS is transmitted through TLR4,

the experimental results illustrated that TLR4 participates in the

stimulation of aPL on ECs in the body (46). Subsequent studies have

confirmed the role of TLR4 in both trophoblasts and monocytes

(69–72). In recent years, its role in ECs has also been validated both

in vivo and in vitro. When anti-b2GPI antibodies were used to

stimulate either mice or cultured ECs, there was a marked

promotion of thrombosis and inflammation. However, these

effects were abolished in TLR4-defective mice or when TLR4 was

blocked (47–49). However, the receptor role of TLR4 has also been

questioned. Nathalie Satta et al. found that anti-TLR2 antibodies,

rather than anti-TLR4 antibodies, inhibited the activation of

HUVECs and monocytes induced by aPL. Additionally, pre-

treating HUVECs with TNF increased the expression of TLR2 but

had no effect on TLR4, leading to an enhanced inflammatory

reaction to aPL. Thus, it is suggested that aPL do not activate

monocytes and ECs through interaction with TLR4 but rather

through another member of the TLR family, TLR2 (50). TLR2 is

highly expressed in immune cells, especially innate immune cells,

and its function in non-hematopoietic cells like ECs, has gradually

received attention (73). Although this research has cast doubt on

TLR4, it has confirmed the role of TLR2 in fibroblasts by the same

team (74) and in ECs by other researchers (51). Furthermore, some

researchers believe that TLR7 and TLR8 on the cell membrane play

crucial roles in this process, but their roles in ECs warrant further

investigation (75–77).
3.2 ApoER2

Apolipoprotein E receptor 2 (ApoER2), also known as LDL

receptor-related protein 8 (LRP8), is a member of the low-density

lipoprotein receptor family. It is a transmembrane endocytic receptor

protein widely present on cell membranes. Its configuration

encompasses five functional domains that exhibit structural

similarities to the receptors of low-density lipoprotein (LDL) and

very low-density lipoprotein (VLDL), with high affinity for ApoE

(78, 79). Additionally, ApoER2 plays a role in cell signaling (80).
Frontiers in Immunology 04
Considered that ApoER2’, a splice variant of ApoER2, is a receptor on

platelet that several labs have reported can bind to b2GPI dimers and

mediate subsequent cell responses (81, 82). Furthermore, ApoER2

itself regulates the coagulation process. Therefore, the potential role of

ApoER2 on other cells is also under investigation (83). Sangeetha

Ramesh and colleagues found that in ApoER2+/+ mice, aPL

enhanced thrombosis, leading to a shortened time to complete

vascular occlusion. Conversely, the presence of aPL did not affect

thrombosis in ApoER2-/- mice (52). Models using ApoER2+/+ and

ApoER2-/- mice have been employed in multiple studies, successfully

demonstrating that ApoER2 is a critical receptor in the pathogenic

mechanism of aPL. For instance, in wild-type mice, aPL increased

vascular TF activity, thrombosis, and activated monocytes, but these

adverse outcomes were significantly reduced in ApoER2-/- mice (53).

Compared to ApoER2+/+ mice, ApoER2-/- mice showed reduced

inhibition of endothelial regeneration by aPL. This was corroborated

by cell experiments where siRNA knockdown of ApoER2 in ECs

restored the migration ability inhibited by aPL, proving that aPL

impairs endothelial repair involving ApoER2-mediated b2GPI
recognition (54).

When discussing the LDL receptor family as aPL receptors, the

concept of “lipid rafts” must be introduced. Lipid rafts are lipid

microdomains in the cell membrane enriched in sphingolipids and

cholesterol, serving as platforms for protein attachment and signal

transduction (84). As early as 2007, studies described that annexin II

and TLR4 in lipid rafts on monocyte membranes can promote

inflammation in APS (72). In recent years, the role of lipid rafts on

EC membranes in the context of aPL has also been updated. One

hypothesis is that the receptors for anti-b2GPI antibodies are likely

located in lipid rafts on the EC membrane, involving LRP6 and its co-

receptor PAR-2. Upon binding of these three, the complex initiates the

phosphorylation of b-catenin, ultimately resulting in increased TF

expression (64). Another study, based on Sacharidou’s experiments,

demonstrated that ApoER2, with the assistance of Disabled-2 (Dab2)

and Src homology 2 domain-containing protein 1 (SHC1), can form

complexes to receive aPL (55). Thus, it is reasonable to further consider

the involvement of lipid rafts in this process. Gloria Riitano and

colleagues used MbCD to disrupt lipid rafts on EC membranes,

significantly reducing LRP8-mediated signal transduction (56). These

results collectively indicate that ApoER2 is an important aPL receptor,

mediating ECs activation. It also supports that the structure of lipid

rafts holds a special position in the pathogenesis of APS. The

intracellular signaling pathways mediated by ApoER2 as a receptor

will be detailed in the next section. If the integrity of these rafts is

disrupted, it is likely to interrupt the signal transmission. Therefore,

lipid rafts could be considered as a therapeutic target for APS,

warranting further investigation and attention.
3.3 EPCR

Another b2GPI/anti-b2GPI antibodies complexes receptor

related to APS is endothelial protein C receptor (EPCR), a

membrane-bound protein expressed in several kinds of cells,

contributing to placental development and anticoagulant system.

EPCR is of significant importance in this context, as it enhances the
frontiersin.org
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activation of protein C (PC) by the thrombin-thrombomodulin

complex, resulting in a 20-fold increase (85, 86). In APS patients

exhibiting obstetric symptoms, researchers have detected

significantly higher levels of IgM anti-EPCR antibodies compared

to the normal population. These antibodies can inhibit the

generation of activated protein C on the endothelium and are an

independent risk factor for fetal loss (87). This is consistent with

earlier research findings, suggesting that aPL-induced resistance to

activated protein C might be a potential mechanism underlying

thrombotic event (88, 89). Experimental evidence in mouse models

has shown that EPCR contributes to the pathological outcomes

induced by aPL. aPL can bind to EPCR on the cell membrane, the

complex formed by EPCR and lysobisphosphatidic acid (LBPA)

undergoes accelerated endocytosis in the presence of these

antibodies. This process results in a substantial presence of

antibodies in the late endosomes of ECs, inducing thrombin-

PAR1 signaling, which translocates acid sphingomyelinase (ASM)

and activates cell (57, 90, 91). Additionally, clinical population data

have indicated that different haplotypes of EPCR can impact the

symptoms of APS patients. Specifically, it has been demonstrated

that the H1 haplotype is associated with a diminished likelihood of

arterial thrombosis in these patients (92). A recent study on

hospitalized COVID-19 patients also found that the levels of

lipid-binding aPL IgG were higher in these patients compared to

the healthy population, and these immunoglobulins could bind to

the EPCR-LBPA complex, producing a pathological mechanism

similar to APS (93).
3.4 Annexin II

Annexins constitute a multigene family of Ca2+-regulated

proteins known for their distinctive Ca2+ and membrane-binding

module, referred to as the annexin core domain. The annexin core

domain allows Ca2+-bound annexins to attach to membranes

containing negatively charged phospholipids at the periphery,

which plays essential roles in regulating cell growth and signal

transduction pathways (94, 95). As important regulatory proteins,

Annexin II was identified as an important aPL receptor on EC

membranes as early as 2000. In their study, Keying Ma et al. used

radiolabeling methods to confirm the presence of b2GPI-binding
proteins on the surface of ECs, subsequently isolating and purifying

the corresponding protein, which they identified as Annexin II (58).

Since then, the role of Annexin II in APS has garnered significant

attention. Multiple cell and animal experiments have further

elucidated that the stimulation mediated by anti-b2GPI antibodies
through Annexin II receptors is a primary cause of ECs activation

and thrombosis induction in APS. In ECs, anti-Annexin II antibodies

can induce similar cellular activation as anti-b2GPI antibodies (59).
In mice deficient in Annexin II, the size of anti-phospholipid

antibody-induced thrombi and the activity of TF are significantly

reduced (61), supporting these findings. A clinical study based on a

Mexican population also indicated that Annexin II is meaningful for

both APS clinical diagnosis and mechanistic research, as the positive

rate of anti-Annexin II antibodies in the serum of APS and SLE
Frontiers in Immunology 05
patients was significantly higher than that in healthy individuals and

patients without thrombosis (60). However, there are divergent views

regarding Annexin II. Considering that Annexin II is not a

transmembrane protein and lacks intracellular signaling pathways,

questions arise regarding how it facilitates signal transduction

between aPL and ECs. Subsequent research has suggested that

Annexin II might only be part of the aPL receptor complex on

ECs, possibly forming co-receptors with TLR2 or TLR4 to mediate

this stimulation (45, 63, 96). One notable study by Kristi L. Allen et al.

identified a complex involving Annexin A2, TLR4, calreticulin, and

nucleolin that performs this function on ECs (63). Besides Annexin

II, another member of the annexin family, Annexin V, also plays a

significant role in the pathogenesis and progression of APS. However,

unlike Annexin II, Annexin V is not a receptor for aPL on ECs.

Instead, its presence can prevent aPL from binding to phospholipids

on the cell membrane. Only when the protective layer formed by

Annexin V on the cell surface is disrupted can aPL interact with ECs.
3.5 Other accessory molecules

Apart from the previously mentioned potential independent

receptors, there are also some co-receptors that serve as accessory

molecules in the EC activation triggered by aPL. Other examples

include CD14, calreticulin and nucleolin, the former can serve as

co-receptors for TLR2 and TLR4, while the latter two can form

complexes with Annexin II, TLR4, which are present on the

cytomembrane of ECs, and mediate EC responses to b2GPI and
anti-b2GPI antibodies (50, 63, 97). Similarly, the specific roles of

these molecules are also subject to debate.
4 Signaling pathways in
endothelial cells

The reception of stimulating signals by these receptors is just the

first step in initiating EC responses. These signals need to be transferred

from the extracellular space to the intracellular environment, where

they regulate the gene expression and release of relevant molecules

through a complex network of signals, contributing to the development

of inflammation, thrombosis, and other diseases (Figure 1). The

process involves numerous pathways and is influenced by various

molecules. Currently, several signaling pathways have been identified

with relative clarity, including the following.
4.1 Pathway one: TLR4/MyD88 pathway

b2GPI/anti-b2GPI antibodies complexes activate ECs through

the TLR4/MyD88 pathway (45, 46, 98). TLRs signal through five

main proteins, including TIR-domain-containing adaptor protein

inducing IFNb (TRIF), myeloid differentiation factor 88 (MyD88),

MyD88-adaptor-like protein (MAL), sterile a- and armadillo-

motif-containing protein (SARM) and TRIF-related adaptor

molecule (TRAM). TLR adaptors are protein molecules featuring
frontiersin.org
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Toll/IL-1 receptor (TIR) domains that engage with TLRs through

TIR-TIR domain interactions, which is responsible for the

propagation of downstream signaling. These five proteins play

different roles in the TLR4-mediated signaling process (99).

MyD88 serves as a typical adaptor for downstream inflammatory

responses of TLRs and IL-1 receptors. It is essentially a cytoplasmic

soluble protein with three functional regions in its structure: the N-

terminal death domain (DD), an intermediate region, and the TIR

domain. The DD can mediate interactions between proteins that

have homotypic DD, and the TIR domain is similar to the

cytoplasmic region of the IL-1 receptor, transmitting signals by

recruiting other TIR domain-containing proteins (100). Mal,

alternatively recognized as Toll/IL-1 receptor domain containing

adaptor protein (TIRAP), is a protein essential for the signaling of

TLR2 and TLR4. Initially, it was thought to serve as a bridge

exclusively to MyD88. However, with the discovery of various

“MyD88 bridging-independent” functions of Mal, it is now widely

recognized for its diversified functions (101). TRIF contains a

globular helical N-terminal domain, a TIR domain, a TRAF6-

and a TRAF2-binding motif and a C-terminal RHIM. The

significance of TRIF-dependent signaling in host defense is

evident (102). TRAM shares a structural similarity with Mal, and

it has been demonstrated to be vital in the TLR4 signaling pathway

in both TRAM-deficient mouse and cellular models (103). SARM is
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a member of the TLR adapter family, encoding a protein featuring

armadillo motif (ARM) and sterile alpha motif (SAM) domains.

SARM negatively regulates MyD88 and TRIF-dependent TLR

signaling in the immune response (104–106).

After b2GPI/anti-b2GPI antibodies complexes stimulate EC

membrane TLR4 receptors, MyD88 is enlisted to bind with TLR4,

initiating the activation of IRAK4, which enables the binding and

phosphorylation of IRAK1. Once IRAK1 is phosphorylated, it can

recruit TRAF6, which subsequently activates TAK1/TAB1/2/3 and

MAPKs. Downstream of these pathways, the activation of NF-kB and

transcription factor AP-1 results in the expression of inflammatory

genes in ECs (96, 107). SARM operates as an inhibitory factor within

the signaling cascade mediated byMyD88, exerting negative regulatory

control, the SARM-TIR domain primarily interacts with MyD88 and

TRIF through its structural BB-loop (108, 109).
4.2 Pathway two: TLR4/TRIF pathway

This pathway primarily involves the proteins TRIF and TRAM1.

TRAM1 acts as an intermediary, linking TLR4 with TRIF, and upon

TLR4 signaling, TRIF can bind to both TRAF6 and RIP1. These

interactions lead to the activation of NF-kB via two separate

pathways, promoting the expression of inflammatory genes.
FIGURE 1

Schematic diagram of endothelial intracellular signaling pathway in response to aPL. aPL activates ECs through various signaling pathways, including
TLR4/MyD88, TLR4/TRIF, EPCR/LBPA, LRP6/PAR-2, MAPK, apoER2-Dab2-SHC1, and mTOR, thereby regulating downstream cellular activities.
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Additionally, RIP1 can induce apoptosis through a mechanism

involving caspase-8 activation via FADD. TRIF can also activate

TRAF3, which recruits TANK, TBK1, and IKKE, consequently, these

activities trigger the activation of IRF3 and the subsequent expression

of multiple genes (98, 99). Similar to the TLR4/MyD88 pathway, the

TLR4/TRIF pathway is also negatively regulated by SARM.
4.3 Pathway three: MAPK pathway

Mitogen-Activated Protein Kinases (MAPKs) are a group of

serine-threonine protein kinases activated by various extracellular

and intracellular stimuli such as cytokines, neurotransmitters,

hormones, cellular stress, and cell adhesion. MAPKs serve as

important transducers in conveying signals from the cell surface

to the nucleus, modulating the activity of pertinent genes (110). The

MAPK pathway comprises four main branches, with p38MAPK

being one of them. p38MAPK is primarily involved a cascade of

kinases that transmit extracellular signals into the cell (111). The

functional modulation of ECs in APS is significantly influenced by

the p38MAPK pathway, and the regulatory role of MAPKs in ECs

has been well established in numerous studies. For example, the

experiments of Vega-Ostertag’s team illustrated that the

upregulation of TF transcription, as well as the regulation of IL-6

and IL-8 in ECs induced by aPL, is mediated through the

phosphorylation of p38MAPK and activation of NF-kB. The
experimental results from Simoncini et al. indicate that APS-IgG

has the capacity to elevate the levels of VCAM-1 secretion by ECs as

well as phosphorylation of p38 MAPK. Inhibition of p38MAPK

with SB203580 significantly reduced THP-1 adhesion to ECs in

vitro, thrombus size, the attraction of ECs to leukocytes, TF activity

in carotid arteries, and the level of VCAM-1 expression (112–115).

After treatment with b2GPI/anti-b2GPI antibodies complexes,

there is an increase in the expression of TRAF6. TRAF6, in turn,

triggers the activation of MEK3 and MEK6, both of which serve as

kinases positioned upstream of p38 and JNK, this activation occurs

through the activation of MAPK. aPL also induce the generation of

reactive oxygen species (ROS) in ECs, then ROS, acting as second

messengers, activate p38MAPK and regulate ECs (112, 116).
4.4 Pathway four: apoER2-Dab2-
SHC1 pathway

Additionally, some pathways are mediated by ApoER2. Under

the effect of anti-b2GPI antibodies, b2GPI forms dimers and

interacts with apoER2, forming an apoER2-Dab2-SHC1 complex

within the ECs, this complex is capable of linking with PP2A.

Leucine methyltransferase-1 can methylate the catalytic subunit of

PP2A at L309, a process that is accelerated in the presence of Dab2

recruited onto the apoER2 NPXY motif. Simultaneously, the

scaffolding subunit of PP2A can also be recruited to the proline-

rich C-terminus of apoER2 bySHC1. Facilitating the assembly of the

PP2A heterotrimer initiated by aPL, two unique regulatory PP2A

subunits, Bd and B′a, play different roles in recruiting Akt and

eNOS because of substrate specificity. This recruitment leads to
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their inhibitory dephosphorylation and reduced NO levels,

ultimately contributing to thrombosis (55).
4.5 Pathway five: mTOR pathway

In a study by Canaud et al. on renal ECs and vascular ECs,

mTOR, an atypical serine/threonine protein kinase, is found to have

a substantial regulatory impact (117). This enzyme is composed of

two complexes, namely mTORC1 and mTORC2, each regulated

differently and with distinct functions. mTORC1 predominantly

regulates cell growth and metabolism and is sensitive to rapamycin,

while mTORC2 primarily modulates cell survival, proliferation, and

cytoskeletal remodeling and is insensitive to rapamycin. It

participates in multiple biological processes, including gene

transcription, protein translation, and ribosome synthesis, playing

a crucial role in cell growth, apoptosis, autophagy, and metabolism

(118). In APS, mTOR is primarily involved in the PI3K/Akt/mTOR

signaling axis, which is crucial for regulating autophagy (119).

However, the relationship between mTOR and autophagy in ECs

under aPL stimulation remains ambiguous and sometimes

contradictory. Some studies suggest that aPL suppresses

autophagy in ECs, leading to endothelial dysfunction and vascular

homeostasis disruption (120, 121). Conversely, other studies

propose that aPL activates autophagy in ECs (122). Both

perspectives acknowledge the role of mTOR in regulating

autophagy in ECs. When the b2GPI/anti-b2GPI antibodies

complex interacts with its receptors, signal transduction to the

intracellular environment occurs. This process involves IRS1

activating PI3K, which phosphorylates PIP2 to generate PIP3.

PIP3 can recruit Akt and PDK1 to the plasma membrane. Within

the TSC1-TSC2 complex, TSC2 is phosphorylated at multiple sites

with the assistance of Akt, leading to the activation of mTORC1.

Additionally, Akt can activate mTORC1 by phosphorylating the

proline-rich Akt substrate of 40 kDa (PRAS40) (123, 124). Upon

receiving upstream signals from the PI3K/Akt pathway, mTOR

regulates various signaling pathways that influence cellular

translation. Beyond translation, mTOR also modulates protein

synthesis by regulating RNA polymerase 1 and 3. This ultimately

mediates the effects of aPL on ECs (117, 125, 126). Moreover, Akt

downstream signaling can regulate the eNOS molecule, thereby

controlling NO production and autophagy (120).
4.6 Other pathways

Many studies have explored the intracellular signaling that occurs

in ECs upon the action of aPL and how it ultimately results in the

release of various procoagulant and inflammatory factors. Apart from

the pathways mentioned above, several other molecules and signaling

cascades have been demonstrated to contribute to this intricate

pathological mechanism, although their upstream and downstream

mechanisms remain less clear. For instance, the inhibition of

Krüppel-like factor (KLF) expression, in the study conducted by

Kristi L. Allen et al, the suppression of KLF expression, supported by

b2GPI/anti-b2GPI antibodies interaction, promotes EC activation
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through the dysregulated activation and transcription of NF-kB,
along with the downstream upregulation of pro-thrombotic and

pro-inflammatory gene expression (127). Additionally, in Sangeetha

Ramesh’s study, the authors found that aPL promoted vascular

occlusion in eNOS+/+ mouse models, whereas the addition of aPL

had no effect on vascular occlusion time in eNOS-/- mouse models,

indicating that the procoagulants effect of aPL is mediated through

eNOS. This study also discovered that b2GPI could interact with

apoER2, leading to increased PP2A activation, subsequent

dephosphorylation of eNOS at S1179, reduced enzyme activity,

decreased bioavailable NO, enhanced thrombus formation and

elevated adhesion of leukocytes (52).
4.7 Signaling pathways and thrombosis

The aforementioned signaling pathways convert the external

stimuli brought by aPL into various gene expression abnormalities

within the EC nucleus, ultimately leading to protein synthesis

dysregulation and functional abnormalities in the body. Endothelial

dysfunction results in the disruption of the vascular endothelial

barrier, exposing the underlying matrix, which facilitates platelet

adhesion and aggregation. During the process of ECs apoptosis, the

anticoagulant activity on its surface diminishes. Concurrently,

dysfunctional ECs secrete a range of pro-coagulant factors, such as

TF and von Willebrand factor (vWF), which play core roles in the

coagulation cascade, further enhancing the coagulation response. ECs

also release various inflammatory mediators, such as interleukins and

tumor necrosis factor, which attract and activate more platelets and

leukocytes, exacerbating the local inflammatory response. Ultimately,

these changes lead to thrombosis, characterized by the formation of

insoluble fibrin networks and cell aggregates within the blood vessels,

obstructing normal blood flow (128, 129). This not only increases the

risk of cardiovascular events, such as myocardial infarction and

stroke, but also can result in deep vein thrombosis and pulmonary

embolism, leading to severe clinical consequences (Figure 2).
5 Potential targets for therapy

The current therapeutic paradigm for APS predominantly centers

around antithrombotic interventions. Additionally, preventive

treatments based on different diagnostic indicators and

clinical symptoms, interventions for catastrophic APS, and

treatments during pregnancy are employed (130), commonly used

medications include low-molecular-weight heparin (LMWH),

hydroxychloroquine, among others (131–133). This review

delineates the activated pathways in ECs under the influence of

aPL, offering potential targets and pharmacological options for

clinical APS management (Table 2, Figure 3). Including inhibition

of mTOR-mediated signaling, structural changes of b2GPI, etc., all of
which show good performance in in vitro and in vivo experiments

and have great potential for further research (149, 150, 157, 160).

Various drug classes exert direct effects on beta-2-glycoprotein

I. MBB2, an antibody similar to aPL, can induce thrombosis and
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adverse pregnancy outcomes in vivo. However, a variant antibody

lacking the CH2 domain, essential for complement binding and

activation, was found to eliminate the pro-coagulant and pro-

abortive effects of MBB2. This variant can block the binding of

aPL to b2GPI, preventing adverse outcomes in patients (141). Other

agents include peptides targeting domains I and V and the

monoclonal antibody 1N11. These molecules, upon binding to

b2GPI, usurp its functional sites, disrupting its pivotal role in

APS pathogenesis and consequentially impeding downstream

cellular activation (137–140). Nevertheless, these drugs encounter

challenges such as limited half-lives and a dearth of in vivo

experimental substantiation (135).

There are also several drugs that target aPL action sites or

downstream signaling pathways. Considering the pivotal role of the

TLR family as receptors for aPL on EC surfaces, constraining their

function emerges as a pivotal APS treatment strategy. Hyperoside

demonstrates efficacy in mitigating APS symptoms in both in vivo

and in vitro context (121, 134). Its mechanisms encompass the

inhibition of TLR4 expression, downregulation of mTOR

phosphorylation, and stimulation of cellular autophagy,

constituting effective measures for dampening cellular

inflammation. In the study conducted by Vandana Gambhir and

colleagues, Vitamin D was found to effectively inhibit the TLR4/

MyD88 signaling pathway, ultimately mitigating adverse outcomes

during pregnancy (136). Remarkably, microRNAs (miRNAs)

emerge as potential key players in APS treatment, modulating the

TLR-mediated interferon production cascade through epigenetic

modifications of pertinent mRNA (155). The integrity of lipid rafts

is essential for their role in signal transduction. Given recent studies

demonstrating the critical intermediary function of the lipid raft-

LRP8 system in the stimulation of ECs by APS, inhibitors targeting

this system may alleviate clinical symptoms and serve as potential

therapeutic targets for APS. RAP and methyl-b-cyclodextrin
(MbCD) are inhibitors of LRP8 and lipid rafts, respectively.

Experimental results indicate that these two molecules can almost

completely inhibit the phosphorylation of LRP8 and Dab-2 in ECs

induced by aPL (56). In a previously mentioned study on EPCR,

researchers found that the inflammatory response and pro-

coagulant phenotype induced by immunoglobulins in COVID-19

patients could be suppressed by complement factor 3 inhibitor

compstatin and inhibitory aEPCR 1496, suggesting these molecules

could also be considered for APS treatment (93).

TF is a critical factor in the process of thrombogenesis. Nadine

Müller-Calleja and colleagues used NAPc2, an inhibitor of the TF

coagulation initiation complex, effectively delaying the progression

of APS (156). Furthermore, mTOR inhibitors such as Sirolimus and

RapaLink-1 demonstrate efficacy in APS, influencing cellular

autophagy and protein synthesis, findings substantiated by

experimental and case reports (149–154). The mechanism of

triple therapy with pravastatin, low-dose aspirin (LDA) and low

molecular weight heparin (LMWH) implicates the pathways

activated in ECs post-stimulation by aPL. The combined

application of LMWH and LDA induces heightened eNOS levels

within ECs, and pravastatin enhances the stability of eNOS mRNA.

Consequently, the synergistic use of these three drugs promotes an
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elevation in NO levels through augmented eNOS levels, ultimately

culminating in the amelioration of clinical symptoms (159). Paolo

Macor et al. proposed an innovative therapeutic strategy different

from the approaches mentioned above. They encapsulated

plasminogen activator within nanobubbles and conjugated these

nanobubbles with recombinant antibodies targeting b2GPI,
achieving highly specific and efficient thrombolytic therapy in

APS-prone thrombosis sites (157).
6 Discussion

APS is a complex and multifactorial disorder, presenting a

challenging topic in understanding its pathogenesis. ECs play an

indispensable role in one of the primary clinical manifestations of

APS - thrombosis. This article elucidates how ECs interact with aPL

in APS patients and transmit these stimulatory signals, it also

outlines potential therapeutic targets based on related pathways.

Experimental results underscore the significant contribution of ECs

to manifestations like thrombosis and inflammation in APS.
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However, conflicting conclusions arise from different experiments,

questioning whether a particular receptor mediates the pathological

effects of APS and which branch of a pathway achieves the desired

effects. These controversies may stem from variations in antibody

types used in experiments, the experimental environment (in vivo

or in vitro), and the intrinsic complexity of APS, where multiple

molecules and mechanisms exert diametrically opposed effects in

different stages or organs of the disease. It’s essential to recognize

that ECs are just one facet of this intricate puzzle.

APS exhibits substantial individual variations in clinical

presentations, pathogenic mechanisms. Emphasizing the

consideration of individual differences in formulating relevant

diagnostic indicators and conducting clinical studies, our indicators

and research outcomes need validation in a larger population to ensure

broader applicability. Further exploration of the pathological

mechanisms of aPL highlights recent findings involving traditional

inflammatory signaling pathways and some relatively specific pathways

like apoER2-Dab2-SHC1. In addition to established pathways,

mechanisms such as multipoint phosphorylation, epigenetic

modifications, and cellular processes like autophagy, apoptosis, and
FIGURE 2

Functions of quiescent and activated endothelial cells. In the quiescent state, ECs release NO and PGI2 to promote vasodilation and inhibit platelet
aggregation; they also secrete AT III, TFPI, TM, t-PA, and u-PA to inhibit coagulation and promote fibrinolysis. When stimulated by aPL, ECs promote
coagulation and inflammation by releasing substances such as interleukins, ICAM, VCAM, and TF.
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ferroptosis are likely closely associated with APS and warrant increased

attention. Lastly, current mainstream treatments target symptoms,

potentially accompanied by inevitable side effects. In contrast, we

underscore the potential of targeted immunotherapy, contingent
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upon a clearer understanding of the core signaling pathways

underlying APS and the identification of suitable target sites.

Modern sequencing and omics technologies, such as single-cell

sequencing, efficient tools in immunological and oncological
TABLE 2 The potential targets and drugs for APS therapy.

Inhibitors Targets Mechanisms Effects Refs

Hyperoside mTOR/S6K, TLR4/MyD88/
NF-kB

downregulate the expressions of
phosphorylated mTOR, phosphorylated
p70S6 Kinase and reduce the levels of
MyD88, TLR4, and phosphorylated NF-
kB p65.

improved pregnancy outcome, including a
lower rate of fetal resorption and increased
fetal weight.

(134)

stimulate the occurrence of cellular
autophagy while concurrently hindering
the nuclear translocation and
phosphorylation and of NF-kB p65

reduced expression of inflammatory factors
and endothelial adhesion molecules, such as
IL-6, TF, VCAM-1, etc.

(121)

Vitamin D TLR4/MyD88 inhibit the TLR4/MyD88 signaling
pathway, thereby reducing TF release
downstream and diminishing ECs
activation effects.

limit inflammation and subsequent adverse
outcomes in APS pregnancies

(135,
136)

Peptides that target domain V of
beta-2-glycoprotein I

domain V of beta-2-
glycoprotein I

block Domain V from binding to
cell surfaces

decreased b2GPI binding to ECs, diminished
interaction between aPL and human
trophoblast, and attenuated capacity of aPL
to induce thrombosis or fetal loss in
murine models

(137,
138)

Peptides that target domain I of
beta-2-glycoprotein I

domain I of beta-2-
glycoprotein I

block binding of APS-IgG to b2GPI suppress the thrombotic-promoting capacity
of APS-IgG

(139)

monoclonal antibody beta-2-glycoprotein I prevent the formation of pathogenic
complexes involving relevant antibodies
and b2GPI

diminished inhibitory effect of aPL on EC
migration, and reversed impairment in
reendothelialization caused by aPL

(140)

beta-2-glycoprotein I prevents binding to the complement,
but has a high affinity with b2GPI

loss of procoagulant and proabortive effects (141)

IFN-a Target IFN, blocking downstream
cascading reactions

reduced expression level of IFN and
symptom relief

(142–
148)

Sirolimus、RapaLink-1
(mTOR Inhibitors)

mTOR promotes autophagy via inhibit mTOR reduced size of thrombus and lower
antibody concentration

(149–
154)

miRNAs TLR-7 and TLR-9 miRNA is an important epigenetic
regulatory factor in the mRNA
transcription, capable of modulating
downstream TLR-mediated
IFN generation

reduced IFN-scores, a significant factor
influencing both subclinical and clinical
manifestations in APS

(155)

TF-inhibitor NAPc2 tissue factor specific blockade of the TF coagulation
initiation complex

diminished prothrombotic effects of aPL and
the aPL–induced proinflammatory activation

(156)

aEPCR 1496 EPCR inhibit the effect of EPCR by binding
with it

reduced expression of TNF, F3, IFR8,
and GPB6

(93)

plasminogen activator-
coated nanobubbles

beta-2-glycoprotein I rtPA-coated nanobubbles targeting cell-
bound b2GPI clear occluded vessels

reduction of new thrombosis, recanalization
of occluded blood vessels, and reduction of
fibrin deposition

(157)

antagonist for LRP8 ligand binding LRP8 inhibit the action of LRP8 as a receptor inhibited phosphorylation of LRP8 and Dab,
prevent the overexpression of TF, IL-6 and
adhesion molecules

(56,
158)

statins, methyl-b-cyclodextrin lipid raft damage the structure of the lipid raft
through inhibiting cholesterol synthesis
or depleting membrane cholesterol

inhibited phosphorylation of LRP8 and Dab,
prevent the overexpression of TF, IL-6 and
adhesion molecules

(56,
158)

pravastatin, low molecular weight
heparin and low dose aspirin

eNOS/NO increase eNOS synthesis and activity,
resulting in a substantial rise in nitric
oxide (NO) production.

improved placental haemodynamics,
ameliorated preeclampsia symptoms and
improved fetal growth

(159)
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research, and immunome repertoire sequencing, represent promising

avenues. Their application can provide deeper biological insights,

unraveling the complexities of this disease. These methods aid in

characterizing the overall features of cells and molecules related to

APS patients while offering higher resolution to finely distinguish the

heterogeneity between APS patients and healthy individuals.

Simultaneously, rigorous experiments and in-depth molecular

studies are imperative to continually advance our understanding of

APS and the development of therapeutic approaches.
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FIGURE 3

Potential Targets for APS Treatment. Several molecules can interfere with the binding process of aPL to ECs, including aEPCR 1496, miRNAs,
peptides targeting domains I and V of b2GPI, methyl-b-cyclodextrin, LRP8 ligand-binding antagonists, monoclonal antibodies, and plasminogen
activator-coated nanobubbles. Other molecules act on intracellular signaling pathways, such as Hyperoside, Vitamin D, and mTOR inhibitors like
Sirolimus and RapaLink-1. Additionally, some molecules target downstream signal transduction in ECs, including monoclonal antibodies, the TF
inhibitor NAPc2, and a combination of pravastatin, low molecular weight heparin, and low dose aspirin.
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