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Introduction: Pancreatic ductal adenocarcinoma (PDAC), the most common

form of pancreatic cancer, is a particularly lethal disease that is often diagnosed

late and is refractory to most forms of treatment. Tumour hypoxia is a key

hallmark of PDAC and is purported to contribute to multiple facets of disease

progression such as treatment resistance, increased invasiveness, metabolic

reprogramming, and immunosuppression.

Methods: We used the Buffa gene signature as a hypoxia score to profile

transcriptomics datasets from PDAC cases. We performed cell-type deconvolution

and gene expression profiling approaches to compare the immunological

phenotypes of cases with low and high hypoxia scores. We further supported our

findings by qPCR analyses in PDAC cell lines cultured in hypoxic conditions.

Results: First, we demonstrated that this hypoxia score is associated with increased

tumour grade and reduced survival suggesting that this score is correlated to disease

progression. Subsequently, we compared the immune phenotypes of cases with

high versus low hypoxia score expression (HypoxiaHI vs. HypoxiaLOW) to show that

high hypoxia is associated with reduced levels of T cells, NK cells and dendritic cells

(DC), including the crucial cDC1 subset. Concomitantly, immune-related gene

expression profiling revealed that compared to HypoxiaLOW tumours, mRNA levels

for multiple immunosuppressive molecules were notably elevated in HypoxiaHI

cases. Using a Random Forest machine learning approach for variable selection,

we identified LGALS3 (Galectin-3) as the top gene associated with high hypoxia

status and confirmed its expression in hypoxic PDAC cell lines.

Discussion: In summary, we demonstrated novel associations between hypoxia

and multiple immunosuppressive mediators in PDAC, highlighting avenues for

improving PDAC immunotherapy by targeting these immune molecules in

combination with hypoxia-targeted drugs.
KEYWORDS

hypoxia, tumor microenvironment (TME), pancreatic ductal adenocarcinoma (PDAC),
immune checkpoint, galectins
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1360629/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1360629/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1360629/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1360629/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1360629/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1360629&domain=pdf&date_stamp=2024-03-06
mailto:sadozaih@uni.coventry.ac.uk
mailto:a.acharjee@bham.ac.uk
mailto:ac2561@coventry.ac.uk
https://doi.org/10.3389/fimmu.2024.1360629
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1360629
https://www.frontiersin.org/journals/immunology


Sadozai et al. 10.3389/fimmu.2024.1360629
Introduction

Pancreatic ductal adenocarcinoma (PDAC), which constitutes

approximately 90% of all pancreatic cancer cases, is a highly

aggressive malignancy (1, 2). Notably, 80% of cases are diagnosed

at a late stage, which precludes surgical resection, the only potential

cure (2, 3). Currently, the use of polychemotherapy regimens such as

mFOLFIRINOX and gemcitabine/nab-paclitaxel leads to only

modest improvements in outcome and the 5-year survival rate is

roughly 10% (2, 4). Furthermore, PDAC incidence is increasing in

many countries in Europe and in the USA (5, 6). PDAC is primarily

driven by mutations in 4 genes (KRAS, TP53, CDKN2A and

SMAD4) and displays significant therapeutic resistance to both

chemotherapies and radiation (7, 8). In the past decade, cancer

immunotherapy, particularly immune checkpoint blockade with

antibodies targeted to the checkpoint receptors CTLA-4 and PD-1,

have shown remarkable response rates in some cancer types such as

melanoma, non-small cell lung cancer and mismatch-repair deficient

(dMMR) colorectal cancer (9). Conversely, PD-1 blockade was found

to exhibit efficacy only in PDAC cases that are mismatch-repair

deficient (10), which constitute only approximately 1% of all PDAC

cases (11). Nevertheless, preclinical studies in mice, and some clinical

trials have provided evidence that certain immunomodulatory

treatments targeted to myeloid cells (e.g. CCR2 inhibitor) can lead

to enhanced anti-tumor immunity in PDAC (12). Thus, there

remains the possibility that additional research on the immune

phenotypes of PDAC could yield novel immunotherapy-based

approaches for treating this lethal disease.

A major barrier to effective treatment of PDAC is an exceptionally

atypical tumor microenvironment (TME) marked by high levels of

desmoplasia (fibrosis), poor vascularization and the abundance of

multiple subsets of immunosuppressive myeloid cells such as

myeloid-derived suppressor cells (MDSC) and tumor-associated

macrophages (TAM) (13, 14). Furthermore, tumor hypoxia, which

arises due to abnormal, insufficient vasculature, and enhanced oxygen

demand by tumor and stromal cells, is a major pathological hallmark of

PDAC (14, 15). The cellular response to hypoxia is primarily driven by

the hypoxia-inducible factor (HIF) family of transcription factors

namely HIF-1, HIF-2 and HIF-3, comprising an oxygen-sensitive

HIF-a subunit which forms a dimer with the constitutively

expressed beta subunit (16, 17). An early report demonstrated that

HIF-1a was overexpressed in PDAC tissues and absent from non-

malignant tissue as well as being associated with advanced disease stage

(18). Moreover, multiple studies in the literature have documented that

hypoxia modulates multiple facets of disease progression in cancer

including genomic instability, EMT (epithelial-mesenchymal

transition), metabolic reprogramming and immunosuppression (15–

17). Targeting hypoxia to abolish immunosuppression is an exciting

prospect for developing more effective treatments for PDAC. In a

PDAC murine model, genetic deletion of HIF-2a, but not HIF-1a, in
cancer-associated fibroblasts (CAFs), led to significantly delayed tumor

growth (19). Moreover, these authors also observed that deletion of

HIF-2a in CAFs also led to reduced intra-tumoral infiltration of M2

macrophages and regulatory T cells. However, further studies are

warranted to dissect the immune landscape of hypoxic pancreatic

adenocarcinomas. Recently, gene signatures for hypoxia have been
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used to study patient outcomes and characterize the TME using

transcriptomics data from a number of cancers including gastric

cancer (20), bladder cancer (21), and PDAC (22–24). One of the

most widely utilized gene signatures for hypoxia is a 51-gene score

developed Buffa et al. (25). Recently, this score was also shown to have

prognostic utility in RNA sequencing (RNA-seq) cohorts of lung

adenocarcinoma from The Cancer Genome Atlas (TCGA) (26) and

was utilized to study hypoxia-related proteins in metastases from 17

distinct carcinomas in TCGA including PDAC (27).

In the present study, we used the Buffa signature, hereafter

referred to as the hypoxia score, to profile PDAC cases from

TCGA and compare the tumor immune microenvironments of

cases with high versus low hypoxia score status. We demonstrated

that high hypoxia scores are associated with a distinctly

immunosuppressive TME and identified immune genes with a

strong correlation to high hypoxia and confirmed these findings in

a secondary cohort of RNA-seq data from PDAC cases.
Materials and methods

Cell culture

Human pancreatic cancer cell lines (BxPC3; CRL-1687, PANC-1;

CRL-1469) were purchased from the American Tissue Culture

Collection (ATCC, USA). PANC-1 cells were maintained in

DMEM with 10% FBS, 100 U/ml penicillin, and 100 µg/ml

streptomycin. BxPC3 cells were maintained in RPMI-1640 with

10% FBS, 100 U/ml penicillin, and 100 µg/ml streptomycin. PANC-

1 (3x105 cells per flask) or BxPC3 (1x106 cells per flask) were seeded

in 75cm2 cell culture flasks in 10ml of medium and were incubated

under normoxic conditions (20.9% O2, 5% CO2) for 6 days or 4 days,

respectively. The medium was then changed, and the cells incubated

in normoxia for a further 24h before being cultured for a further 24h

under either normoxic or hypoxic (0.5% O2, 5% CO2) conditions.
RNA isolation and Real-time RT-PCR

RNA was isolated using Quick-RNAMiniprep Kit (ZymoResearch)

according to the manufacturer’s instructions. Reverse transcription was

carried out using a Tetro cDNA Synthesis kit (Bioline). Amplifications

were carried out on a BioRad CFX Connect Real-time PCR machine

(BioRad, England) using the following cycling parameters: initial

denaturation at 95°C for 5 min then 40 cycles of 95°C for 10 seconds,

60°C for 15 seconds, 72°C for 30 seconds. PCR data were normalized to

the relative amount of b2M housekeeping gene mRNA determined by

separate PCR on each sample. The primer pairs used for each gene are

shown in Supplementary Table 1.
TCGA dataset and hypoxia
score assessment

Multiple transcriptomics datasets were utilized in this study.

For all datasets utilized in this study, no exclusion criteria were
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1360629
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sadozai et al. 10.3389/fimmu.2024.1360629
applied on the basis of clinical variables. All patients with available

gene expression profiles and curated survival data were included in

the study. We downloaded uniformly processed gene expression

data for TCGA, TARGET and GTEx studies from UCSC Xena

Browser (Accessed on 28 September 2020). The analyses in this

manuscript were limited to the samples from TCGA PAAD

(PDAC) cohort. Sample metadata, including previously curated

clinical data (28), were also obtained from Xena Browser. We

computed hypoxia scores using the 51-gene signature described

by Buffa and colleagues (25). We reviewed the signature to ensure

correct mapping to the TCGA expression data gene annotation. The

score was computed across all the samples in TCGA PAAD cohort

using the rank-based, single sample scoring method implemented

in the singscore package (29), with log2-transformed TPM values as

input for expression measurement. For the TCGA PAAD cohort,

we identified 176 primary tumor samples for which survival

outcomes and expression values were available in both TPM

(transcripts per million) and RSEM (RNA-seq by Expectation

Maximization) expected count formats. The samples in the

bottom and top quartiles of hypoxia score were designated as

HypoxiaLOW and HypoxiaHI, respectively (n=44 each). These

cohorts were used to contrast samples with high and low levels of

hypoxia throughout this manuscript, unless otherwise stated.
Survival analysis

Association between overall survival (OS) and hypoxia in the

PAAD cohort including sex, age at diagnosis, tumor stage and

histological grade as covariates were evaluated within a Cox

Proportional Hazard regression model using survival package in

R (30, 31). For this analysis, 5 samples with missing stage and grade

annotations were excluded leaving 171 samples for the analysis.

Granular tumor stages were collapsed into their parent categories

(e.g. Stage IA and IB into Stage I). Due to low representation of

advanced stages in the dataset, Stages III and IV were collapsed into

a single level Stage III/IV. Similarly, samples with histological grade

G3 and G4 were combined into a single cohort of G3/4. For this

analysis, hypoxia was modelled as a continuous hypoxia score.

To visualise differences in OS and progression-free survival (PFS)

between high and low hypoxia cohorts, we generated Kaplan-Meier

plots using survminer package (32), contrasting survival curves of

patients in the top and bottom quartiles of the hypoxia score. The p

values shown on the Kaplan-Meier plots were derived by Log Rank

test comparing survival between these two cohorts (30, 31).
Differential gene expression analysis

Differential expression analysis of genes between high and low

hypoxia samples was performed using the edgeR package (33). To

obtain raw counts, the RSEM expected count matrix obtained from

Xena Browser was anti-log2 transformed and the prior count of 1

was subtracted (Accessed on 19 March 2023). To remove lowly

expressed genes, the average gene-level log2 counts per million

(CPM) values were computed across all samples in the expression
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matrix. Genes with average log2 CPM value below zero were

removed, leaving 17214 genes for subsequent differential

expression analysis. We computed scaling normalisation factors

using trimmed mean of M values (TMM) method (34). Post-

normalisation, we subsetted the expression dataset to samples in

HypoxiaLOW and HypoxiaHI groups based on the bottom and the

top quartiles of the hypoxia score (n=44 each). The significance of

expression difference between the two cohorts was assessed for all of

17214 genes using a quasi-likelihood F test framework following the

edgeR package user guide. The gene-wise p value was adjusted for

multiple testing using Benjamini-Hochberg method (35). All

subsequent references herein regarding genes differentially

expressed between high and low hypoxia samples in TCGA

dataset refer to this adjusted p value.
Estimating TME cell-type abundance

Cell abundance estimate was performed using Microenvironment

Cell Populations-counter (MCP-counter tool) (36), as implemented in

immunedeconv package (37). Anti-log2 transformed TPM matrix was

used as the gene expression input. To restrict expression table to

uniquely annotated genes, we removed rows with duplicated gene

symbols keeping the entry with the highest standard deviation.

Statistical comparisons in immune cell frequency between high and

low hypoxia groups were performed using Mann-Whitney U tests.

Figures and text referencing differences in cell frequencies report p

values adjusted using the Benjamini-Hochberg method (35). Signature

scores for cDC1 were computed using the singscore package (29).

Log2-transformed TPMmatrix was used as gene expression input and

the following cDC1 signature from a recent publication: CLEC9A,

XCR1, CLNK and BATF3 (38) was selected. Association between the

hypoxia and cDC1 activation score was assessed by contrasting samples

within top and bottom quartiles of the hypoxia score using a Mann-

Whitney U test (HypoxiaHI vs HypoxiaLOW).
Analysis of hypoxia between PDAC and
normal pancreas tissue

To compare hypoxia levels between tumor and normal pancreas

tissue, a previously published dataset was utilized (39). The

expression matrix, sample metadata and gene annotation tables

were downloaded from GEO (GSE28735). The expression matrix

was quantile-normalised using the affyPLM package (40), and log2-

transformed. The resulting matrix was used as input to the

singscore package (29), to compute hypoxia scores. The difference

in hypoxia scores between matched tumor and normal samples was

assessed using a paired Mann-Whitney U test.
Random forest, feature elimination process
and validation in additional cohort

Random Forest (41), a machine learning ensemble method was

used to find the immune gene, the expression level of which could
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best identify the difference between HypoxiaHI vs. HypoxiaLOW

tumors. Random Forest uses a bootstrapping method to pick

random samples from the dataset. The samples are further split

into training samples (two thirds of the set) and testing samples

(one third of the set). The testing samples, which are also known as

“out-of-bag” samples, are used to determine the accuracy of future

predictions. This approach warrants that the operator set the

number of trees (ntree) and the number of genes that are

randomly chosen as options at each split for the Random Forest

model to work. The ntree value was set to 500, and the mtry value

was the square root of the factors.

To select the best genes that predict HypoxiaHI vs HypoxiaLOW

tumors, iterative fitting to create random forests was utilized. With

each iteration, a new forest was begun by removing 20% of the

factors that were the least important. The set of variables that was

chosen is used to predict how well the model will fit so that the “out-

of-bag” error rate can be checked. The varSelRF function from the

varSelRF package in R was used to perform this recursive feature

elimination method process (41, 42).

The 5 genes retained in the final model were validated for their

association with hypoxia in an independent RNA-seq dataset of 51

pancreatic adenocarcinoma samples (GSE79668). Pre-processed

gene-level counts and samples metadata from GEO were

downloaded. A filtering threshold was applied for lowly expressed

genes by removing genes with average log2 count per million below

value of 0, while ensuring that all genes from Buffa signature were

retained. Normalisation factors were calculated using the TMM

method (34), and computed log2-transformed count per million

(CPM)matrix with a prior count of 1. The resulting log2 CPMmatrix

was used as input into the singscore method to calculate hypoxia

score and as the measure of gene expression to perform correlation

analysis between each of the genes and the hypoxia score.
Statistical analyses

Statistical analyses were performed using R v3.6.0 or GraphPad

Prism v10. The statistical tests used to compare data are presented

in the figure legends. Where data are shown as boxplots, the box

represents the IQR, and the whiskers extend 1.5x IQR below and

above bottom and top quartiles respectively. A value of p<0.05 was

deemed to be statistically significant. Low p values were reported

as p<0.001.
Results

Assessment of the Buffa hypoxia score for
PDAC profiling

The investigations performed in this study are depicted as a flow

chart in Supplementary Figure 1. First, we profiled the expression

levels of the previously developed hypoxia score in pancreatic

cancer (Figure 1). Using a rank-based gene signature scoring

method for single samples (singscore) (29), we profiled 176

PDAC cases from the TCGA cohort for hypoxia score expression
Frontiers in Immunology 04
(Figure 1A). Next, we examined the expression of the hypoxia score

across histological tumor grades. Higher tumor grades represent

increased anaplasia and disordered structure and are generally

associated with aggressive disease (43). As represented in

Figure 1B, we observed a significant increase in the hypoxia score

across tumor grades from Grade 1 to Grade 2 (p=0.003) and from

Grade 2 to Grade 3/4 (p=0.003) (Grades 3 and 4 were collapsed into

a single category due to there being so few cases of Grade 4 in our

cohort). Here, we demonstrate that PDAC cases display varying

levels of hypoxia score expression but also that the hypoxia score is

increased in higher grade tumors suggesting that hypoxia is

associated with aggressive disease. To associate the immune

phenotypes of cases with high hypoxia, we divided our cohort

into HypoxiaHI and HypoxiaLOW groups based on a top versus

bottom quartile dichotomization (n=44 patients each). All

subsequent analyses, unless stated otherwise, were performed

using these groups. Clinical and pathological parameters for both

groups are shown in Supplementary Table 2.

In order to further explore the utility of the hypoxia score for

pancreatic cancer, we performed the following analyses. First, we used a

microarray dataset of 45 PDAC tumors and paired adjacent non-

malignant pancreatic tissue (GSE28735) (39), to show that the hypoxia

score was significantly elevated (p<0.0001) in pancreatic tumors

relative to the non-tumor tissue sample group (Supplementary

Figure 2). This dataset was used as it contained transcriptomic

profiles from PDAC biopsies and paired non-malignant pancreatic

tissue, the latter of which are not available in the TCGA PDAC cohort.

We also sought to study the expression of key genes from our signature

in PDAC cells incubated in hypoxic conditions. As such, we examined

the expression of 4 key hypoxia-inducible genes from the 10 “seed”

genes that were used to define the Buffa hypoxia score (25), in PDAC

cell lines incubated in hypoxic conditions (0.5% O2) for 24 hours.

Using two well-known PDAC cell lines, PANC-1 and BxPC3 (44), we

interrogated the expression of the genes Solute Carrier Family 2

Member 1 (SLC2A1), also known as GLUT1, Vascular Endothelial

Growth Factor A (VEGFA), Carbonic Anhydrase IX (CA9), and

Hexokinase 2 (HK2) as shown in Supplementary Figure 3. In

PANC-1, all four genes were significantly induced in hypoxia at 24h

compared to normoxic controls: SLC2A1 (6.5-fold, p=0.007), VEGFA

(2.9-fold, p= 0.01), CA9 (7.6-fold, p= 0.002), and HK2 (34-fold,

p=0.008). Comparable results were also seen in the BxPC3 cell line

relative to normoxic controls: thus, SLC2A1 (17.8-fold, p=0.005),

VEGFA (3.2-fold, p=0.03), CA9 (73.4-fold, p=0.01), and HK2 (9.9-

fold, p=0.004) when compared with normoxia controls. Taken

together, these results further support the validity of this hypoxia

score in PDAC. The score was found on average to be significantly

elevated in PDAC relative to non-malignant pancreas tissues, and that

a subset of hypoxia-inducible genes that comprise the score show

induction in PDAC cell lines in hypoxic conditions. Next, we

investigated if the hypoxia score was associated with patient

outcomes. We compared the survival of cases with low and high

hypoxia (HypoxiaHI vs HypoxiaLOW, see Figure 1B). It was observed

that HypoxiaHI patients demonstrated significantly lower OS

(Figure 2A) and lower PFS (Figure 2B), compared to HypoxiaLOW

patients. Finally, we used the multivariate Cox Proportional Hazards

model to assess the association between overall survival in the entire
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1360629
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sadozai et al. 10.3389/fimmu.2024.1360629
TCGA PDAC cohort (n=171 with available clinical information) and

the hypoxia score as well as, clinical variables (Age, Sex, Stage and

Grade). When examined in this multivariate regression analysis, we

noted that only the hypoxia score was independently associated to OS

in the TCGA cohort (Supplementary Figure 4). The association

between the Buffa hypoxia score and reduced survival has been

previously shown in PDAC (45). However, we demonstrated in a

multivariate analysis that this hypoxia score is an independent

prognostic variable in PDAC. As such, investigating HypoxiaHI cases

might reveal immunological mechanisms associated with disease

progression in these patients.
High hypoxia status is associated with
multiple features of immunosuppression
in PDAC

It is now well-established that hypoxia is a crucial mediator of

immune escape, as well as of immunosuppressive signaling in the

TME of solid organ cancers (16, 46). Immunohistochemical studies

in patient biopsies of colorectal cancer have shown that the hypoxia

marker CAIX is strongly expressed in “immune cold” tumors (47),

which are marked by low or absence of T cell infiltrates and dendritic

cells (DC) (48–50). As such, we performed analyses to dissect the

immune microenvironment of HypoxiaHI and HypoxiaLOW cases.

First, we used the MCP-counter method developed by Becht et al. for

estimating cell-types in bulk tissue transcriptomes (36), to infer the

abundance of 8 immune and 2 non-immune cell populations in both

hypoxia groups. After correcting for multiple comparisons

statistically, we found that the HypoxiaHI group displayed notable

differences in the abundance of key cell types in the TME, compared

to the HypoxiaLOW group (Figure 3). No statistically significant
Frontiers in Immunology 05
differences were observed for B lineage cells, CAFs, monocyte

lineage cells and neutrophils between both hypoxia groups. In

contrast, HypoxiaHI tumors displayed markedly lower abundance

scores for endothelial cells (p=0.02), myeloid dendritic cells (p=0.02),

natural killer (NK) cells (p=0.02), total T cells (CD3+ T cells)

(p=0.02), and CD8+ T cells (p=0.006) compared to HypoxiaLOW

cases. Compared to HypoxiaLOW cases, the HypoxiaHI group also

displayed lower abundance of “cytotoxic lymphocytes”, a functionally

defined signature meant to score for mRNA expression from both

NK cells and T cells (36). Given the crucial role of DC in cancer

immunity (51) and noting the difference between hypoxia groups in

terms of myeloid DC scores, we sought to further explore this

difference. Over the past 6 years, studies have shown that the

conventional DC1 (cDC1) subset of DC, are critical for antigen

cross-presentation and priming anti-tumor immunity (51). Using a

previously defined gene signature for cDC1, we used singscore to

compute cDC1 scores (Supplementary Figure 5). We demonstrate

that HypoxiaHI cases exhibit significantly lower cDC1 scores

compared to HypoxiaLOW cases. It is currently well-established that

determining a tumor’s immunological phenotype depends not only

on the presence of T cells but also the presence of important

leukocytes such as NK cells and DC (50). We found that

HypoxiaHI cases displayed multiple features of a “cold” tumor with

diminished anti-tumor immunity.

In order to investigate the molecular mechanisms that might

account for a “cold” tumor status in cases with high hypoxia scores,

we performed differential gene expression profiling between HypoxiaHI

and HypoxiaLOW cases and performed FDR corrections. Based on the

results of the MCP-counter analyses, we compared the expression of

selected immune-related genes coding for molecules known to

negatively regulate anti-tumor immunity. First, we profiled key

immune checkpoint molecules (which can be expressed both on
A B

FIGURE 1

Assessing Buffa signature score in PDAC. (A) Box plot of sample-level hypoxia scores across the cohort of PDAC cases in TCGA. Samples with the
hypoxia score in top and bottom quartiles were assigned into HypoxiaHI and HypoxiaLOW cohorts respectively. Each dot represents a single sample.
(B) Box plots comparing hypoxia score distribution across reported histological grades. Statistical significance was determined using pair-wise Mann-
Whitney U tests between groups and Holm-Sidak multiple testing correction was performed. ** p<0.01.
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tumor and non-tumor cells), that regulate both adaptive and innate

immunity (52, 53). These include the “don’t-eat-me” signaling

molecules which inhibit macrophage phagocytosis of tumor cells,

CD24 and CD47, the checkpoint molecules CD274 (PD-L1),

PDCD1LG2 (PD-L2) and CD276, as well as the non-classical major

histocompatibility complex I (MHC-I) molecule, HLA-G which

inhibits NK cells (52, 53). As shown in Figure 4A, we observed a

statistically significant increase in the expression of CD47, CD276 and

HLA-G but not of the other checkpoint molecules in HypoxiaHI tumors

relative to HypoxiaLOW. Second, we profiled genes encoding 3 of the

best characterized members of the galectin family (Galectin-1,

Galectin-3, and Galectin-9), which have roles in both cancer

progression and immune modulation (54), as well as Galectin-4,
Frontiers in Immunology 06
which was recently shown to be associated with immune escape in

PDAC and capable of inducing T cell apoptosis (55). Remarkably,

expression of all four galectin genes LGALS1, LGALS2, LGALS3 and

LGALS4 was observed to be significantly higher in HypoxiaHI as

compared to HypoxiaLOW cases (Figure 4B). Third, we interrogated

both groups for genes encoding key enzymes known to play critical

roles in immunosuppression in the TME as shown in Figure 5. We

analyzed expression of the ectonucleotidases CD39 (ENTPD1) and

CD73 (NT5E) which mediate distinct steps in the conversion of

extracellular ATP to adenosine, a potent inhibitory signal for

immune cells (56), and the potential inflammatory mediator

cyclooxygenase-2 (COX-2, PTGS2) (57). We also analyzed the

expression of genes for 6 genetically unrelated amino acid
A B

FIGURE 2

Prognostic analysis of hypoxia score. Kaplan-Meier plots displaying the (A) overall survival (OS) and (B) progression-free survival (PFS) of PDAC
patients in HypoxiaHI versus HypoxiaLOW groups. The number of cases in each group and number at risk are shown in the tables below each plot.
p value shown in the plots was derived using log rank test.
FIGURE 3

Profiling the TME of high versus low hypoxia scores. Box plots comparing 8 immune and 2 non-immune cell scores between HypoxiaHI and
HypoxiaLOW groups. Cell abundance scores were computed using the MCP-counter algorithm. Statistical comparisons were performed through
Mann-Whitney U test followed by Benjamini-Hochberg multiple testing correction. *p<0.05, ** p<0.01.
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catabolizing enzymes known to have immunosuppressive functions. As

reviewed previously (58–60), the amino acids they catabolize are

tryptophan (tryptophan 2,3-dioxygenase: TDO2 as well as

indoleamine 2,3-dioxygenase 1 and 2: IDO1 and IDO2), arginine

(inducible nitric oxide synthase: NOS2 as well as arginase 1 and 2:

ARG1 and ARG2), and phenylalanine (Interleukin 4-induced 1: IL4I1)

(58–60). It was observed thatARG1 and IDO2mRNA expression levels

in our TCGA PDAC cohort were below the abundance threshold

applied in differential gene expression analysis, and therefore these

genes were not included in subsequent analyses. When we compared

both hypoxia groups, we noted that relative to HypoxiaLOW tumors,

HypoxiaHI cases displayed lower expression for ENTPD1 (CD39) and

ARG2 but significantly elevated expression of NT5E (CD73) and

PTGS2 (COX-2) (Figure 5). No differences were observed between

groups for the expression of IDO1, TDO2,NOS2 and IL4I1. Thus, these

results demonstrate the activation of distinct metabolic pathways in

cases with a high versus low hypoxia status. Taken together, our gene

expression profiling demonstrated that HypoxiaHI tumors displayed

the upregulation of multiple molecules associated with an

immunosuppressive TME. These included immune checkpoints,

galectins and key metabolic mediators indicating that distinct

pathways underlie the formation of an immunosuppressive TME

in PDAC.
Machine learning-based feature selection
to predict high hypoxia status

In Figures 4 and 5, we investigated 18 genes with known

immunosuppressive functions to show that multiple, distinct

genes are elevated in HypoxiaHI tumors. Next, we sought to

further explore which molecules were most strongly associated

with a high hypoxia status. Using a random forest machine

learning algorithm together with feature selection method

(VarSelRF package using R) (61), to find a minimum set of genes

that could predict HypoxiaHI status. This method revealed 5 genes

that could predict HypoxiaHI and ROC (Receiver Operating

Characteristic) analysis for these 5 genes displayed an AUC (Area

Under ROC Curve) value of 0.961 (Figure 6A). The 5 genes, ranked

by their AUC values are shown in Figure 6B, are LGALS3, NT5E,

CD276, LGALS1, and ENTPD1 (CD39). It is pertinent to note that

ENTPD1 displayed an inverse correlation with HypoxiaHI status. To

further assess the association of these genes with high hypoxia

scores (i.e. HypoxiaHI) in PDAC, we performed Spearman

correlation between expression levels of these genes and the

hypoxia score in an additional cohort of RNA-seq data from 51

PDAC patients (GSE79668) (62). The expression of LGALS3,

CD276, NT5E was positively correlated to hypoxia score

expression in this cohort. The correlation coefficients and p

values are shown in Figure 7. The gene LGALS3 displayed the

highest and most statistically significant positive correlation

(r=0.68, p<0.0001) with hypoxia score expression. Similar to what

was observed for the TCGA cohort, ENTPD1, also exhibited a

negative significant correlation to the hypoxia score in this

secondary cohort. LGALS1 did not show a statistically significant

positive or negative correlation with hypoxia score expression.
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Collectively, these findings suggest that immunomodulatory genes

such as LGALS3, CD276 and NT5E are the primary molecular

signals that distinguish a highly hypoxic TME in PDAC cases.

Given that LGALS3 expression was observed to be strongly and

positively correlated with the hypoxia score in both the TCGA

cohort and the additional cohort, we interrogated the expression of

LGALS3 in PDAC cell lines in hypoxic conditions in vitro. As

shown in Figure 8, LGALS3 was significantly induced by 24h of

hypoxia (0.5% O2) in BxPC3 cells (4.2-fold, p=0.02). While we did

note a trend towards increased expression in PANC-1 cells, these

results did not achieve statistical significance (1.7-fold, p=0.13).
Discussion

Hypoxia phenotyping in PDAC using
gene signatures

Currently, PDAC remains one of the most treatment-refractory

and clinically challenging cancers in clinical practice (2). A growing

body of scientific literature now supports the idea that targeting tumor

hypoxia in solid organ cancers can sensitize them to radiation,

chemotherapy, and immunotherapies (15, 63, 64). Currently,

hypoxic-tumor targeted therapies fall into four major categories: 1)

Hypoxia-activated prodrugs that can kill tumor cells in hypoxic zones,

2) Molecules that inhibit HIF thereby abrogating HIF-downstream

signaling, 3) Therapies that increase tumor oxygenation and 4) Drugs

that modulate hypoxia-associated TME remodeling such as acidosis

(e.g. CAIX) (15, 63, 65). Given the remarkable successes observed in

certain tumor types (e.g. melanoma, renal cell carcinoma) using

immune checkpoint blockade (9), identifying novel strategies for

immune modulation of hypoxic pancreatic cancers is a critical

priority. In this report, we utilized a well-established hypoxia

signature to demonstrate that high hypoxia status is associated with

distinct hallmarks of immunosuppression. Moreover, we utilized a

machine-learning approach to identify LGALS3 (Gal-3) as a potential

therapeutic target for abolishing hypoxia associated suppression in

PDAC (Figures 6–8). Using this innovative approach for further

exploration of immunological profiles of PDAC tumors with high

hypoxia gene expression, we identified potential therapeutic targets to

improve immunotherapy responses in hypoxic cancers. However, in

vivo models will be essential to further validate these observations.

Multiple reports have reported the derivation of a hypoxia

signature as reviewed by Abou Khouzam et al. earlier this year

(15). It is pertinent to note that the same group reported the

derivation of an 8-gene hypoxia signature that showed prognostic

value in PDAC as well as an association with “immune cold” TME

(24). Direct measurements of oxygen partial pressure in limited

clinical samples have revealed that pancreatic and prostate cancers

are highly hypoxic (66). However, in the absence of direct

measurements, hypoxia signatures have been developed and

reported in the literature as useful scoring tools to assess hypoxia

status in bulk tumor transcriptomes (67). As such, in published

reports on hypoxia, cases are either stratified by the expression levels

of a hypoxia gene signature or by a hypoxia risk score, where the

expression of hypoxia-linked genes (selected for the score through
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1360629
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sadozai et al. 10.3389/fimmu.2024.1360629
survival regression analyses) is multiplied by their regression

coefficients (15). In the past few months, another report by Ren

et al. utilized a compact 15 gene version of Buffa signature to derive a

6 gene risk score in PDAC (22). It is pertinent to note that all

published hypoxia gene signatures and risk scores have been shown

to be correlated with poor prognosis in PDAC (15, 22). In multiple

published reports, patients were classified as high or low based on a
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median expression cut-off (22–24). In our study, we sought to

compare cases with notable differences in hypoxia status, and

therefore used a cut-off of top versus bottom quartiles of

expression for our hypoxia score, an approach that is used to

classify patients in certain gene expression profiling studies (68,

69). We selected the Buffa hypoxia signature, a widely reported

signature that was recently used to identify hypoxia-related
FIGURE 5

Comparisons of immunoregulatory metabolic mediators. Box plots comparing gene expression of enzymes purported to play a key role in
promoting an immunosuppressive TME. Gene expression is displayed as log2-transformed, normalized CPM (counts per million) values. Statistical
significance shown on the plot represents FDR values from transcriptome-wide differential gene expression analysis between HypoxiaHI and
HypoxiaLOW groups. **FDR<0.01,***FDR<0.001.
A B

FIGURE 4

Comparisons of immune checkpoints and galectins gene expression profiles. Box plots comparing gene expression of (A) adaptive and innate
immune checkpoint molecules and (B) selected galectin molecules with roles in immune escape. Gene expression is displayed as log2-transformed,
normalized CPM (counts per million) values. Statistical significance shown on the plot represents FDR values from transcriptome-wide differential
gene expression analysis between HypoxiaHI and HypoxiaLOW groups. *FDR<0.05, **FDR<0.01,***FDR<0.001.
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proteins involved in metastasis in a study of 17 different carcinomas

(27). We further expanded upon previous reports using this

signature, to demonstrate its utility for profiling PDAC tissues.

Using an additional dataset of PDAC transcriptomic profiles, we

showed that the PDAC tumor group exhibited significantly higher

hypoxia scores relative to paired non-malignant pancreatic tissues

(Supplementary Figure 2). We also demonstrated that key hypoxia-

inducible genes were elevated in hypoxic PDAC cell lines relative to

normoxic controls (Supplementary Figure 3). As a final point, we

observed that hypoxia scores were significantly elevated in higher
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grade tumors (Figure 1B). This is corroborated by previous reports in

the literature. Using a 9 gene hypoxia risk score, Zhuang et al. recently

also demonstrated that higher histological tumor grades displayed

increased hypoxia risk scores (45). Finally, we demonstrated for the

first time using both univariate and multivariate survival analyses,

that the Buffa hypoxia score is an important prognostic indicator in

PDAC. Hypoxia scores and hypoxia risk scores reported by others

also confirm this independent prognostic association with patient

outcomes (24, 45), thereby confirming the importance of studying

hypoxia-related gene expression in pancreatic cancer.
A B

FIGURE 6

Selection of immune genes with high correlation to HypoxiaHI status in TCGA. (A) ROC curve and AUC value for the top 5 gene features for
classifying a case as HypoxiaHI. (B) Individual gene names and AUC values for each of the 5 gene features are provided in the table. Note that
ENTPD1 exhibits an inverse relationship with hypoxia scores.
FIGURE 7

Confirmation of HypoxiaHI correlated immune genes in additional cohort. Scatter plots depicting correlation between hypoxia score and the top 5
genes that could best classify a case as HypoxiaHI in validation dataset of 51 PDAC cases (GSE79668). Spearman correlation coefficients r, and p
values are plotted on the graphs. Each dot represents a single tumor sample.
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Deciphering the immune landscape in
hypoxic PDAC cases

The mechanisms through which hypoxia shapes an

immunosuppressive TME are complex, and reviewed elsewhere (64,

70, 71). In our study, we sought to dissect the distinct immunological

mechanisms that could account for the “cold” tumor phenotype

exhibited by HypoxiaHI cases. We identified multiple features

suggestive of an immunosuppressive TME, that were associated with

high hypoxia status. We observed that HypoxiaHI and HypoxiaLOW

could be discriminated by both cell-type deconvolution using MCP-

counter (Figure 3) and immunosuppressive gene expression profiling

(Figures 4, 5). Using MCP-counter, we demonstrated multiple features

representing an “immune cold” TME marked by a paucity of T and B

lymphocytes, NK cells and myeloid DC (49). Notably, the inverse

relationship between CD8+ T cells and hypoxia has also been reported

in immunohistochemistry studies of colorectal, breast and ovarian

cancers where CAIX is used as a marker for hypoxia (47, 72, 73). In

fact, in a mouse melanoma model, treatment with a small molecule

inhibitor of CAIX increased frequency of effector TH1 skewed CD4+ T

cells and increased the response of these tumors to immune checkpoint

therapy with anti-PD-1 and anti-CTLA-4 antibodies (74). The

significant differences in abundance of CD8+ T cells between cases

with high versus low hypoxia might also account for why we observed

increased CD73 (NT5E) but reduced CD39 (ENTPD1) gene expression

in HypoxiaHI cases. It is important to note that both ectoenzymes are

known to be expressed on a wide range of cells in the TME (56). CD39

is a marker for T cell exhaustion and even though it was recently

reported to be induced in terminally exhausted CD8+ T cells by tumor

hypoxia (75), there are other features in hypoxic TMEs such as

abnormal tumor vasculature and increased fibrosis, which mediate T

cell exclusion (70). Thus, the exclusion of T cells from highly hypoxic

tumors is one possible explanation for the reduced gene expression of
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CD39 observed in HypoxiaHI versus HypoxiaLOW cases. This was

confirmed by our MCP-counter analyses (Figure 3), which revealed

that HypoxiaHI cases have significantly lower abundance of total T cells,

cytotoxic lymphocytes and CD8+ T cells.

According to previous findings, hypoxic regions produce signals

that recruit multiple populations of myeloid cells such as MDSC, TAM

and neutrophils (16, 64). We did not see any significant increase in the

abundance scores for monocyte lineage cells or neutrophils (Figure 3).

There is notable heterogeneity in the published literature on hypoxia

gene signatures and their association with myeloid cell types (71). In

the recent report by Abou Khouzam et al. (24), using an 8 gene hypoxia

signature and the CIBERSORTx (76) deconvolution method in the

TCGA PDAC cohort and an additional cohort, the authors found high

hypoxia scores to be associated with diminished M2 macrophages in

the TCGA dataset, and with an elevated abundance of M0, which

purportedly accounts for gene expression signatures of undifferentiated

macrophages that were not polarized into M1 or M2 in vitro (77). One

further point that warrants consideration is that TAM and other

myeloid cells are recruited into hypoxic niches, which also harbor

necrotic zones (16, 78). Given that RNA from highly hypoxic and

necrotic niches might undergo significant degradation (79, 80), bulk

tumor transcriptomics data might not capture the myeloid diversity in

highly hypoxic tumors. The absence of differences between major

monocyte lineage cells between HypoxiaHI and HypoxiaLOW groups

might also account for why we failed to see differences in expression of

a number of amino-acid catabolizing enzymes which can be expressed

in both non-immune cells and myeloid cells (59).

One notable phenotype of immunologically suppressed tumors

that we observed was the interplay between NK cells, DC and COX-

2, where we observed reduced signature scores for cDC1, lower

MCP-counter abundance scores for myeloid DC and NK cells, as

well as the increased gene expression of COX-2 (PTGS2) in

HypoxiaHI vs HypoxiaLOW cases (Figures 3, 5 and Supplementary

Figure 5). The induction of COX-2 expression in hypoxic

conditions has been reported in both colon cancer and ovarian

cancer cells (81, 82). Moreover, while COX-2 is reported to have

tumor-intrinsic roles in the development and progression of PDAC

in murine models (83), recent findings also demonstrated a key role

for COX-2 in hindering anti-tumor immunity. The interplay

between COX-2 and the NK cell-cDC1 axis was revealed in a

landmark study using murine melanoma models (38). The authors

showed that NK cells mediate the recruitment of the cDC1 subset,

which are critical for anti-tumor immunity, and COX-2 mediated

production of Prostaglandin E2 interferes with both NK cell

chemokine production and cDC1 chemokine receptor expression.

It is pertinent to note that COX-2 is over-expressed in multiple

cancer types and influences the function of MDSC and lymphocytes

as well as DC (57). An additional phenotype that we noted with

MCP-counter, was a reduced abundance for endothelial cells in

cases with high hypoxia scores. These results are supported by in

vivo findings, where a recent study utilizing intravital fluorescence

microscopy in a murine orthotopic pancreatic cancer model,

revealed an inverse relationship between vascular density and the

fraction of hypoxic cells (84). Thus, when cell-type deconvolution

results with MCP-counter (Figure 3), support the premise that

hypoxia mediates immune cell exclusion (70).
FIGURE 8

Expression of LGALS3 in hypoxic pancreatic cancer cells. Barplots
showing normalized mRNA expression for LGALS3 in PANC-1 and
BxPC3 pancreatic cancer cell lines incubated in hypoxia (0.5% O2)
for 24 hours. mRNA expression was normalized to b2M. Data are
from four independent experiments and are shown as means ±
SEM. Paired t-test was used to assess the significance. *p<0.05. ns,
not significant.
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Immunomodulatory gene expression
correlated with increased hypoxia in PDAC

We sought to further explore immunosuppressive signaling in

hypoxic PDAC tissues by examining differentially expressed genes

related to immune function. We saw significantly increased

expression of a number of important genes that have a critical

role in immune escape such as CD276 and CD47 (Figure 4A). These

findings are corroborated by previous reports, as CD276 was

reported to be associated with high hypoxia scores in the report

by Abou Khouzam et al. (24), and it was shown in breast cancer

cells, that HIF-1 directly induced CD47 transcription (85).

However, we identified a novel association between Gal-4 and our

hypoxia score (Figure 4B). Gal-4 was previously shown to be highly

expressed at the protein level in PDAC tissue, and Gal-4 knockout

murine tumors exhibited notable elevation of CD4+ and CD8+ T

cell infiltration (55). Indeed, we demonstrate that all examined

members of the galectin family in our analyses were expressed at

higher levels in HypoxiaHI tumors relative to HypoxiaLOW. As

reviewed recently, galectins are b-galactoside binding proteins

that display important intracellular and extracellular functions

and are secreted from cells through a non-canonical pathway

(86). Galectins are purported to be involved in fibrotic and

inflammatory diseases as well as cancer, and multiple galectin-

targeted therapies are currently in clinical trials (54, 86). Our

primary interest in profiling and comparing galectins was due to

their roles in immunosuppression via direct T cell apoptosis but

also as immune checkpoints (e.g. Gal-9 and TIM-3) (54, 86). Using

a machine-learning recursive feature selection approach (61), we

identified LGALS3 as the top gene that could classify a PDAC tumor

as HypoxiaHI and confirmed the correlation between high hypoxia

scores and LGALS3 expression in an additional cohort of PDAC

RNA-seq data. In PDAC, studies have shown that Gal-3 induces

inflammatory cytokine expression in pancreatic stellate cells

(activated PSCs constitute a portion of the CAF population in

PDAC) (87). We demonstrated induction of LGALS3 gene

expression in hypoxic BxPC3 cells and a trend towards increased

expression in PANC-1 cells albeit not reaching statistical

significance (Figure 8). Our results are partially corroborated by

an earlier study which showed LGALS3 expression in PANC-1 cells

at 24h and 48h (88). Moreover, in the same year, Gonnermann et al.

demonstrated that the protein expression of Gal-3 was significantly

higher in BxPC3 and other PDAC cell lines compared to PANC-1

in normoxic conditions (89). This report also showed that galectin-

3 could inhibit the proliferation of Gamma-delta T cells, which are

of interest due to their tumor-killing ability (89). Thus, our

observations on elevated expression of LGALS3 in PDAC tumors

and PDAC cell lines, as well as the aforementioned report by

Gonnerman et al. (89), highlight Gal-3 as a potential therapeutic

target to reverse hypoxia-mediated immunosuppression.

Our study also had some limitations. First, the PAAD cohort in

TCGA is comparatively small and therefore, comparing patients

from the top and bottom quartile only yielded 44 cases per group.

Third, while cell-type deconvolution approaches in bulk

transcriptomics are more effective in generating abundance scores
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for cell types such as T cells, estimating the fractions of more

heterogeneous cell types such as myeloid cells are challenging in

silico (90). Finally, while multiple signatures for hypoxia have been

reported in the literature (67, 71), these signatures warrant

benchmarking in prospective studies where the hypoxia probe

pimonidazole can be given to patients prior to operating (15),

and RNA-seq can be performed to assess the correlation of each

signature to levels of pimonidazole labeling in situ. However, we

demonstrate multiple features of immunosuppression that delineate

cases with high hypoxia score expression. Moreover, we described 5

genes associated with hypoxia high status, of which the top 3

(LGALS3, CD276 and NT5E) have already been identified as

targets of interest in cancer (56, 86, 91). Moreover, the novel

association between Gal-4 and high hypoxia status also warrants

further investigation to reveal the biological role of this protein in

PDAC progression and its potential relevance as a drug target. We

anticipate that future studies using newly emerging spatial

transcriptomics technologies will be essential to decrypt the gene

expression profiles in hypoxic versus normoxic regions of the TME

and in order to identify potential drug targets for hypoxic

cancers (92).
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72. Juhász P, Hasulyó D, Bedekovics J, Beke L, Kacsala N, Török M, et al. Carbonic
anhydrase IX (CAIX) expressing hypoxic micro-environment hampers CD8+ Immune
cell infiltrate in breast carcinoma. Appl Immunohistochemistry Mol Morphology. (2023)
31:26–32. doi: 10.1097/PAI.0000000000001082.

73. Guo N, Yang A, Farooq FB, Kalaria S, Moss E, DeVorkin L, et al. CD8 + T cell
infiltration is associated with improved survival and negatively correlates with hypoxia
in clear cell ovarian cancer. Sci Rep. (2023) 13:6530. doi: 10.1038/s41598-023-30655-3

74. Chafe SC, McDonald PC, Saberi S, Nemirovsky O, Venkateswaran G, Burugu S,
et al. Targeting hypoxia-induced carbonic anhydrase IX enhances immune-checkpoint
blockade locally and systemically. Cancer Immunol Res. (2019) 7:1064–78. doi: 10.1158/
2326-6066.CIR-18-0657.

75. Vignali PDA, DePeaux K, Watson MJ, Ye C, Ford BR, Lontos K, et al. Hypoxia
drives CD39-dependent suppressor function in exhausted T cells to limit antitumor
immunity. Nat Immunol. (2023) 24:267–79. doi: 10.1038/s41590-022-01379-9

76. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al.
Determining cell type abundance and expression from bulk tissues with digital
cytometry. Nat Biotechnol. (2019) 37:773–82. doi: 10.1038/s41587-019-0114-2

77. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods. (2015)
12:453–7. doi: 10.1038/nmeth.3337.

78. Bai R, Li Y, Jian L, Yang Y, Zhao L, Wei M. The hypoxia-driven crosstalk
between tumor and tumor-associated macrophages: mechanisms and clinical treatment
strategies. Mol Cancer. (2022) 21:177. doi: 10.1186/s12943-022-01645-2

79. Gallego Romero I, Pai AA, Tung J, Gilad Y. RNA-seq: impact of RNA
degradation on transcript quantification. BMC Biol. (2014) 12:42. doi: 10.1186/1741-
7007-12-42

80. Millier MJ, Stamp LK, Hessian PA. Digital-PCR for gene expression: impact
from inherent tissue RNA degradation. Sci Rep. (2017) 7:17235. doi: 10.1038/s41598-
017-17619-0.
frontiersin.org

https://doi.org/10.1016/j.cell.2018.02.052
https://doi.org/10.1186/s12859-018-2435-4
https://doi.org/10.1186/s12859-018-2435-4
https://cran.r-project.org/package=survival
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1007/978-1-0716-0327-7_16
https://doi.org/10.1016/j.cell.2018.01.004
https://doi.org/10.1016/j.ccr.2009.07.016
https://doi.org/10.1186/1471-2105-7-3
https://doi.org/10.1186/s12859-016-1292-2
https://doi.org/10.1007/978-1-4939-6990-6_1
https://doi.org/10.1097/MPA.0b013e3181c15963
https://doi.org/10.3389/fimmu.2021.790661
https://doi.org/10.3389/fimmu.2020.613114
https://doi.org/10.1038/s41416-020-0985-5
https://doi.org/10.1038/s41416-020-0985-5
https://doi.org/10.1038/s41573-018-0007-y
https://doi.org/10.1002/mco2.343
https://doi.org/10.3389/fimmu.2020.621254
https://doi.org/10.3389/fimmu.2020.621254
https://doi.org/10.1038/s41423-023-00990-6
https://doi.org/10.3389/fimmu.2023.1121285
https://doi.org/10.3389/fphar.2023.1228962
https://doi.org/10.3390/ijms19020430
https://doi.org/10.1158/2326-6066.CIR-21-1088
https://doi.org/10.1186/s12943-023-01733-x
https://doi.org/10.3389/fonc.2023.1099811
https://doi.org/10.1016/j.biopha.2022.112840
https://doi.org/10.1002/1873-3468.12784
https://doi.org/10.3389/fimmu.2021.689864
https://doi.org/10.1186/1471-2105-8-328
https://doi.org/10.1016/j.molonc.2016.05.004
https://doi.org/10.1016/j.semcancer.2023.09.002
https://doi.org/10.1146/annurev-med-060619-022830
https://doi.org/10.1038/s41571-021-00539-4
https://doi.org/10.1038/s41571-021-00539-4
https://doi.org/10.1259/bjr.20130676
https://doi.org/10.1259/bjr.20180036
https://doi.org/10.1182/blood.2020008119
https://doi.org/10.1038/s41590-018-0290-0
https://doi.org/10.1186/s12967-020-02667-4
https://doi.org/10.3389/fimmu.2022.828875
https://doi.org/10.3389/fimmu.2022.828875
https://doi.org/10.1097/PAI.0000000000001082
https://doi.org/10.1038/s41598-023-30655-3
https://doi.org/10.1158/2326-6066.CIR-18-0657
https://doi.org/10.1158/2326-6066.CIR-18-0657
https://doi.org/10.1038/s41590-022-01379-9
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1186/s12943-022-01645-2
https://doi.org/10.1186/1741-7007-12-42
https://doi.org/10.1186/1741-7007-12-42
https://doi.org/10.1038/s41598-017-17619-0
https://doi.org/10.1038/s41598-017-17619-0
https://doi.org/10.3389/fimmu.2024.1360629
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sadozai et al. 10.3389/fimmu.2024.1360629
81. Xue X, Shah YM. Hypoxia-inducible factor-2a is essential in activating the
COX2/mPGES-1/PGE 2 signaling axis in colon cancer. Carcinogenesis. (2012) 34:163–
9. doi: 10.1093/carcin/bgs313

82. Ding Y, Zhuang S, Li Y, Yu X, Lu M, Ding N. Hypoxia-induced HIF1a
dependent COX2 promotes ovarian cancer progress. J Bioenerg Biomembr. (2021)
53:441–8. doi: 10.1007/s10863-021-09900-9

83. Hill R, Li Y, Tran LM, Dry S, Calvopina JH, Garcia A, et al. Cell intrinsic role of
COX-2 in pancreatic cancer development. Mol Cancer Ther. (2012) 11:2127–37.
doi: 10.1158/1535-7163.MCT-12-0342

84. Samuel T, Rapic S, O’Brien C, Edson M, Zhong Y, DaCosta RS. Quantitative
intravital imaging for real-time monitoring of pancreatic tumor cell hypoxia and
stroma in an orthotopic mouse model. Sci Adv. (2023) 9:eade8672. doi: 10.1126/
sciadv.ade8672

85. Zhang H, Lu H, Xiang L, Bullen JW, Zhang C, Samanta D, et al. HIF-1 regulates
CD47 expression in breast cancer cells to promote evasion of phagocytosis and
maintenance of cancer stem cells. Proc Natl Acad Sci U S A. (2015) 112:E6215–23.
doi: 10.1073/pnas.1520032112.

86. Mariño KV, Cagnoni AJ, Croci DO, Rabinovich GA. Targeting galectin-driven
regulatory circuits in cancer and fibrosis. Nat Rev Drug Discovery. (2023) 22:295–316.
doi: 10.1038/s41573-023-00636-2.
Frontiers in Immunology 14
87. Zhao W, Ajani JA, Sushovan G, Ochi N, Hwang R, Hafley M, et al. Galectin-3
mediates tumor cell–stroma interactions by activating pancreatic stellate cells to
produce cytokines via integrin signaling. Gastroenterology. (2018) 154:1524–37.
doi: 10.1053/j.gastro.2017.12.014.

88. da Silva Filho AF, Tavares LB, Pitta MGR, Beltrão EIC, Rêgo MJBM. Galectin-3
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