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Oxidative phosphorylation in
HIV-1 infection: impacts on
cellular metabolism and
immune function
Natalia Rodriguez Rodriguez, Trinisia Fortune, Esha Hegde,
Matthew Paltiel Weinstein, Aislinn M. Keane, Jesse F. Mangold
and Talia H. Swartz*

Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai,
New York, NY, United States
Human Immunodeficiency Virus Type 1 (HIV-1) presents significant challenges to

the immune system, predominantly characterized by CD4+ T cell depletion,

leading to Acquired Immunodeficiency Syndrome (AIDS). Antiretroviral therapy

(ART) effectively suppresses the viral load in people with HIV (PWH), leading to a

state of chronic infection that is associated with inflammation. This review

explores the complex relationship between oxidative phosphorylation, a crucial

metabolic pathway for cellular energy production, and HIV-1, emphasizing the

dual impact of HIV-1 infection and the metabolic and mitochondrial effects of

ART. The review highlights how HIV-1 infection disrupts oxidative

phosphorylation, promoting glycolysis and fatty acid synthesis to facilitate viral

replication. ART can exacerbate metabolic dysregulation despite controlling viral

replication, impacting mitochondrial DNA synthesis and enhancing reactive

oxygen species production. These effects collectively contribute to significant

changes in oxidative phosphorylation, influencing immune cell metabolism and

function. Adenosine triphosphate (ATP) generated through oxidative

phosphorylation can influence the metabolic landscape of infected cells

through ATP-detected pur inerg ic s igna l ing and contr ibutes to

immunometabolic dysfunction. Future research should focus on identifying

specific targets within this pathway and exploring the role of purinergic

signaling in HIV-1 pathogenesis to enhance HIV-1 treatment modalities,

addressing both viral infection and its metabolic consequences.
KEYWORDS
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Abbreviations: HIV-1, Human Immunodeficiency Virus Type 1; ART, Antiretroviral Therapy; PBMC,
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1360342/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1360342/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1360342/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1360342/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1360342&domain=pdf&date_stamp=2024-03-11
mailto:talia.swartz@mssm.edu
https://doi.org/10.3389/fimmu.2024.1360342
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1360342
https://www.frontiersin.org/journals/immunology


Rodriguez et al. 10.3389/fimmu.2024.1360342
Introduction

Human Immunodeficiency Virus Type 1 (HIV-1) presents a

chronic, intractable challenge, primarily characterized by extensive

CD4+ T cell depletion (1–5). This pathology manifests in both

lymphoid tissues and peripheral blood, culminating in profound

immunodeficiency and progression to Acquired Immunodeficiency

Syndrome (AIDS). Despite the efficacy of Antiretroviral Therapy

(ART) in viral load suppression, HIV-1 infection is associated with

chronic inflammation and, together with the direct effects of ART, is

associated with metabolic dysregulation, enhanced inflammatory

response, gene expression modulation, and biochemical pathway

alterations (6–9).

We explore the confluence of oxidative phosphorylation and

cellular metabolic transformations in the context of HIV-1 infection

and ART in PWH. Key focus areas include the nuances of

mitochondrial dysfunction, specifically alterations in oxidative

phosphorylation and association with immune cell dysregulation.

This underscores a potential nexus between mitochondrial

functionality and immunological response. Additionally, we

examine the long-term impacts of ART and the potential for

more nuanced HIV-1 treatment modalities. This review aims to

enrich the understanding of the intricate interplay between

oxidative phosphorylation and HIV-1 pathogenesis, steering

future research and therapeutic interventions in this

critical domain.
Oxidative phosphorylation:
an overview

Oxidative phosphorylation, a crucial biochemical process,

involves the reduction of oxygen to generate ATP (10). Oxidative

phosphorylation is the final stage of aerobic respiration, following

glycolysis and the citric acid cycle. The efficiency of oxidative

phosphorylation relies on successive oxidative/reductive reactions,

notably the transfer of electrons by NADH and FADH2 to oxygen,

the ultimate electron acceptor (11). The electron transport chain

(ETC) facilitates this electron movement within mitochondria. In

order of oxidative/reductive reactions, the complexes are I, II,

coenzyme Q, III, cytochrome C, and IV. This process pumps

protons across the mitochondrial intermembrane space,

generating a proton electrochemical gradient that powers ATP

synthase (complex V) (12). ATP synthase facilitates ATP

biosynthesis with its rotating F0 and F1 components. The F1

component binds nucleotides at its catalytic sites, occupied by

Mg-ADP and phosphate. Rotation, driven by F0 subunit

reionization, alters F1 directionality, initiating ATP synthesis

from ADP and phosphite (13). ATP generated through oxidative

phosphorylation, the final and most efficient stage of aerobic

respiration in the electron transport chain, serves as the primary

energy source for cells, far surpassing the yields from glycolysis and

the citric acid cycle.

The regulation of oxidative phosphorylation is complex and

multifaceted. The mitochondrial membrane potential is at the
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center of the regulation, formed by the proton gradient and

linked to both ATP and free radical production (14, 15). The

most basic regulation of oxidative phosphorylation is allosteric

control by negative feedback of substrates or intermediaries. A

high NADH/NAD+ ratio slows the Krebs cycle, ETC, and oxidative

phosphorylation, as does a high ATP/ADP ratio, in which ATP

binds directly and inhibits cytochrome c (Cyt-c) and cytochrome

oxidase (complex IV) (15, 16).

Oxidative phosphorylation complexes and Cyt-c are targeted

for phosphorylation by regulatory kinases, including protein kinase

C, cAMP-dependent tyrosine kinases, and EGFR (17–19). The

formation of super-complexes (SCs) or respirasomes, consisting

of various combinations of the ETC complexes, increases

respiratory efficiency and decreases ROS production. SC

abundance, along with expression of specific isoforms of Cyt-c or

cytochrome oxidase, allow for regulation of ROS formation and

energetic needs at tissue-level specificity (15). The fusion and fission

of the mitochondrial network contribute to oxidative

phosphorylation efficiency regulation, with highly connected

networks promoting efficiency and curbing excess ROS

production (20, 21).
HIV-1 infection, metabolic
preprogramming, cellular metabolism,
and oxidative phosphorylation

Metabolic reprogramming is key in both cancer and HIV-1

infections. In cancer, this is seen as the Warburg effect,

characterized by increased glucose uptake and lactate production,

even when oxygen is available (22). Similarly, HIV-1 uses metabolic

reprogramming to gather free nucleotides, amino acids, and lipids

for viral replication and assembly (23). Studies reveal that CD4+ T

cells with higher oxidative phosphorylation and glycolysis are more

prone to HIV-1 infection, with infected cells showing elevated

metabolic activity (24). HIV-1 also boosts glycolysis in CD4+ T

cells by upregulating GLUT1 expression. The HIV-1 glycoprotein

gp120 is implicated in this process, possibly by activating surface

signaling molecules like CXCR4 and CCR5 and increasing the

expression of glycolytic enzymes (25). Additionally, hexokinase

activity is heightened in HIV-1 infected CD4+ T cells, a change

dependent on viral replication (26, 27). However, the precise viral

mechanisms promoting glycolysis upregulation by HIV-1 are not

fully understood.

There is growing interest in understanding the impact of HIV

on Mitochondrial-associated ER membranes (MAMs) due to their

crucial role in metabolic reprogramming. MAMs serve as structures

linking the endoplasmic reticulum (ER) and mitochondria,

facilitating oxidative protein production and mitochondrial

biogenesis. The viral HIV-1 Tat protein disrupts MAMs in

neuronal cell lines upon infection by phosphorylating the

mitochondrial protein PTPIP51 and disrupting its localization to

MAMs, thus reducing calcium signaling and increasing ROS

accumulation (28). Furthermore, HIV-1 Vpr has been shown to

disrupt MAMs by decreasing the expression of critical MAM-
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associated proteins Mfn2 and Drp1 (29). The targeting of MAMs by

HIV-1 induces oxidative stress that contributes to HIV-associated

metabolic reprogramming, but further research is needed to

establish other key mechanisms involved.

HIV-1 impacts host cell metabolism, initially enhancing

glycolysis and fatty acid synthesis for viral replication (30–33).

This increased metabolic activity, particularly in glycolysis and

glucose transport, makes cells like T-cells and monocytes more

susceptible to HIV-1 infection (24, 34, 35). Upregulation of the

GLUT-1 transporter and mitochondrial oxidative damage, linked to

ROS production, highlights the role of metabolic reprogramming in

HIV-1 infection and potential research avenues (31, 35, 36). People

with HIV (PWH) face systemic metabolic challenges due to both

HIV-1 and antiretroviral therapy (ART), increasing metabolic

disease risks (37, 38). Studies have shown that HIV-1 influences

metabolic aging, with oxidative phosphorylation and pyruvate

metabolism downregulation noted in PWH (39). Furthermore,

HIV-1 affects the expression of electron transport chain (ETC)

components and causes mitochondrial damage, as seen in the

upregulation of Complex-IV subunit, contributing to oxidative

stress (40, 41).

ART classes have long been associated with mitochondria

dysfunction (42). Both Nucleoside/Nucleotide Reverse

Transcriptase Inhibitors (NRTIs) and Non-nucleotide Reverse

Transcriptase Inhibitors (NNRTIs) are associated with

dyslipidemia in PWH and alter adipocyte differentiation. NRTIs

induce lipodystrophy by promoting mitochondrial dysfunction and

adipocyte death and interfering with mitochondrial DNA (mtDNA)

synthesis (42). This inhibits Pol-gamma, increases ROS production,

and reduces ETC activity and oxidative phosphorylation (37, 42–

46). Additionally, protease inhibitors (PIs) target GLUT4, impairing

glucose uptake into adipocytes and promoting insulin resistance

(37, 47, 48).

HIV-1 infection exacerbates oxidative stress and mitochondrial

damage, affecting cell metabolism and promoting diseases in PWH,

especially those on ART. Gp120 upregulates CYP2E1, proline

oxidase (POX), NOX2, and NOX4 to enhance ROS production

(49–57). Nef interacts with the NADPH oxidases without affecting

the NOX expression (57). The HIV-1 proteins Vpr and Tat both

contribute to mitochondrial dysfunction: Vpr reduces membrane

potential and triggers apoptosis by binding to ANT, part of the

mitochondrial permeability transition pore, while Tat elevates free

calcium levels in the cytoplasm by interacting with NADPH

oxidases, leading to increased mitochondrial calcium uptake and

reactive oxygen species (ROS) production (54, 55, 58–64). These

changes increase the risk of metabolic diseases in PWH, with ART

compounds like NRTIs and PIs exacerbating (65, 66).
Purinergic receptors, ATP, and
HIV pathogenesis

Purinergic receptors, particularly the P1 and P2 subtypes, are

integral to inflammatory responses and the progression of HIV-1.

The P2X receptors, activated by ATP, are crucial in initiating
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immune responses and impacting the HIV-1 viral life cycle (67–

71). The enzyme CD39 regulates ATP availability, influencing both

the progression of AIDS and the function of T cells by modulating

ATP and adenosine levels, affecting P2X receptor signaling (72–74).

The P2X receptors are implicated in cell entry and infection by

the virus, and their inhibition can significantly reduce HIV-1

infection in various cell types (70, 75–85). Chronic inflammation

in HIV is driven by factors like immunosenescence and persistent

viral replication, even with antiretroviral therapy (ART). It is

exacerbated by factors such as organ fibrosis and co-infections (4,

9, 86–88).

Furthermore, extracellular ATP and its interaction with P2X

receptors regulate HIV infection and inflammation. This signaling

leads to the production of inflammatory cytokines and the

activation of the NLRP3 inflammasome, contributing to CD4+ T

lymphocyte depletion and apoptosis (77, 89–92). HIV-1 interacts

with Pannexin-1, a membrane channel, suggesting a link between

ATP production and inflammatory signaling in HIV-1 infection

(93–96). Circulating levels of ATP have been proposed as a

biomarker of cognitive decline in PWH, predicting central

nervous system compromise and suggesting the use of Pannexin-

1 or purinergic receptor inhibitors for clinical intervention (97).
HIV-associated neurocognitive
disorder: the roles of HIV-1, ART,
oxidative phosphorylation, and
purinergic signaling

The progression of HIV-1-associated neurocognitive disorders

(HAND) in PWH has been linked to purinergic signaling and

oxidative stress. The central nervous system serves as a reservoir of

HIV-1, leading to neuroinflammation and neurodegeneration that

progress to HIV-1 encephalitis and HAND that persist despite the

use of effective ART (98–100). Within the CNS, HIV-1 induces the

release of extracellular ATP in infected cells to support viral

replication, and ATP interacts with purinergic receptors to

produce a proinflammatory response (83, 101, 102). The

purinergic receptor subtype P2X is particularly interesting,

notably P2X7, which is widely expressed in various brain cells,

including astrocytes, oligodendrocytes, microglia, and neurons

(102). In astrocytes, P2X7 activation induced by gp120 leads to

Cx43 hemichannels and pannexin-1 opening, resulting in increased

ATP release and nitric oxide production. This process is speculated

to propagate gp120-mediated signaling to neighboring cells (95). In

the peripheral nervous system (PNS), P2X4 is involved in gp120-

induced lysosomal exocytosis and ATP release in Schwann Cells,

increasing cytosolic calcium and generating ROS in dorsal root

ganglia neurons (101). Although ART mitigates the neuropathology

of HIV-1 infection in PWH, it does not eliminate it, with studies

showing possible neurotoxicity of ART. ART-related neurotoxicity

in the brain is thought to be linked to the loss of mtDNA due to

NRTIs inhibiting mtDNA polymerase gamma (103, 104).

Additionally, ART contributes to astrocyte autophagy, de-

acidification of endolysosomes, and the promotion of
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amyloidogenesis, all associated with the pathogenesis of

HAND (105).

Extracellular ATP and P2X receptors are integral in HIV-1

infection, influencing the virus’s life cycle and contributing to

immunopathogenesis, neurodegeneration, and chronic

inflammation. Their interaction with HIV-1 is key in disease

progression, affecting viral replication, cytokine release, and cell

death (75, 77, 78, 81, 83–85). This insight reveals the potential of

targeting purinergic signaling in developing novel therapies for

HIV-1, reducing inflammation and related comorbidities, and

represents a significant area for future research.

Oxidative phosphorylation in immune
cell dysfunction during HIV-
1 infection

The metabolic dynamics of immune cells, particularly CD4+ T

cells, CD8+ T cells, and macrophages, are critical in understanding

HIV-1 pathophysiology. CD4+ T cells infected with HIV-1 shift

towards increased glycolysis, facilitating viral replication. A study

identified a link between oxidative phosphorylation in these cells

and higher viral loads, with NLRX1 and FASTKD5 as key factors.

Metformin, a complex I inhibitor, was found to suppress HIV-1

replication in CD4+ T cells (106). In PWH on ART, there’s an

upregulation of oxidative phosphorylation compared to elite

controllers, and complex IV inhibition was linked to increased

HIV-1 reactivation in a latency model (107).

CD8+ T cells in chronic HIV-1 infection experience metabolic

exhaustion, diminishing their functionality and virus control ability. A

combination therapy comprised of a mitochondrial superoxide

scavenger, a small-molecule inhibitor of mitochondrial fission, and

IL-15 can increase the frequency of IFNy and TNFa poly-functional

CD8+ T cells and decrease the frequency of exhaustion markers (108).

In HIV-infected macrophages, there is notable support for

prolonged HIV-1 replication and survival, shielding virions from

ART and neutralizing antibodies. These macrophages show

metabolic plasticity, shifting between oxidative phosphorylation

and glycolysis based on their polarization state. HIV-1 infection

alters macrophage metabolism, promoting a pro-inflammatory

state and increasing glycolytic activity, which is linked to chronic

inflammation seen in HIV-1 infection (109). A study demonstrated

that superoxide dismutase (SOD) mimetic drugs could inhibit

myeloid cell-driven bystander cell death in vitro (110).

Figure 1 highlights the impact of HIV-1 infection onmitochondrial

oxidative phosphorylation. It contrasts the normal mitochondrial

function with the altered state during HIV-1 infection, depicting how

HIV-1 infection leads to an upregulation in the transcription of

oxidative phosphorylation genes, resulting in greater electron

transport chain efficiency. This heightened activity leads to increased

production of ROS, a hallmark of cellular stress. Consequently, there’s

an enhancement in mitochondrial membrane potential and a notable

increase in ATP production compared to baseline conditions. These

alterations signify a hyperactivated mitochondrial state triggered by

HIV-1 infection, underlining the complex interplay between the virus

and the host’s cellular metabolism.
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Current research and future directions

Therapeutic interventions targeting mitochondrial dysfunction

and oxidative stress in HIV immunopathogenesis are emerging as a

crucial field of research. Metformin, a diabetes medication, has

shown varying effects on HIV-1 replication in studies by Rezai et al.

and Guo et al. (106, 111). There is an additive effect of risk of

metformin-associated lactic acidosis when used with NRTIs like

tenofovir, which calls for caution in its clinical application (112,

113). Research on the antioxidant properties of plant flavonoids,

such as naringin, is gaining attention for their potential to mitigate

oxidative damage induced by NRTIs (114, 115). Statins, known for

their anti-inflammatory and lipid-lowering effects, are being

explored for their benefits in HIV management, with studies like

SATURN-HIV and REPRIEVE indicating their impact on

cardiovascular risk and mitochondrial function in PWH on ART

(116–118).

Given that HIV-1 infection induces metabolic reprogramming

like that observed in cancer cells, there is growing interest in

exploring anti-cancer drug treatments as potential interventions

to target these metabolic effects of HIV-1 (119). In neurons, the viral

protein gp120 reduces ATP output via oxidative phosphorylation

while increasing glycolysis production and PKM2 expression. Tepp-

46, a selective PKM2 tetrameric stabilizer and a potential small

molecule therapeutics for lung cancer, has demonstrated the ability

to reverse the metabolic reprogramming induced by gp120 in

neuronal cells (120). Further, studies have linked dyslipidemia in

PWH on ART with mitochondrial oxidative stress, suggesting an

association between lipid profiles and the function of mitochondrial

electron transport chain complexes (121). Atovaquone, a

mitochondrial complex III inhibitor, though not tested in chronic

inflammation, is used for treating parasitic and fungal

infections (81).

Advancements in understanding HIV-1 pathogenesis highlight

the role of purinergic signaling, particularly the involvement of

extracellular ATP and P2X receptors. These receptors play a

significant role in the inflammatory response and immune

modulation in HIV-1 infection (112, 113). This growing body of

research underlines the importance of understanding the metabolic

and mitochondrial aspects of HIV-1 infection and ART. The goal is

to improve treatment outcomes by mitigating adverse effects and

exploring new therapeutic avenues that address both HIV-1

management and broader metabolic and cardiovascular health.
Conclusions

The interaction between HIV-1 infection and metabolic activity

significantly shapes the chronic inflammation commonly associated

with HIV. The activation of oxidative phosphorylation is a key

driver in chronic inflammation. This shift is evident in studies

documenting the increased activity of mitochondrial respiratory

chain complexes in HIV-1 infected cells (122–132). Such changes

suggest that HIV-1 exploits the host’s mitochondrial machinery to

its advantage, potentially exacerbating the inflammatory response.

While ART effectively controls viral replication, it does not fully
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FIGURE 1

HIV-1 Infection impact on mitochondrial oxidative phosphorylation. The figure contrasts mitochondrial function under normal conditions with
increased transcription of oxidative phosphorylation genes, higher electron transport efficiency, and elevated reactive oxygen species (ROS) p
ATP production compared to the baseline state. These changes indicate a hyperactivated mitochondrial state in response to HIV-1 infection.
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rectify this metabolic dysregulation, adding another layer to the

complexity. Long-term ART use has been associated with continued

mitochondrial dysfunction (133, 134), indicating that the impact of

HIV on oxidative phosphorylation is a persistent challenge.

HIV-1 infection significantly disrupts host cell metabolism,

increasing glycolysis and fatty acid synthesis to enhance viral

replication, leading to oxidative stress and mitochondrial damage.

This is further complicated by antiretroviral therapy (ART), which

contributes to metabolic conditions like dyslipidemia and insulin

resistance, intensifying mitochondrial dysfunction (135–137).

Studies show that both HIV-1 infection and prolonged ART use

increase the risk of oxidative phosphorylation dysregulation and

mitochondrial disruption in people with HIV (PWH) (122–132).

Reduced activity of respiratory chain complexes and altered

mitochondrial functioning in ART-naïve PWH have been linked

to neurocognitive impairment (125). ART’s impact on oxidative

phosphorylation in PWH also suggests a reduction in

mitochondrial function associated with chronic/controlled HIV-1

(133). Interestingly, pre-exposure prophylaxis (PreP) also shows

reduced mitochondrial function in healthy individuals (134).

Gender-specific differences in response to long-term ART have

been observed, indicating possible variations in immunological

recovery (138).

Recent studies highlight the role of purinergic signaling,

particularly the interaction between extracellular ATP and P2X

receptors, in HIV-1 pathogenesis (112, 113). These receptors,

activated by ATP released from stressed cells, influence the HIV-1

life cycle and contribute to immunometabolic dysfunction (96, 106,

109). The dual role of these receptors in potentially inhibiting or

facilitating HIV replication is mediated through CD39, which

modulates extracellular ATP levels (72, 139–142).

Understanding the interplay between HIV-1 infection, ART,

oxidative phosphorylation, and purinergic signaling is crucial for

developing comprehensive HIV-1 treatment strategies. This

involves addressing the viral challenges and the broader metabolic

and mitochondrial dysfunctions. Future research should focus on

identifying specific targets influenced by HIV-1 and ART and

exploring the impact of purinergic signaling on these pathways.

Such targeted exploration may lead to innovative therapeutic

approaches addressing the infection and its metabolic and

mitochondrial consequences.
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