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Background: Mutation-derived neoantigens are critical targets for tumor

rejection in cancer immunotherapy, and better tools for neoepitope

identification and prediction are needed to improve neoepitope targeting

strategies. Computational tools have enabled the identification of patient-

specific neoantigen candidates from sequencing data, but limited data

availability has hindered their capacity to predict which of the many

neoepitopes will most likely give rise to T cell recognition.

Method: To address this, we make use of experimentally validated T cell

recognition towards 17,500 neoepitope candidates, with 467 being T cell

recognized, across 70 cancer patients undergoing immunotherapy.

Results: We evaluated 27 neoepitope characteristics, and created a random forest

model, IMPROVE, to predict neoepitope immunogenicity. The presence of

hydrophobic and aromatic residues in the peptide binding core were the most

important features for predicting neoepitope immunogenicity.

Conclusion: Overall, IMPROVE was found to significantly advance the

identification of neoepitopes compared to other current methods.
KEYWORDS

neoantigen, neoepitope prediction,machine learning, immunotherapy, immunoinformatics
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1360281/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1360281/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1360281/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1360281/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1360281/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1360281&domain=pdf&date_stamp=2024-04-03
mailto:sirha@dtu.dk
https://doi.org/10.3389/fimmu.2024.1360281
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1360281
https://www.frontiersin.org/journals/immunology


Borch et al. 10.3389/fimmu.2024.1360281
Introduction

To be immunogenic, neoantigens derived from somatic

mutations must be sufficiently expressed, presented, and

recognized by immune cells. In this context, specifically, CD8+ T

cells play an essential role by recognizing fragments of the

neoantigens, called neoepitopes. When sufficiently induced, such

T-cell responses may lead to tumor regression.

It has been shown that the tumor mutational burden (TMB) and

the neoantigen load are predictive of patients’ response to

immunotherapies, such as checkpoint inhibition (CPI) (1–3).

Personalized immunotherapies based on vaccination with

neoantigens are under clinical development and have demonstrated

effective neoepitope-directed T-cell responses as well as good

tolerability (4). However, the development of therapeutic strategies

targeting neoepitopes depends entirely on the capacity to predict

which of the many mutational alterations accumulating in tumors

give rise to T-cell recognition. With current bioinformatic tools, only

2%–6% of the predicted neopeptides are demonstrated to give rise to

T-cell recognition in CPI-treated cancer patients (5–7). This number

needs to be greatly improved to facilitate the successful clinical

implementation of neoepitope-targeting strategies.

Various methods have been developed to predict patient-specific

neoepitopes from DNA and RNA sequencing (RNAseq). These

methods rely on detecting somatic mutations that generate

neopeptides and predicting their binding to the patient’s major

histocompatibility complexes (MHCs) to generate a list of

neoepitope candidates that could give rise to T-cell recognition in

the given cancer patients (8–11). Improving the specificity of

neoepitope detection is an area of intense investigation, and

machine learning methods have been developed to rank neoepitope

candidates in order to predict their potential of being immunogenic,

but their predictive performance remains limited (8, 12). One of the

main challenges for developing accurate neoepitope immunogenicity

predictors is the limited available data that experimentally distinguish

the immunogenic neoepitopes from the non-immunogenic

neopeptides. The resource for experimental evaluation of

neopeptide-specific T-cell responses is limited since such validation

is laborious and expensive and requires a patient-specific peptide

selection, and the breadth of peptides that can be evaluated is often

limited by the scarce availability of patient biological material (13).

Another challenging aspect of neoantigen prediction is that the

characteristics of each patient’s tumor and immune system will

influence neoepitope immunogenicity uniquely in the individual

patient. It is known that tumors evolve to be less immunogenic by

the process of immunoediting (1, 7, 14). The downregulation of

MHC transcription, the induction of T-cell exhaustion, and the

modulation of the immune infiltrate by the production of different

suppressor cytokines are some of the mechanisms that favor cancer

progression and immune evasion. The introduction of

immunotherapies in immunocompetent patients may shift the

tumor microenvironment (TME) profile, stimulating neoantigen

cross-presentation and enhancing T-cell activity, ultimately

resulting in an effective antitumoral immune response (1).

However, not all patients respond to immunotherapy, and even
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those that do may not take full advantage of the immunogenic

potential of the neoantigens.

As a consequence, when screening patients for T-cell

recognition toward neopeptides, such data will comprise a

substantial number of false-negative data (i.e., neopeptides that

have the potential to be immunogenic but are not recognized by the

T cells in a given cancer patient) due to intrinsic immune and tumor

characteristics. Such events form a false-negative data sink that

challenges our predictive capacity. To compensate for this potential

bias and improve the predictive capacity, it is necessary to also

consider the association between neoantigen immunogenicity and

the characteristics of the TME (15–18).

In this study, we explore the characteristics of immunogenic

neoepitopes in order to improve their prediction. We have gathered

a large dataset of more than 17,500 neoepitope candidates and

screened for the presence of neoantigen reactive CD8+ T cells

(NARTs) in 70 patients with different tumor types undergoing

immunotherapeutic treatment. We applied barcoded MHC

multimers to determine T-cell recognition of neoepitopes (13),

hence distinguishing the immunogenic neoepitopes from the non-

immunogenic neopeptides. Based on the described data, we

developed a machine learning model, named IMPROVE, that

integrates i) the neopeptide sequence; ii) neopeptide-derived

features such as their physicochemical properties, the source

mutation qualities, the likelihood of antigen presentation, and T-

cell propensity; and iii) patient-specific tumor-derived features,

including MHC expression in tumor cells, the cytolytic activity

(CYT), and the different cell populations that constitute the TME.

We found that the combination of these features increases the

performance for the selection of immunogenic neoepitopes. This

result suggests that the challenges in neoantigen prediction can be

addressed by having sufficient available data and integrating

multiple factors from the complex antitumor immune response.
Results

Selection of neopeptides and experimental
evaluation of their immunogenicity

In this study, we have gathered experimentally validated

neoepitopes from three different studies and assessed the features

associated with the immunogenicity of predicted neoepitope

candidates. We predicted all the neoepitopes from sequencing

data of the tumors of 70 cancer patients, where each patient was

experimentally evaluated for T-cell recognition covering a range of

100 to 1,092 neopeptides. Based on the screening for T-cell

recognition using DNA barcode-labeled peptide–MHC multimers

and holding each of these neopeptides, we identified T-cell

responses against neoepitopes in the MHC I relevant for the

given patient (19). Based on this experimental evaluation, we

defined “immunogenic neoepitopes”, as those recognized by a T-

cell population in at least one sample from the given patient, and

“non-immunogenic”, as all neopeptides not recognized by T cells in

our screen. In total, this study included 17,520 neopeptides, among
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which we found 467 (2.7%) to be recognized by a T-cell population

in the corresponding patient (Supplementary Table 1), hence

determined “immunogenic”. We generated these data through the

screening of three patient cohorts, including different tumor types.

One is a cohort of metastatic melanoma patients receiving adoptive

cell transfer (ACT) with tumor-infiltrating lymphocyte (TIL) (TIL-

ACT) (5). The second is a cohort of metastatic urothelial carcinoma

(mUC) patients who received PD-L1 CPI (7). The third is a basket

trial cohort with different cancer types and different CPI treatments

(20) (Figure 1A). Their percentage of immunogenic neoepitopes

found in the different cohorts was 3.45%, 2.36%, and 2.16%,

respectively (Supplementary Figure 1A). We identified T-cell

responses from either peripheral blood mononuclear cells

(PBMCs) in mUC or PBMCs and TILs in the melanoma TIL-

ACT and basket trial.

All neopeptides included for T-cell screening across the three

studies were extracted based on the patient’s individual tumor

mutational landscape, derived from paired tumor/normal whole-

exome sequencing (WES) and RNAseq from each patient. Genome

analysis tool kit (GATK) best practices (21) was applied to obtain

somatic variants, followed by peptide extraction using MuPeXI (8)

(Figure 1B). From this pool of neopeptides, on average, 250 (range

100–1,092) neopeptides were evaluated for T-cell recognition per

patient. The predicted likelihood of MHC presentation of the

neopeptides to each patient’s MHC was used as a selection

criterion. The majority of the neopeptides included for T-cell

screening were classified as binders [NetMHCpan 4.0 (22) and

eluted ligand % Rank (RankEL) < 2] to the patient’s HLA class I

molecules. Peptides from patients with a high number of candidate
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mutations were selected using a more restrictive HLA binding

threshold (RankEL < 0.5), whereas the RankEL threshold was

relaxed for patients with fewer neopeptide candidates to meet the

inclusion of a minimum of 100 neopeptides per patient. The

selection criteria resulted in a binding score distribution with two

peaks (of strong and weak binders), as seen in Supplementary

Figure 1B. Only neopeptides from transcribed regions [transcripts

per million (TPM) >0.1] were included (Supplementary Figure 1C).

In total, 36 different HLA class I molecules were covered for T-cell

screening across all patients, and T-cell responses were found

restricted toward 27 of these. Some HLA molecules obtained a

significantly higher proportion of immunogenic neopeptides,

including HLA-A0101, B1501, B4001, C0202, and C0602

(Supplementary Figure 1D). In general, no association was

observed between the number of neopeptides included for T-cell

screening and the number of immunogenic neoepitopes identified

(Figure 1C). It should be noted that non-immunogenic peptides

may hold properties related to immunogenicity and potentially give

rise to T-cell recognition in other individuals or under different

immunological circumstances than tested here, which represents an

intrinsic challenge for defining “true” immunogenicity in the

neoepitope space.
Features influencing
neoepitope immunogenicity

First, a broad set of 27 individual features was interrogated,

which have previously been hypothesized to influence neoepitope
A

B

C

FIGURE 1

Data overview. (A) Data overview illustrating the number of validated peptides for each cohort and the number of patients screened together with a
summary of the total amount validated with the number of immunogenic and non-immunogenic neopeptides. (B) General workflow of the data
generation, including the patient samples being sequenced and patients’ specific libraries with neoepitope candidates being generated and screened
with patients’ samples to find immunogenic neoepitopes. (C) Patient overview according to the number of neoepitopes screened (black dots),
immunogenic neoepitopes (gray dots), and fraction immunogenic (red dots). MM, the melanoma cohort; mUC, the mUC cohort; RH, the basket
trial cohort.
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immunogenicity. Each feature was independently evaluated for its

capacity to separate immunogenic versus non-immunogenic

neoepitopes based on our compiled dataset. A total of 15 features

demonstrated significance in separating the two categories of

neopeptides (Table 1, Figure 2, Supplementary Figure 2).

Of particular interest, whether the type and location of

mutation influence immunogenicity was explored. The mutation

types are categorized as missense, frameshift, in-frame insertion,

and in-frame deletions. More immunogenic neopeptides were

observed in the missense and frameshift categories, but these also

constituted a larger fraction of the evaluated neopeptides; hence, no

enrichment was observed (p = 0.1, proportion z-test) (Figure 2A). A

previous study has reported the mutation position to be important

for the immunogenicity of neoepitopes (35).

To investigate neopeptides of different lengths, we applied the

predicted 9-mer binding core derived from NetMHCpan 4.1 (22) to all

the neopeptides with missense mutations (36). By doing this, we

uniformly investigated the role of the mutation position in the

context of antigen presentation across neopeptides with variable

lengths. In immunogenic neoepitopes, mutations were

predominantly located around the anchor positions of MHC I

motifs, while we observed fewer mutations near position 4 in 8-, 9-,

and 10-mers and near position 5 in 11-mers (Figure 2B, top). We did

not observe this pattern in non-immunogenic neopeptides (Figure 2B,

bottom). We also observed a significantly increased frequency of

mutations in the gap position (outside the core) in 10-mer

neoepitopes (p = 0.04, proportion test) (Figure 2B) compared to the

non-immunogenic ones, suggesting that mutations in longer peptides,

in general, are facing out toward the T cells in immunogenic peptides,

as gap positions are generally characterized by protruding residues.

As mutation calling can give false-positive mutation

assignments (37–39), the presence of the WES-called mutation in

the transcriptome was investigated. Among the predicted

neopeptides, 47% of neopeptides originated from mutations that

could be detected in at least one transcript of the RNAseq, 47% were

not found in RNAseq, and 6% had insufficient RNA coverage in the

region of the mutation (see Materials and Methods). No significant

difference was found with this validation in separating

immunogenic neoepitopes from non-immunogenic ones

(Figure 2C, Supplementary Figure 2A). Additionally, the

proportion of the mutated transcript (ValMutRNACoef) was not

associated with neopeptide immunogenicity (Supplementary

Figure 2B). Six other features related to mutation quality were

evaluated, but only cellular prevalence (CelPrev) was found to

significantly contribute to immunogenicity (Table 1). Among

peptide–MHC (pMHC)-related features, predicted binding affinity

% Rank (NetMHCpan 4.0 and RankBA) (Figure 2D) and RankEL

(Supplementary Figure 2C) significantly separated the

immunogenic from non-immunogenic neopeptides (Table 1).

Thirteen different features describing the physiochemical

properties were evaluated, and most of these also significantly

separated the immunogenic from non-immunogenic neopeptides,

for example, the mean hydrophobicity in non-anchor subsequence

of the neopeptide (HydroCore) (Figure 2E) and “PropHydroAro”, a

parameter that describes the proportion of hydrophobic and
Frontiers in Immunology 04
TABLE 1 Feature overview.

Feature
(abbreviation)

Description p-Value

SelfSim Self-similarity (mutant vs. normal
peptide) (23)

p = 0.24

DAI Differential agretopicity index (11) p = 0.96

Mutation position Position in peptide with mutation. 10-mer gap p=
0.01, prop test

Mutation
consequence

The course of mutation p = NS, prop test

CelPrev Cellular prevalence (24) p =0.016

Expression Expression level (25) p =0.16

VarAlFreq Variant allele frequency (8, 26) p =0.72

ValMutRNACoef Validation of mutation in
RNA sequencing

p = NS. (prop test
and wilcox test)

Foreigness Foreignness score (27, 28) p = 0.24

PrioScore Priority score (8) p = 0.088

RankBA Peptide–MHC binding with
binding affinity % Rank (22)

p = 8.9·10−9

RankEL Peptide–MHC binding with eluted
ligand % Rank (22)

p = 0.0038

Stability Peptide–MHC stability (29) p = 0.012

NetMHCExp NetMHCpanExp (30) p = 0.15

PropHydroAro Proportion of hydrophobic and
aromatic residues (31)

p = < 2.22·10−16

Prime PRIME score (32) p = 9.3·10−13

HydroCore Mean hydrophobicity in core
(without anchor residues) (33)

p = 1.6·10−12

HydroAll Mean hydrophobicity entire
peptide (33)

p = 3.1·10−12

Aro Aromaticity (31, 33) p = 0.029

PropAro Proportion of aromatic residues in
non-anchor positions

p = 2.6·10−09

CysRed Cysteine residues (31) p = 1.5·10−05

PropSmall Proportion of small amino acids in
non-anchor positions

p = 0.003

PropAcidic Proportion of acidic amino acids in
in non-anchor positions

p = 0.003

Inst Peptide instability (31) p = 0.014

PropBasic Proportion of basic amino acids in
non-anchor positions of peptide

p = 0.088

pI Isoelectric point (34) p = 0.120

mw Molecular weight (31) p = 0.029
Feature abbreviation and a short description of the features. The p-values were all calculated
using Wilcoxon test with Bonferroni-adjusted p-value in addition to the p-values specified by
prop-test. The color code defines the feature category.
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aromatic residues in the peptide (Figure 2F) (Table 1,

Supplementary Figure 2C). Likewise, HydroCore and

PropHydroAro were evaluated for the corresponding wt peptide,

and it was observed that the wt sequences also differed in relation to

these features when classified as “immunogenic” and “non-

immunogenic” based on the properties of the corresponding

neopeptides. The difference was less pronounced within the wt

peptides, suggesting that immunogenic neopeptides hold mutations

that further strengthen these characteristics compared to the wt

sequence (Supplementary Figures 2D, E).

Tolerance affects T-cell immunogenicity, and therefore, the

self-similarity of neoepitopes is a previously explored parameter.

Neopeptides can be classified as “conserved binders” (CBs), with

retained MHC presentation and mutation outside the MHC

anchor positions, and “improved binders” (IBs), with mutations
Frontiers in Immunology 05
in the MHC anchor position leading to improved MHC binding. It

has previously been suggested that primarily the CBs will be

affected by tolerance since the wt sequence can also be

presented. We evaluated self-similarity for all peptide categories

and observed a lower self-similarity for the CBs than the IBs

(Supplementary Figure 2F). However, the self-similarity does not

significantly differ between the immunogenic from non-

immunogenic neopeptides either when observing all peptides

(Supplementary Figure 2B) or when considering the IBs and

CBs individually (Supplementary Figure 2G).

In summary, more than one-half of the features (17/29) showed

a significant difference between immunogenic and non-

immunogenic neoepitopes. To assess the performance of these

features to independently drive improved identification of

immunogenic neoepitopes, the area under the receiver operating
A B

D E F

G

C

FIGURE 2

Features and immunogenicity. (A) Percentage of immunogenic neoepitopes according to the mutation consequence. The p-values were calculated
according to the proportion test, testing if the number of immunogenic neoepitopes for each mutation type was present in a higher fraction
compared to the non-immunogenic ones. (B) Fraction of immunogenic neoepitope for all missense mutations according to peptide position and
peptide length. The gap position represents the peptide outside the core (OC) and is significantly enriched for neopeptides with a length of 10 (p =
0.01, prop.test). The neopeptides are separated into immunogenic and non-immunogenic neopeptides. (C) Percent of immunogenic and non-
immunogenic neopeptides where the mutation was validated in RNA. A proportion test was performed to evaluate the proportion of immunogenic
neoepitopes in the different categories. (D–F) Boxplot comparing the non-immunogenic form immunogenic neopeptides for four selected features;
statistics by Wilcoxon test. (D) Peptide–MHC binding affinity (RankBA) p = 8.9·10-9. (E) Hydrophobicity only in the core of the peptide (HydroCore) p
= 1.6·10-12. (F) Proportion of hydrophobic and aromatic residues in the peptide (PropHydroAro) p = < 2.22·10-16. (G) Performance with the partial
AUC 10% for each feature with continuous values independently colored by feature type. p values < 0.05 = *; p values < 0.001 = ***.
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characteristic curve (AUC) and the partial area under the receiver

operating characteristic (ROC) curve were calculated at 0.1

(AUC01). This latter metric was included to focus on the high

specificity part of the ROC curve. Each feature independently

reached a max performance of AUC01 = 0.013 and AUC = 0.62

(Figure 2G, Supplementary Figure 2H). This indicates that even

though a significant difference was observed for a feature in

differentiating immunogenic and non-immunogenic neopeptides

(Figures 2D–F, Supplementary Figure 2C), a limited performance

was obtained when evaluating AUC.
Improved prediction of immunogenicity by
random forest modeling

To account for the joint influence of different features, random

forest (RF) modeling was applied to develop the IMPROVE model,

which predicts immunogenicity in our dataset, based on all the 27

features previously described. The overall workflow is illustrated in

Figure 3A. Considering that previous studies have demonstrated

that highly correlated features reduce the trainability of RF models

(40, 41), the feature space was reduced to only include features with

a mutual Spearman’s correlation coefficient lower than 0.7 (higher

than −0.7 if negative). The feature selection was performed based on

training in the fivefold cross-validation. The performance of the

model was similar when performing the feature selection based on

the entire dataset and deselecting the correlated feature with the

lowest performance. This resulted in discarding HydroAll

(correlated with HydroCore) and VarAlFrac (correlated with

PriorScore) (Supplementary Figure 3A), and to simplify the

model, the VarAlFrac and HydroAll were deselected for the

fivefold cross-validation model. Furthermore, the binary one-hot-

encoded features (i.e., yes/no features), including mutation

consequence and mutation position, did not add predictive power

(based on a backward feature selection) and therefore were not

included in the model. Different models with backward and forward

feature selection were evaluated to ensure that the final model

gained the highest performance (data not shown). Based on these

selection criteria, 22 features were incorporated into the final RF

feature-based IMPROVE model. As an alternative strategy to the

feature-driven model, a sequence-based model was also developed

using the NNAlign method, which only encounters the peptide

sequence (42).

A fivefold cross-validation scheme was used to train and

evaluate both types of models. To avoid data redundancy, a

modified common motif clustering was applied (described in

Materials and Methods) to define the data partitions. This

ensures that all the data from the same patient are partitioned

together to avoid overfitting on patient-level features. The result was

a dataset split into five partitions, separated by neoepitope

candidate, common motifs, and patients.

The performance of the models was evaluated in terms of AUC

and AUC01. The IMPROVE model displayed significantly higher

performance (AUC = 0.630 and AUC01 = 0.0139) than NNAlign

(AUC = 0.605 and AUC01 = 0.0131) (p=0.039), but both

outperformed RankEL (AUC = 0.539 and AUC01 = 0.0086)
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(IMPROVE vs. RankEL p = 4.3-6) (Figure 3B). Similar results

were obtained when using a precision–recall curve measurement.

Also, here, IMPROVE was found to outperform both NNAlign and

RankEL (Supplementary Figure 3B).

The performance of an ensemble model, based on the average

score of both methods, demonstrated no major improvement with

respect to the IMPROVE model alone (Figure 3B).

The separation of immunogenic and non-immunogenic

neopeptides was further analyzed based on the prediction scores.

For each cohort independently, a significant separation was

observed using the prediction score from the IMPROVE model

and NNAlign model. However, a clearer separation was found with

the IMPROVE model, especially in the mUC cohort (Figure 3C).

Both IMPROVE and NNAlign allow interpretation of the rules

learned by trained models. Investigating the sequence logos

produced by NNAlign, the immunogenic neopeptides were found

to be enriched in hydrophobic and aromatic residues

(Supplementary Figure 3C).

Also, when analyzing the feature importance for the IMPROVE

model, the mean hydrophobicity and PRIME score (32) were found

to be the most relevant features (Figure 3D).

In general, the prediction scores of the IMPROVE model were

able to separate the immunogenic neoepitopes and non-

immunogenic neopeptides also when evaluated for HLA alleles

individually (Supplementary Figure 3D, Supplementary Table 2)

and patients individually (Supplementary Figures 3E–G).

Neoepitopes are most often private antigens since most

mutations are unique to the given patient’s tumor. However,

given the size of the dataset in this study, we were able to detect

several identical neopeptides present in the tumors of multiple

patients. Specifically, 3% of the dataset corresponds to neopeptides

whose sequence was identified in more than one patient and 2% of

pMHCs that are present in more than one patient, as few shared

neoepitopes are presented on different HLA alleles in different

patients, despite the same peptide sequence. Following T-cell

screening, we found T-cell recognition in three pMHCs

presenting such “shared” neoepitopes. Interestingly, we found

these neoepitopes to be immunogenic in only one patient and

negative in one or two other patients, suggesting that patient-

specific characteristics are influencing the neoantigen-directed

immune response. This observation highlights the concern of a

false-negative data sink, including non-immunogenic neopeptides

that could have been immunogenic in another patient.
Encountering tumor microenvironment
improves prediction but not on
patient level

The TME comprises an essential factor in the antitumoral

immune response. Earlier studies have suggested that a

combination of TMB and TME can be used as a biomarker to

predict the patient’s response to immunotherapy (43–45). Also, it has

been demonstrated that TME features influence the presence of TILs

recognizing neoantigens (5). Immunogenic neoepitopes will only lead

to tumor elimination if active neoantigen-reactive T cells are present.
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Based on RNAseq data, we derived information regarding the

proportion of the different cell populations that compose the TME

with the microenvironment cell population counter (MCP-counter)

(15). Eight out of 10 of the populations from the MCP-counter

significantly separated immunogenic from non-immunogenic

neoepitopes and the last two (neutrophils and NK cells were non-

significant) (Supplementary Figure 4A). We found a correlation

between several of the cell populations (Supplementary Figure 4B),

and consequently, due to the inability of the random forest model to

detect the importance of highly correlated features, we calculated the

mean of all cell estimates per patient (MCPmean). The MCPmean

covers an estimate of the total immune cell infiltration.

CYT, geometric mean of GZMA, and PRF1 expression can be

used as estimates for T-cell cytolytic activity and have been found to
Frontiers in Immunology 07
correlate with the neoantigen load (46). Additionally, HLA

presentation is an essential factor for neoantigen-directed T cell-

mediated killing of cancer cells. Downregulation of HLA molecules

is a known escape mechanism of tumor cells (47, 48), and the HLA

expression in tumors correlates to higher immune cell infiltration

and prolonged survival (1, 49). These TME features were found to

significantly separate immunogenic to non-immunogenic

neoepitopes (Figures 4A–C), and the separation in the HLA

expression accounts for all HLA loci (Supplementary Figure C).

We integrated the patient-specific immune-related features in

addition to the above-defined neopeptide-derived features in an

extended IMPROVE model (IMPROVE TME) and checked that

none of the TME features were correlated (Supplementary

Figure 4D). Using the IMPROVE TME (including CYT, HLAexp,
A

B

D

C

FIGURE 3

Random forest modeling. (A) Strategy of the machine learning approach with feature selection, partitioning, and modeling. (B) ROC curve with the
IMPROVE model in purple (AUC = 0.630 and AUC01 = 0.0139), which performs significantly better than the NNAlign in green (AUC = 0.605 and
AUC01 = 0.0131) (p = 0.039, roc.test) and RankEL (AUC = 0.539 and AUC01 = 0.0086) (p = 4.3-6). An Ensemble model of NNAlign and IMPROVE
was also made, resulting in a similar performance as IMPROVE (0.631 and AUC01 = 0.0139), marked in a light blue line. (C) Prediction score from the
NNAlign model at the top and IMPROVE model at the bottom according to the immunogenic and non-immunogenic peptide split by cohort. The
IMPROVE model had significant separation in all three cohorts, with p-values of 1.6-9, 2.3-6, and 7.1-6 for the three cohorts. All with non-paired
Wilcoxon test. The NNAlign model obtained significant separation in basket trial (p = 1.0-10, Wilcoxon test) and melanoma (p = 3.8-7, Wilcoxon test)
and for the mUC cohort (p = 0.019). (D) Mean feature importance for the IMPROVE model colored by the feature category. p values < 0.05 = *; p
values < 0.001 = ***.
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MCPmean, and previously described IMPROVE features), the

performance of neoepitope detection significantly increased

(p = 0.01) with a global AUC of 0.65 and partial AUC of 0.0145

(Figure 4D). We also observed the increased performance in

precision–recall analysis (IMPROVE TME 0.052>0.049)

(Supplementary Figure 4E). However, when observing

performance per patient level, we did not see any increased

performance (Figure 4E, Supplementary Figure 4F). To elaborate

on this, we calculated the difference (delta) between the prediction

scores derived from the IMPROVE TME and IMPROVE models

(IMPROVE TME–IMPROVE). We observed that peptides from

patients with high CYT had a positive delta, while peptides from

patients with low CYT had a negative delta (Spearman’s correlation

coefficient = 0.76 and 0.80) (Supplementary Figure 4G). In other

words, the model with TME features favored peptides from patients

with high CYT; therefore, TME features themselves were unable to

distinguish the immunogenicity of peptides within patients but

favored the patients with an immunocompetent TME. Hence, the

improvement in AUC likely stems from the enrichment of T-cell

responses in patients with favorable TME, which will also affect the

immunogenicity classification in our dataset. Thus, to only

determine peptide features associated with immunogenicity, the

IMPROVE model can be used, but to include the likelihood of
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finding T-cell reactivity toward each neopeptide in each patient, the

IMPROVE TME model should be applied.

Finally, we assessed the relative feature importance in the joint

IMPROVE TME model. Here, CYT was the feature that constituted

the highest importance for the model, whereas HLAexp was the fourth

(Figure 4F). HydroCore and Prime were placed at second and third

highest performance, respectively. In conclusion, TME and HLA

expression are useful features to assess the proclivity of a patient to

have a detectable T-cell response against immunogenic neoepitopes.
Capturing of true-positive neoepitope and
association with patient survival

To develop therapeutic interventions targeting neoepitopes, it is

crucial to precisely determine relevant immunogenic neoepitopes.

Hence, based on the IMPROVE prediction model, we investigated

our capacity to catch true-positive immunogenic neoepitopes out of

the total possible pool. We determined the proportion of observed

immunogenic neoepitopes located among the top 20 and 50 ranked

neopeptides per patient based on the predicted value from both the

IMPROVE models (with and without TME), a RankEL

prioritization, and random sampling. Both IMPROVE models
A B
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FIGURE 4

Random forest with tumor microenvironment (TME) parameters. (A–C) Comparing immunogenic with non-immunogenic neoepitopes for features.
Statistics made using Wilcoxon test and Bonferroni-adjusted p-values. (A) HLA expression (HLAexp) p = 2.7-15. (B) Cytolytic activity (CYT) p = 9.3-10.
(C) Mean of MCP-counter populations (MCPmean) p = 0.0075. (D) ROC curve illustrating the two IMPROVE models. The IMPROVE model without
TME features in dark purple (AUC = 0.630 and AUC01 = 0.0139) and IMPROVE with TME features in light purple (AUC = 0.652 and AUC01 = 0.0145).
IMPROVE TME is significantly better than IMPROVE (p = 0.01, roc.test). (E) The partial AUC 10% per patient for the two models and statistics made
using paired Wilcoxon test (p = 0.95). (F) Mean feature importance for the IMPROVE with TME features colored by the feature type. p values < 0.01 =
**; p values < 0.001 = ***; p-values > 0.5 = NS.
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showed a higher proportion of identified immunogenic neoepitopes

out of the true immunogenic neoepitopes per patient compared to

RankEL and random sampling. As expected from the description

above, the implementation of the TME did not demonstrate any

improvement compared to the model without TME on the patient

level (Figures 5A, B).

We further evaluated the predictive value of the models for the

identification of true positives (i.e., immunogenic neoepitopes

validated through experimental detection of T-cell responses)

based on a cutoff for the selection of predicted positive

neopeptides using our IMPROVE models and RankEL for

comparison. We set the cutoff as the point where the sensitivity

and specificity curves intersect, meaning the point where we do not

compensate for either the sensitivity or the specificity (Figure 5C).

With the intersect cutoff according to RankEL, we identified 8,287

predicted positive candidates, of which 246 were true positive,

obtaining a Matthews correlation coefficient (MCC) at 0.02 and

an accuracy of 0.53. Increased performance was gained with the

IMPROVE model, resulting in 7,342 predicted positive candidates,

of which 274 were true positive (MCC at 0.06 and accuracy of 0.59),

and an additional increased performance with the IMPROVE TME

model resulted in 6,908 candidates, of which 288 were true positive

(MCC at 0.08 and accuracy of 0.61) (Figure 5D).

To investigate the improved prediction capacity that also

influences the use of neoepitope load as a biomarker for clinical

outcomes, we predicted the immunogenicity score for all possible

neoepitopes for each patient included in the studies addressed here.

Using the previously defined cutoffs for the IMPROVE models and

RankEL (Figure 5C), we separated patients into four groups by the

quantile related to the number of predicted neoepitopes using the

three different models. Using the IMPROVE-based selected, we

observed an improved separation of survival in the four quantile

groups, compared to RankEL, where only the highest quantile group

was distinct (Figure 5E). The included cohorts were very

heterogeneous, including different cancer types and treatments, and

hence somewhat differently influenced by the level of neoepitopes

when evaluated individually (Supplementary Figure 5). In comparison

to the predicted neoepitopes, the TMB, which previously has been

used as a biomarker for clinical outcomes for various cancer types,

does not significantly separate the patients related to clinical outcome

and results in a weaker hazard ratio compared to the neoepitope

prediction (Supplementary Table 3, Figure 5E).
Benchmarking on independent dataset and
comparison of other tools

Next, we tested eight other publicly available tools’ predictive

power over our in-house dataset. It should be noted that some of

these tools have been included in the IMPROVE model (Foreigness,

RankEl, and Prime). Some tools also have restrictions; for example,

DeepNetBim only accepts 9-mer peptides, and therefore, the

performance reported corresponds to different subsets where the

models can be applied (see Materials and Methods). The tool with
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the best performance in addition to the IMPROVE model was

Prime (AUC = 0.598 and AUC01 = 0.0098), which also is one of the

features included in our model. In addition to IMPROVE or

features included in IMPROVE, NetDeepBim had the best

performance according to AUC01 (AUC01 = 0.0074), and IEDB

had the best performance according to AUC (AUC = 0.555)

(Figures 6A, B).

Finally, we evaluated the IMPROVE model performance with

independent neoepitope data downloaded from the Cancer Epitope

Database and Analysis Resource (CEDAR) (50). The query

included positive and negative T-cell assays of neopeptides

presented in human MHC class I. We did not include viral,

germline, and self-antigens. We discarded neopeptides from the

CEDAR with the exact same sequence as neopeptides from the

IMPROVE model training dataset. We included only neopeptides

of length 8 to 12 amino acids, where the reported cognate MHC has

a four-digit resolution. Since the IMPROVE model was developed

with prefiltered data, we only selected peptides from the CEDAR

database with RankEL < 2. The final independent dataset consisted

of a total of 2,436 neopeptides with 548 immunogenic neoepitopes.

The genomic features included in PrioScore, i.e., the VarAlFreq,

cellular prevalence, expression level, and TME features, were not

available for this dataset. Only the expression level could be inferred

with pepX (51). To overcome this issue, we created an IMPROVE

“simple” model referred to as IMPROVE simple, excluding these

missing features from the training data. The cross-validation

performance of the IMPROVE simple model (AUC = 0.643 and

AUC01 = 0.0134) was similar to that of the IMPROVEmodel (AUC

= 0.630 and AUC01 = 0.0139). This aligns with the earlier analysis

showing that peptide sequence features, such as hydrophobicity,

were the most important performance features. Thereafter, we

evaluated the IMPROVE simple model on the independent

benchmark data from the CEDAR, resulting in a performance of

AUC = 0.624 and AUC01 = 0.0114. This performance was

significantly better (p = 0.009) than that of NetMHCpan RankEL

alone (AUC = 0.583 and AUC01 = 0.0109) (Figure 6C). These

results demonstrate that the IMPROVE model has predictive power

beyond the data used for the model development.

Next, we compared the performance of IMPROVE to that of the

eight other tools. We observed that IMPROVE was the best tool to

predict immunogenic neoepitopes in the CEDAR dataset according

to AUC and that Prime displayed the best performance when

evaluated using AUC01 (Figures 6D, E). It should be noted that

70% of Prime’s training data were included in the CEDAR

evaluation data, likely resulting in a performance overestimation

from this method, confirmed by the finding that the PRIME

performance dropped when removing the peptides overlapping

with the PRIME training data from the CEDAR evaluation data,

showing that Prime lacks performance with the independent

dataset. To further investigate this, and since the PRIME

prediction score is a feature of the IMPROVE model, we

retrained the IMPROVE model without the Prime score feature.

Doing this resulted in similar performance of the in-house dataset

used for the fivefold cross-validation and a slight drop on the
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independent CEDAR dataset; however, it still has a better

performance than the other tools in addition to the Prime with

the whole dataset (Figure 6F). This demonstrates that IMPROVE is

a state-of-the-art method for the accurate prediction of

immunogenic neoepitopes, advancing the field of cancer

antigen prediction.
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Discussion

Previous studies investigating neoepitope candidates have been

hampered by limited data, making it challenging to learn the rules

of their immunogenicity. In this study, we evaluated more than

17,000 neoepitope candidates with over 450 immunogenic
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FIGURE 5

Patient performance and survival. (A, B) The fraction of immunogenic neoepitopes in the top 20 and top 50 neoepitope candidates of the IMPROVE
model (dark purple) and the IMPROVE TME (light purple), with red indicating eluted ligand % Rank and gray indicating randomly sampled peptides.
(A) Top 20 neopeptides IMPROVE vs. RankEL (p = 0.0023), IMPROVE vs. random (p = 8.2-5), and IMPROVE vs. IMPROVE TME (p = 0.64). (B) Top 50
neopeptides IMPROVE vs. RankEL (p = 0.03), IMPROVE vs. random (p = 1.8-5), and IMPROVE vs. IMPROVE TME (p = 0.71). (C) Sensitivity and
specificity calculated for the cutoff where the point the curve crosses defines the set cutoff of what is predicted to be immunogenic and non-
immunogenic. (D) Confusion matrix with cutoff where the sensitivity and specificity cross. The left image shows RankEL according to the pre-
selected neoepitopes with expression above 0.01. The middle image shows the IMPROVE model without TME, and the confusion matrix on the right
image is the IMPROVE model with TME features included, with the defined threshold found in panel (C). (E) Kaplan–Meier curves showing all
predicted neopeptides with a threshold of RankEL< 2 and Expression > 0.01, which included predicted neoepitopes that were not screened, for
example, HLA alleles that were not available and neopeptides for patients selected with a more restricted threshold. The survival analysis was made
for the three categories described in the confusion matrix. The patients were separated into four groups according to the number of predicted
neoepitopes above the defined threshold. The four groups were determined according to the quantile, where “high” is above the third quantile, and
“medium high” is between the second and third quantiles. “Medium low” is between the second and first quantiles, and low is below the first
quantile. The threshold for predicted neoepitopes was set to where the sensitivity and specificity cross as shown in panel (C) and was also the
threshold used in the confusion matrix. (Left) RankEL. (Middle left) The IMPROVE model without TME. (Middle right) The IMPROVE model with TME.
(Right) The tumor mutational burden (TMB). p values < 0.05 = *; p values < 0.01 = **; p values < 0.001 = ***; p-values > 0.5 = NS.
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neopeptides verified through large-scale T-cell interrogation using

barcode-labeled peptide–MHCmultimers (19). As such, this dataset

is, to our knowledge, the largest experimentally verified pool of

neoepitope candidates.

To overcome the scarcity of validated neoepitopes, other studies

have predicted neoepitope immunogenicity based on pathogen-

derived epitopes (28, 32), but the rules related to immunogenicity

for pathogen-derived sequences may differ from those of

neoepitopes, as they are potentially influenced by the tolerance to

the wi ld- type sequence and the immune inhib i tory

microenvironment often established by the tumor. Consequently,

these methods often have limited predictive performance on

neoepitope data (12). A study that investigated immunogenicity

characteristics based only on cancer neopeptides (including 30

immunogenic neoepitopes) found significant associations between

immunogenicity and pMHC stability, affinity, and gene expression

(11). Interestingly, in that study, hydrophobicity has the opposite
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selective characteristics compared to the results presented here. We

found high hydrophobicity to be strongly associated with the

immunogenicity of neoepitopes, which has also been

demonstrated by others in relation to pathogen-derived epitopes

(32, 52). This demonstrates the need for the assessment of larger

neoepitope datasets, allowing data partitioning to avoid conclusions

driven by few neoepitope examples.

In the present work, we interrogated 27 features covering

mutation-specific, peptide sequence-specific, and patient-specific

parameters. The large dataset of this study allowed us to accurately

select the best features associated with T-cell responses and to

develop a feature-based RF model (IMPROVE), providing insight

into the most important characteristics of immunogenicity.

Compared to other machine learning models, for example,

artificial neural network (ANN) models, RF models are generally

better at dealing with small datasets and numeric values in different

scales and provide a greater understanding of the feature space (53,
A B

D E F

C

FIGURE 6

Benchmark data. (A, B) Testing the in-house dataset used to train IMPROVE with other available tools. (A) Performance according to the partial AUC
10%. (B) Performance according to AUC. (C) A simple IMPROVE model was generated using cross-validation, referred to as CV, taking features only
by knowing the mutated peptide, corresponding WT peptide, and the HLA allele. This only excluded the Priority Score and cellular prevalence from
the original IMPROVE model without TME. This IMPROVE simple model resulted in a performance of AUC = 0.643 and AUC01 = 0.0134 and is
marked in light blue. The IMPROVE simple model to predict immunogenicity from the benchmark from CEDAR data performed only a bit worse than
the IMPROVE simple model and is marked in yellow (AUC = 0.625 and AUC01 = 0.0102). The prediction of the CEDAR benchmark data using
IMPROVE performed significantly better (p = 0.0038, roc.test) than RankEL as colored in red (AUC = 0.586 and AUC01 = 0.0094). (D, E) Testing the
CEDAR dataset using other available tools. (D) Performance according to the partial AUC 10%. (E) Performance according to AUC. (F) Retraining of
IMPROVE simple model without Prime feature (purple), resulting in AUC = 0.64 and AUC01 = 0.0135, and predicting CEDAR data with the IMPROVE
simple model without Prime (yellow), resulting in AUC = 0.61 and AUC01 = 0.0104.
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54). From the RF modeling of our neoepitope dataset, we identified

physicochemical properties of peptides relevant for their likelihood

to be detected by T cells and specifically that immunogenic epitopes

are enriched in hydrophobic and aromatic residues, supporting

previous studies (32, 55). Next, the likelihood of binding to the

MHC was found to be a relevant feature that influences

immunogenicity, in line with previous studies (11, 28), but since

our peptide library was preselected by the NetMHCpan score, the

feature importance score does not accurately reflect the criticality of

HLA binding for detecting neoepitopes. Prediction of binding to

MHC is the most relevant step in neoepitope detection and should

be addressed in all pipelines (56). Clonal characteristics of the

mutation have previously been hypothesized as a feature

contributing to immunogenicity (56)—here, we used cellular

prevalence, a parameter related to mutational clonality, and

observed this among the most essential features of the model,

supporting that, indeed, mutational clonality influences

immunogenicity. Lastly, features related to expression, self-

similarity, pMHC stability, and foreignness provided a minor

contribution to the final model.

In cancer patients, the TME, additionally, critically influences

the ability to raise tumor-antigen-specific T-cell responses (47). Our

study addressed the importance of TME features in a combination

of prioritizing neoantigen candidates, and IMPROVE showed an

increased performance by including these TME features in the

prediction. Notably, the patient-specific TME features add

information about patients but should not be applied alone

because we did not observe an improved performance on the

patient level when compared to the original model without TME

features included. This underlines that the TME features select for

patients that are more likely to mount a neoepitope T-cell response

and therefore is useful for predicting the likelihood of T-cell

response rather than prioritization of neoepitopes within a

given patient.

From a large dataset, as presented here, sequence identity across

neoepitopes can be investigated. This is represented by the NNAlign

model, which demonstrates that such sequence-based training can

identify dominant sequence characteristics related to

hydrophobicity. However, as sequence characteristics may differ

depending on HLA restriction, antigen sequence, etc., having a

model built on epitope features is more likely to reveal

characteristics of relevance across variable patient cohorts—and

here, we demonstrated that feature-based models have a better

predictive performance compared to more simple sequence-

based models.

Previous studies showed that the level of T-cell recognition of

neoantigens was associated with better clinical outcomes and

survival (5, 6, 57). The mUC cohort showed a difference in

survival, comparing the increase in neoepitope-specific T-cell

responses after 3 weeks of treatment (6), and in the melanoma

cohort, improved survival was demonstrated for patients with

higher frequency and breadth of neoepitope recognition in their

TIL infusion products (5). Importantly, we could demonstrate that

the neoepitope load predicted using IMPROVE showed a higher

correlation to patients’ overall survival compared to the neoepitope
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load predicted based on RankEL (using NetMHCpan) alone.

Although the prediction of patient outcome is not the key

accomplishment of the IMPROVE prediction strategy, the

influence observed on patient outcome suggests that the predicted

immunogenic neoepitopes are indeed relevant targets of T-cell

recognition and elimination of cancer cells and do influence

treatment outcome and survival.

The challenge for neoepitope prediction is the high level of false-

negative data that will be embedded in every dataset. Identification

and detection of neoepitope-specific T cells are challenging at a

broad scale, and despite recent improvements in high-throughput

strategies for pMHC-driven T-cell detection (5, 19), such strategies

are still dependent on the quality and type of biomaterial available.

Often, the frequency of neoepitope-specific T cells is very low, even

below the detection limit; hence, a fraction of these can be missed

during analyses. Tumor-infiltrating lymphocytes will in most cases

hold larger frequencies of neoepitope reactive T cells compared to,

e.g., peripheral blood (5), but TILs are rarely available, and as such,

measuring of neoepitope reactive T cells in PBMCs may

underestimate the number of neoepitopes that could, in fact, give

rise to T-cell recognition. Furthermore, a large fraction of

neopeptides may have the intrinsic characteristics to be

immunogenic, but no T-cell response is mounted in the setting of

the evaluation. This can relate to either the immune inhibitory

environment of the tumor or the immunotherapeutic treatment

given to the patients. It is demonstrated that immune-checkpoint

inhibition does enhance the breadth of neoepitope recognition (6),

but additional unleashed potential may be unexploited. Multiple

studies have demonstrated that additional neoepitope response

could be mounted upon antigen-specific stimulation, such as

vaccination (58, 59). Thus, taken together, despite the size of our

library, certainly not all potential immunogenic neoepitopes are

captured, but the predictive value indicates that despite this

limitation, the key features of immunogenicity can be captured.

The influence of each patient’s characteristics is further

emphasized by the observation that the same pMHC complex can

be immunogenic in one patient but negative when tested in others.

Drawing a parallel to the investigation of epitopes from infectious

diseases, several studies have demonstrated such variable behavior

in, for instance, influenza (60) and SARS-CoV-2 (61) infections and

can be explained by the phenomenon of immunodominance,

differences in T-cell receptor (TCR) repertoire, and additional

undefined patient characteristics. Thus, while this is a well-

described phenomenon, it poses a substantial challenge to

neoepitope data, as such epitopes are largely fully personalized,

and hence, the immunogenicity of an individual neoepitope cannot

be assessed by studying larger cohorts. In the field of pathogen

research, a peptide would not be labeled as “negative” after testing

only in one individual for immune response but rather would be

evaluated based on the prevalence of T-cell recognition in a larger

cohort. However, due to the private nature of neoepitopes, it is

impossible to perform validation in multiple patients. This

challenges the annotation of immunogenicity for neoepitopes,

and to compensate for this limitation, large datasets are required

to obtain accurate models for neoepitope prediction. The results
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and performance evaluations in the current and earlier epitope

immunogenicity assessment/prediction work must be interpreted in

the context of these limitations.
Conclusion

This study introduces an improved model for the prediction of

neoepitope immunogenicity, based on key selected features

characterizing the neoepitopes. Such improvements are highly

needed to advance the field of therapeutic neoepitope targeting.

The IMPROVE model is built on a large dataset of neoepitopes

evaluated for T-cell recognition in cancer patients. The model

enhances the prediction of immunogenic neoepitopes and can

identify true neoepitopes in more than 2/3 of the patients, within

the top 20 neoepitope candidates. Furthermore, we raised the model

performance by considering patients’ specific TME features. This

can help to partially overcome the enormous patient variability that

challenges the accuracy of neoepitope prediction. Even though the

findings were based on broad-scale validated neopeptides, the

model needs validation with more data, especially more

immunogenic neoepitopes, to continue improving the

performance. Nevertheless, the IMPROVE model can predict the

ranking of neoepitope candidates with unprecedented accuracy,

which is a critical task for the development of effective

immunotherapeutic strategies targeting neoepitopes, like

personalized cancer vaccines.
Materials and methods

Patient selection

The cancer patients included in this study were enrolled in three

different studies: a melanoma cohort that received TIL-ACT (5, 62),

a cohort of mUC patients who received PD-L1 checkpoint

inhibition (6, 63), and a basket trial cohort with different cancer

types and CPI treatments (20). Only patients with assessable patient

material were included, which resulted in 70 patients in total.
Neoepitope prediction

The neoepitope prediction was performed as described in

Kristensen N et al. and Holm J et al. (5, 6). Shortly, paired tumor

and normal WES and tumor RNAseq raw fastq files were pre-

processed using trim-galore (64) version 0.4.0 to remove low-

quality fragments and adapters. Burrows-Wheeler Aligner (65)

version 0.7.15 was used to align the trimmed WES reads to the

human reference genome (GRCh38), and MarkDuplicates from

Picard-tools version 2.9.1 (66) was applied to tag duplicated reads

due to technical artifacts. The quality scores were recalibrated using

GATK, and the paired bam files were used as input to MuTect2 (26)

from GATK (21) to detect somatic mutations. The bladder and
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melanoma cohort was processed following guidelines from GATK

3.8.0. GATK version 4.0.1 was used for the basket trial cohort.

Tumoral transcript abundance was quantified using Kallisto version

0.42.1 (25) from RNAseq. Patient-specific HLA genotype was

determined using OptiType (67) version 1.2 on WES derived

from normal samples. HLA types, RNA expression, and somatic

mutation VCF files were used as input to MuPeXI (8) version 1.1.2

to extract and rank neoepitope candidates. Posterior filtering of

candidates was performed considering RNA expression values

>0.01 and a predicted binding Rank <2 using NetMHCpan

version 4.0 (22), except when patients had few peptide candidates,

where the threshold was extended to 0.1 and RankEL < 0.5. If the

expression level was insufficient to be obtained, they were reported

as “-” in the MuPeXI output and were included in the peptide

selection for the basket trial cohort. This covers in total 78 peptides

from four patients.
Neopeptide experimental
immunogenicity assessment

In total, 17,520 neoepitope candidates were screened for their

potential to activate a T-cell immune response with MHC multimer

barcoding as described in References (5, 6, 13, 20). Predicted

neopeptides and viral control peptides were synthesized using

Pepscan (Pepscan Presto, Lelystad, The Netherlands). Peptides

were dissolved to 10 mM in dimethyl sulfoxide (DMSO).

Neopeptides were folded with the corresponding HLA and

labeled with DNA barcodes, identifying all unique pMHC

multimers. Each patient-specific multimer library was screened

using patient-derived samples, including PBMCs and TILs, and

the melanoma cohort was also screened using the infusion product

used for the TIL-ACT.
Feature calculation

Neopeptide features
The mutation consequence, as well as the sequences of mutant

and wild-type peptides, were obtained using MuPeXI version 1.2

(8). The variant allele fraction (VarAlFrac) was obtained from

mutect2, also given in the MuPeXI output as (Allele Frequency).

The expression levels from the mutated transcript were calculated

using Kallisto version 0.42.1 (25) and were obtained from the

MuPeXI output. No transcript was assessable for 78 neoepitopes

belonging to four patients from the basket trial, and in these cases,

the expression was obtained from the Human Protein Atlas using

NetMHCpanExp (30). The priority score (PrioScore) was also

attained from the MuPeXI output. The likelihood of mutant and

wild-type peptides binding to the patient’s MHC was predicted

using NetMHCpan 4.0 (22).

Both the eluted ligand % Rank (RankEL) and binding affinity

Rank (RankBA) predictions were retrieved. The differential

agretopicity index (DAI) was calculated as the differences between
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the mutant and normal RankEL (Mutant Rank) (11). The stability

of the pMHC complex was predicted using NetMHCstabpan 1.0

(29). Additionally, NetMHCpanExp-1.0 (NetMHCExp) was

employed to jointly evaluate the expression of a peptide and its

likelihood of binding to its cognate MHC and generating in this way

a combined prediction that takes into account both features (30).

Since anchor residues are in contact with MHC, non-anchor

residues are more exposed to interaction with TCRs. Therefore,

the non-anchor subsequence was defined as the fourth to the

penultimate residue among the predicted binding core with

NetMHCpan-4.1.

The foreignness score (Foreignness) was measured as

previously described in Reference (27), and the function from

antigen.garnish (28) was used to calculate the score. The

similarity between the mutant peptide and the corresponding

wild-type peptide or self-similarity (SelfSim) was calculated using

the Kernel distance (23). Cellular prevalence (CelPrev) was

calculated as previously described in Reference (5) using

Sequenza (68) version 3.0, Shixiang/copy-number (69) version

1.26.0, and PyClone (24) version 0.13.1. Transcript abundance

was derived from RNAseq data using Kallisto version 0.42.1 (25).

To validate the expression of mutated alleles in RNA, the RNAseq

was mapped to the reference genome using STAR v2.5.3 (70), and

then all the bases were retrieved using samtools mpileup (71) at the

variant positions reported by MuTect2. The proportion of mutated

transcripts among the covered transcripts (ValMutRNACoef) was

assessed using the formula Nreadssupporting  variant=(Nreadsofcov

erage + 100). Whether the mutation was present in the RNA in 15%

of the neoepitopes was validated due to inconsistency in mutation

position between MuPeXI and mutect2.

Physiochemical descriptors of the neopeptide sequences were

calculated. The following were calculated using the ProteinAnalysis

module from BioPython: molecular weight (mw); molar extinction

coefficient; the relative frequency of F, W, and Y amino acids or

aromaticity (Aro); instability index (Inst); and the relative

frequency of V, I, Y, F, W, and L amino acids or helix

(PropHydroAro) (31). The isoelectric point was calculated using

EMBOSS with the Peptides package (34) in R. The mean

hydrophobicity scale (33) and the proportion of different

physicochemical classes of amino acids (small, aromatic, acidic,

and basic) were calculated for the non-anchor subsequence. The

propensity for TCR recognition was calculated using PRIME (32).
Patient features
The expression of MHC molecules (HLAexp) in the tumor cells

was derived from RNAseq data. The CYT was calculated as the

geometric mean of GZMA and PRF1, as previously described in

Reference (46), and the expression of these genes was also derived

from RNAseq data. The abundance of tumor-infiltrating immune

and stromal cells was estimated with MCP-counter (15) using the

RNAseq expression values obtained with Kallisto (25). MCPmean

covers the mean abundance of all the 10 estimated cell populations

from the MCP-counter including T-cells, CD8 T cells, Cytolytic

Lymphocytes, NK cells, B linage, Monocyte linage, Myeloid

dendritic cells, Neutrophils, Endothelial cells, and Fibroblasts.
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Models

Dataset
We assembled a dataset that contains the neopeptide sequences,

the calculated features, and the immune response as the target

value. For some neopeptides, it was not possible to obtain all the

proposed features (there were no available RNAseq data for some

patients, it was not possible to calculate the cellular prevalence when

tumor samples were derived as cell lines, and MuPeXI does not

report a normal peptide when a frameshift mutation has more than

four mismatches compared to the most similar normal peptide,

impeding the calculation of self-similarity). Therefore, we impute

the missing values using the mean of the corresponding feature,

except for the expression values in which we used NetMHCpanExp

to retrieve expression values from the Human Protein Atlas

(v. 20.0) database.

To avoid data leakage and overfitting of the models, a

partitioning scheme was defined. A clustering algorithm was

implemented to group neoepitopes based on i) shared

subsequences or motifs between immunogenic neoepitopes and

ii) the patient. In this way, all neoepitopes from the same patient

and all similar neoepitopes were grouped together in the same

partition. First, the immunogenic neoepitopes were grouped using

the mentioned criteria, and then the non-immunogenic

neopeptides were included in the defined partitions. If a peptide

in the test set existed in the training data, the peptide was deselected

from the training. This only affects the negative peptides, as the

positive ones were separated by a partition.

Random forest
RF models were developed using the RandomForestClassifier

module of the scikit-learn (72) package in Python version 3.7.6. The

hyperparameter max_depth was set to 6, n_estimator was set to

2,000, min_sample_leaf was set to 6, and a nested cross-validation

scheme was used. To avoid data imbalance, 500 negative data points

(non-immunogenic peptide) were subsampled during training 50

times, and an ensemble score for the prediction was calculated.

NNAlign
The NNAlign version 2.1 (42) method was used to train a

neopeptide sequence-based model with a fivefold nested cross-

validation, using the same partition as the RF IMPROVE model.

The motif length for the alignment was set to 6, and the flanking

region was not considered. Like the IMPROVE model, if a peptide

from the test set existed in training, the peptide was removed.

Survival analysis
Predicting survival probability with the effect of immunotherapy

was based on the developed model from the study. The developed RF

models were saved with “pickle dump” from pandas, and an

ensemble score for each model was used as the immunogenicity

score. The immunogenicity score was predicted for the remaining

neopeptides with RankEL < 2 and expression > 0.01, which were not

included in the study. This included, for example, peptides that were

deselected for patients with many predicted neopeptides and
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therefore had stricter criteria during the neopeptide selection.

Additionally, some HLA alleles were not assessable, and

neopeptides with these al leles were also selected for

immunogenicity screening. Patient RH-08 was excluded as the

sample was taken after treatment, and MM-22 and MM-24 were

excluded as the sample was from a cell line. The prediction score

found for the remaining neopeptides was added on top of the

peptides that were included in the study. This covers the dataset

used for the survival analysis.

The separation of the four groups is based on the quantile of the

variable. Patients with predicted neoepitopes above or equal to the

third (75%) quantile were defined as “high”. Patients with peptides

between the second (50%) and third quantile were defined as

“medium high”, and patients with peptides between the first

(25%) and second were defined as “medium low”. Lastly, patients

below or equal to the first quantile were defined as “low”. The

hazard score and p-value were calculated based on the comparison

of the high vs. low group.
Benchmark data

The benchmark data consisted of neoepitopes from the CEDAR

and was filtered according to a RankEL < 2. This created a dataset of

2,436 peptides where 1,888 were categorized as non-immunogenic

and 548 as immunogenic. The simple model to test the benchmark

data has been developed in the same way as the RF IMPROVE

model, but by excluding priority core and cellular prevalence. The

expression level in the benchmark dataset was estimated using

pepX (51).
Immunogenicity prediction with
other tools

DeepNetBim (73) only accepts peptides of nine amino acids. The

predicted binding core with NetMHCpan 4.1 (74) was used to analyze

all peptides included in the dataset. In 8-mers, the predicted position

of insertion was replaced with X. DeepNetBim was downloaded and

executed following the author’s recommendations. IEDB

immunogenicity, MixMHCpred, and MHCflurry (75) were

downloaded and executed locally following the author’s

recommendations. iTTCA-RF (76) predictions were obtained from

the corresponding web server.
Statistics

All the statistics were calculated in R (77) version 4.1.1. The

Wilcoxon rank-sum test was applied to analyze the features.

Spearman’s correlation coefficients were used to measure the

correlation between variables. To assess the performance of the

models, the AUC and AUC01 were calculated using the function in

ROCR version 1.0.11 (78), and the difference between ROC curves

was computed using roc.test with default options from pROC
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version 1.18.0 (79). Kaplan–Meier curves were created using the

survminer package version 0.4.9 (80), and the hazard ratios were

calculated with the Cox proportional hazards regression model

using the survival package version 3.3.1 (81).
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