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T-cell immunity against
senescence: potential
role and perspectives
Kseniia Matveeva, Mariia Vasilieva, Ekaterina Minskaia,
Stanislav Rybtsov and Daniil Shevyrev*

Sirius University of Science and Technology, Sirius, Russia
The development of age-associated diseases is related to the accumulation of

senescent cells in the body. These are old non-functional cells with impaired

metabolism, which are unable to divide. Such cells are also resistant to

programmed cell death and prone to spontaneous production of some

inflammatory factors. The accumulation of senescent cells is related to the age-

associated dysfunction of organs and tissues as well as chronic inflammation that

enhances with age. In the young organism, senescent cells are removed with the

innate immunity system. However, the efficiency of this process decreases with

age. Nowadays, more and more evidences are accumulating to support the

involvement of specific immunity and T-lymphocytes in the fight against

senescent cells. It has great physiological importance since the efficient

elimination of senescent cells requires a high diversity of antigen-recognizing

receptors to cover the entire spectrum of senescent-associated antigens with high

precision and specificity. Developing the approaches of T-cell immunity

stimulation to generate or amplify a physiological immune response against

senescent cells can provide new perspectives to extend active longevity. In this

mini-review, the authors summarize the current understanding of the role of T-cell

immunity in the fight against senescent cells and discuss the prospects of

stimulating adaptive immunity for combating the accumulation of senescent

cells that occurs with age.
KEYWORDS

senescence, T-cells (or lymphocytes), adaptive immunity, SASP (senescence-associated
secretory phenotype), retroelement, transposable element (TE), senolytic
agent, immunoaging
Introduction

Due to scientific, technological, and medical progress, there is a significant increase in

life expectancy. According to global statistics, over the last century and a half life

expectancy increased from ~30 to ~73.5 years (1–3). This led to a significant growth in

the proportion of elderly people and to demographic aging in most modern societies.
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According to the UN data from 2010, the world population over 60

years was about 800 million and it is projected to exceed 2 billion by

2050, with the proportion of the elderly population increasing from

9.8% in 2022 to 22% by 2050 (4, 5).

Elderly age is associated with an increased risk of

cardiovascular, cancerous, and autoimmune diseases. This also

takes place in reduced overall body resistance, as well as severe

and prolonged infectious diseases (6–11). Therefore, the increasing

proportion of the elderly population places a heavy socioeconomic

burden on the budgets of developed and developing countries and

seriously affects their healthcare systems (12). This leads to a forced

rise in the retirement age and makes the extension of the active

longevity period one of the most serious social challenges of

our time.

The aging at the tissue level is associated with the formation and

accumulation of senescent cells (13, 14). Such cells are characterized

by resistance to apoptosis, irreversible cell cycle arrest,

mitochondrial dysfunction, a specific secretory phenotype (SASP),

and abnormalities in the protein quality control machinery (15).

Various DNA damage, replicative depletion, oxidative stress, and

activation of tumor suppressor genes can induce cell senescence

(16). The proliferation arrest in senescent cells prevents their

malignization, and the secretion of SASP factors can promote

tissue repair and remodeling which is especially observed during

embryogenesis and the early postnatal period (17, 18). However, the

beneficial effects of senescent cells are replaced by harmful ones in

old age (18, 19). In a young organism, normal tissue homeostasis is

maintained by the appropriate removal of senescent cells, but the

efficiency of this process decreases with age progression (18–20).

Thus, the accumulation of senescent cells in aging is associated with

an increased risk of cardiovascular, autoimmune, and cancerous

diseases, as well as high susceptibility to various infections (21–28).

In addition, it reduces the efficiency of repair processes (29). It was

shown that the accumulation of such cells accelerates the

development of many diseases, including atherosclerosis,

osteoporosis, osteoarthritis, Parkinson’s disease, Alzheimer’s

disease, etc. (21–29).

The immune system plays a major role in the elimination of

senescent cells by responding to the SASP phenotype (30, 31). Its

components include growth factors, chemokines and cytokines,

proteases, lipids, and extracellular vesicles (32, 33). Many of these

factors are pro-inflammatory and attract macrophages, NK and

NKT cells, neutrophils, other immune system cells, and natural IgM

antibodies that provide the removal of old cells (30, 31, 34). On the

other side, immune cells are also susceptible to aging. Thus, with

age, the immune system loses its ability to remove senescent cells

from tissues promptly, and the vicious circle gradually closes (34).

In recent years, there has been increasing attention to the

development of methods that allow the selective removal of old

cells. New classes of drugs are being developed that kill senescent

cells (senolytics) or reduce the negative impact of SASP

inflammatory factors (senomorphics) (35, 36). In parallel,

attempts are being made to adapt CAR-T technologies to target

senescent cells (37). Potentially, it would be possible to maintain the

homeostasis of aging tissues and slow down the aging process. For

example, encouraging results were obtained in transgenic mice in
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dysfunction and prolonged the life span (38). However, some

limitations prevent the establishment of a safe and effective

therapeutic approach to target senescent cells. Cell surface

markers of senescence, which were specified above, are not

senescence-specific and may be present in normal cells.

Moreover, their expression levels differ between tissues which

prevents their safe use as therapeutic targets. Many existing

senolytics target specific signaling pathways that are activated

during cellular aging, such as mTOR and cGAS (32, 36).

However, the existence of an intracellular signaling factor unique

to senescent cells is controversial due to the complex organization

and pleiotropy of the intracellular signaling machinery. This

reduces the selectivity of action against senescent cells (33, 39).

From this side, exploiting the metabolic features of senescent cells

can provide more interesting results. It is known that senescent cells

are characterized by increased activity of lysosomal b-galactosidase
in the shifted pH optimum (~6.0). Positive results were obtained in

experiments using a prodrug, in which active metabolite is formed

in the lysosomes of senescent cells and causes their death. The use of

such therapeutics led to the recovery of physiological functions and

reduced the signs of systemic inflammation in elderly mice.

Moreover, its action was relatively selective and no significant

negative effects on normal cells were detected (40). However,

increased b-galactosidase activity at pH~6.0 was observed in some

normal tissues, such as neurons and retinal cells, and the activity of

this enzyme in healthy cells may increase during the some metabolic

process (41–43) . There fore , th i s approach a l so has

significant limitations.

Thus, despite the encouraging results of recent years in the field

of anti-aging therapies (36), the problem of finding and developing

an effective and safe method for the elimination of senescent cells

with the potential for translation into clinical medicine is still acute.
Fight senescence: the potential role of
T-cell immunity

It is well known that innate immunity is responsible for the

elimination of senescent cells (44). However, the role of the adaptive

immune system in this process is poorly understood (30). It was

shown that senescent cells in different tissues can upregulate the

expression of classical and non-classical MHC-I molecules (45) and

in some cases MHC-II molecules (46). Some studies support the

role of CD4+ and CD8+ lymphocytes in the destruction of senescent

cells (30). However, it should be noted that increased expression of

non-classical HLA-E molecules protects senescent cells by

suppressing the activity of NK and CD8+ lymphocytes (47).

Possibly, this is one of the mechanisms preventing the removal of

senescent cells from tissues in old age.

In recent studies, it was shown that senescent cells demonstrate

changes in their proteome and, consequent ly , thei r

immunopeptidome (Figure 1). Thus, senescent cells present

aging-associated antigens – approximately 10% of all epitopes in

complex with MHC-I are unique to senescent cells and cannot be

found in non-senescent analogs (45). Recent studies using in vivo
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models demonstrated the ability of senescent antigens to trigger a

strong CD8+-lymphocyte response, which challenges the notion of

low immunogenicity of such epitopes (45, 48). Thus, due to the

production of SASP and DAMP (damage-associated molecular

patterns) factors, senescent cells demonstrate adjuvant properties

– they effectively recruit dendritic cells, cause their activation, and

stimulate their maturation (49, 50). It is also known that some types

of senescent cells enhance the expression of MHC-II molecules

which helps directly present antigens to CD4+-lymphocytes without

the participation of professional antigen-presenting cells (45, 46).

All this triggers an adaptive immune response to combat

senescent cells.

In the context of central tolerance, the presence of T-

lymphocytes that specifically recognize senescence-associated

epitopes does not always seem obvious, but the changes

associated with cell aging should be taken into account. For

example, the accumulation of mutations leads to changes in the

antigenic structure of various proteins (51, 52). Disruption of the

processes of post-translational modifications of proteins, which is

characteristic of senescent cells, also affects the antigenic properties

of epitopes presented in MHC molecules (53). In addition, genome

instability increases with age and cells undergo activation of

transposable elements and formation of particles similar to

retroviruses, which makes a serious contribution to aging and

accompanies the transition of cells to the senescent state (54). At

the same time, aging is associated with the activation of non-LTR
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elements (without Long Terminal Repeats) which are evolutionarily

younger, while in the thymus there is mainly a presentation of

antigens of LTR elements (54, 55). In other words, central tolerance

practically cannot be formed to antigens of aging-associated mobile

elements. A recent study shows that spontaneous commensal

cytomegalovirus (HCMV) reactivation in senescent fibroblasts

and presentation of glycoprotein-B epitopes of HCMV in MHC-

II complexes makes cytotoxic CD4+ lymphocytes eliminate

senescent skin fibroblasts in an MHC-II-dependent manner (56,

57). This is consistent with the ideas about the activation of genomic

mobile elements and reactivation of commensal viruses in senescent

cells and the important role of these processes in the elimination of

senescent cells by the mechanisms of adaptive immunity. Taking

into account these features, it becomes obvious that the

immunopeptidome of senescent cells has a high immunogenic

potential, which can help to develop personalized therapeutic

approaches to prevent or mitigate the negative effects of aging.
Perspectives

Recent studies focused mainly on the role of senescence in

tumor physiology (58–61). It is currently believed that the transition

of tumor cells to the senescent state plays a protective role and

inhibits their proliferation due to cell cycle arrest and an increase in

their immunogenicity (45, 62, 63). The last one seems to be related
FIGURE 1

Potential Immunogenicity of Senescent cell. Accumulation of mutations, disruption of post translational modifications of proteins, activation of
mobile retroelements and signs of genome instability - all are the traits of senescent cells which may be reflected in immunopeptidome. Cell ageing
accompanies with mitochondrial dysfunction that causes mtDAMP release, ROS production and increase of Ca2+ ions. These factors drive the SASP,
and with the immunopeptidome changes, shape the immunogenicity of senescent cells. SASP, Senescence Associated Secretory Phenotype; TCA,
Tricarboxylic Acid; ROS, Reactive Oxygen Species; mtDAMP, mitochondrial Danger Associated Molecular Patterns; DDR, DNA Damage Response;
MHC, Major Histocompatibility Complex.
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to the production of SASP and DAMP factors,high expression of

MHC molecules, alteration of the proteome, and enhanced

presentation of senescence-associated autoantigens that can

activate T-lymphocytes (45, 46, 50, 64). Many anticancer

therapies have been shown to induce tumor cell senescence,

which promotes the recruitment and activation of CD4+ and

CD8+ lymphocytes and enhances antitumor protection (64, 65).

Interestingly, immunization with derivatives of senescent tumor

cells induces a stronger and more effective antitumor immune

response than immunization with derivatives of tumor cells after

immune-mediated tumor cell death (48, 63, 66). In other words,

induction of senescence makes it possible to solve the problem of

low immunogenicity of autologous tumor antigens. The reason for

that is probably the secretion of SASP factors, especially IFNg and
TNFa, as well as the reactivation of commensal viruses and

genomic non-LTRs that alter the immunopeptidome of senescent

cells (54, 56, 57, 67–75).

In recent years, various drug delivery systems based on exosomes

loaded with target substances have been intensively developed. Thus,

relatively simple and cheap methods were designed to produce cell-

derived nanovesicles providing high safety, bioavailability, and the

possibility of a personalized approach (76–78). For example, a recent

study shows that the use of senescent tumor cell nanovesicles as a

personalized therapeutic vaccine provides high immunogenicity and

induces strongantitumor immunitywithnoexogenousadjuvants (63).

The role of endogenous retrotransposons in cancer initiation and

progression is well known in the context of their mutagenic activity.

Increased activity of non-LTR elements is found inmany tumor types

(79–84). However, the formation of an adequate immune response to

non-LTR epitopes does not occur due to the inhibitory influence of the

tumor microenvironment and the dualistic role of senescent cells in

tumors (82, 85). It canbeassumed that theuse of nanovesicles of tumor

cells with induced senescence as a vaccine creates an effective T-cell

immune response against epitopes of non-LTR elements since its

formation occurs outside the inhibitory tumormicroenvironment (48,

56, 57). Such antitumor immune response is probably produced not by

tumor neoantigens but by epitopes of retrotransposons whose activity

is increased in the tumor. However, we need additional studies for a

more detailed understanding of the role of senescence in the

enhancement of antitumor immunity, taking into account the high

heterogeneity of the tumor and its microenvironment concerning the

dynamics of senescence onset.

In the context of high immunogenicity, the use of senescent cell

nanovesicles to stimulate an “antisenescent” immune response seems

to be a promising and safemethod to combat age-related senescent cell

accumulation (63, 86, 87). However, there are currently no studies

addressing this issue. The decreased efficiency of senescent cell

elimination may be related to the depletion of adaptive immunity

reserves or the formation of peripheral tolerance to senescent-

associated antigens with age (88–91). This is probably facilitated by

prolonged and increasing stimulation of various antigens of senescent

cells, including antigens of non-LTR elements or commensal viruses,

whose activity is enhanced with aging (92–94). Senescent cell

nanovesicles are highly immunogenic and contain all potential

senescent-associated antigens that result from mutations, disruption

of post-translational modifications of proteins, or activation of
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transposable elements (63, 76–78). This approach has a potential

advantage in the context of the formation or amplification of an

“antisenescent” immune response. It may help to avoid the complex

process of identifying individual sets of specific senescent-

associated antigens.

Another promising method of stimulating the “antisenescent”

immune response could be the development of personalized

polyepitope mRNA vaccines against antigens of non-LTR elements

or commensal viruses, which activity is increased in the senescent cells

in some individuals (95–98). However, the development of vaccines

against herpesviruses, retroviruses, and transposable elements is a

complex and nontrivial task that has yet to be solved (99). Another

promising senotherapy approach may be selective inhibitors of

endogenous LINE-1 reverse transcriptases that do not inhibit the

activity of the telomerase complex and mitochondrial DNA

polymerases (100, 101). In mouse experiments, reverse transcriptase

inhibitor therapy reduces signs of age-related inflammaging by

decreasing the number of senescent cells (102, 103). Also, in a recent

population-based study, transcriptase inhibitors-based therapy in

HIV-infected patients lowered their biological age (101). However,

the low selectivity and the possibility of inhibiting the activity of the

telomerase complex and mitochondrial DNA polymerases carries a

high risk of side effects, which limits the use of such therapeutics in

aging therapy (104–106). Similar limitations were observed in most

studies of the impact of reverse transcriptase inhibitors on biological

age (104–108).

The development of CAR-T technology made it possible to target

and harness the power of T-cell immunity against specific antigens,

including those associated with senescence. For example, it was found

that the level of expression of uPAR (urokinase-type plasminogen

activator receptor) and NKG2DLs (natural killer group 2 member D

ligands) increases in agingandsenescentcells inmice andprimates (37,

109, 110). Recent studies demonstrated that elimination of these cells

using senolytic CAR-T cells reversed senescence-associated

pathologies and ameliorated metabolic dysfunction without adverse

effects (37, 109, 110). Senolytic CAR-T cells appear to have

prophylactic potential (110). However, their targets (uPAR and

NKG2DLs) not only participate in cell aging but also play a

physiological role. This could potentially limit the use of such an

approach in clinical practice, requiring rigorous investigations to

address its safety.
Conclusion

It is well known that the risk ofmultiple pathologies increases with

age, including autoimmune, cancerous, infectious diseases, and

metabolic disorders, while the regenerative potential of various

tissues declines. Despite these conditions having different

pathogenesis, they are marked by a growing number of aging and

senescent cells accumulating with age (111–114). At a young age, such

cells are removed by immune mechanisms, but their elimination

efficiency decreases with time. The aging of the immune system itself

and the formation of peripheral tolerance under prolonged and

increasing stimulation by senescence-associated antigens may play a

central role in such processes (45, 89, 115–117). Restoration of
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immunoreactivity against senescent cells will slow down the aging

processes andmaintain homeostasis and the functions of aging tissues.

However, this is a challenging task, and the solution must take into

account the safety and selectivity of the approaches (33, 35, 39), despite

many of them being currently under development and showing

promising results (19, 35–38). Therefore, the development of safe

and accurate methods for the removal of senescent cells, taking into

accounts their high heterogeneity and antigenic diversity, is currently

an acute task. The approaches to intensify or generate an immune

response against senescent-associated antigens have great potential in

this context due to the adaptive immunity has great precision and

specificity of action, as well as a high diversity of antigen-recognizing

receptors to cover the entire spectrum of senescence-

associated antigens.
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Murillo-Cuesta S, et al. Programmed cell senescence during mammalian embryonic
development. Cell. (2013) 155:1104–18. doi: 10.1016/j.cell.2013.10.019
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