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Background: Despite advancements, breast cancer outcomes remain stagnant,

highlighting the need for precise biomarkers in precision medicine. Traditional

TNM staging is insufficient for identifying patients who will respond well

to treatment.

Methods:Our study involved over 6,900 breast cancer patients from 14 datasets,

including in-house clinical data and single-cell data from 8 patients (37,451 cells).

We integrated 10 machine learning algorithms in 55 combinations and analyzed

100 existing breast cancer signatures. IHC assays were conducted for validation,

and potential immunotherapies and chemotherapies were explored.

Results: We pinpointed six stable Panoptosis-related genes from multi-center

cohorts, leading to a robust Panoptosis-model. This model outperformed

existing clinical and molecular features in predicting recurrence and mortality

risks, with high-risk patients showing worse outcomes. IHC validation from 30

patients confirmed our findings, indicating the model’s broader applicability.

Additionally, the model suggested that low-risk patients benefit more from

immunotherapy, while high-risk patients are sensitive to specific

chemotherapies like BI-2536 and ispinesib.

Conclusion: The Panoptosis-model represents a major advancement in breast

cancer prognosis and treatment personalization, offering significant insights for

effectively managing a wide range of breast cancer patients.
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Introduction

Breast cancer remains a significant health challenge globally,

being one of the leading causes of cancer-related deaths among

women (1). Despite advancements in early detection and treatment

strategies aiming to reduce recurrence and mortality, the battle

against breast cancer continues (2). The quest for improved

prognosis and therapeutic outcomes is ongoing, with early

diagnosis playing a crucial role in enhancing survival rates (3).

Recent scientific developments have shed light on PANoptosis,

a sophisticated form of programmed cell death that integrates

elements of pyroptosis, apoptosis, and necroptosis (4). This

process is crucial for maintaining the body’s balance and

defending against diseases by removing harmful cells (5).

Intriguingly, PANoptosis has been implicated in the progression

of various diseases, including cancer, highlighting its potential as a

target for innovative treatments (6). For example, research has

indicated that manipulating PANoptosis pathways could influence

the development of tumors and the effectiveness of cancer

therapies (7).

Despite the known significance of programmed cell death

mechanisms like apoptosis in cancer, the specific contributions of

PANoptosis to breast cancer progression and patient outcomes

remain underexplored (8). While prognostic models based on

PANoptosis-related genes have shown promise in other cancers, a

dedicated model for breast cancer prognosis is yet to be established

(9). This gap underscores the need for a deeper understanding of

PANoptosis in breast cancer, which could unlock new avenues for

diagnosis and treatment (10).

This study aims to bridge this gap by conducting a thorough

analysis of breast cancer samples from the TCGA-BRCA and GEO

datasets. By employing cutting-edge single-cell sequencing

technologies and a comprehensive set of machine learning

techniques, we have identified critical PANoptosis-related genes

associated with breast cancer outcomes. Using these insights, we

developed a novel prognostic model that categorizes breast cancer

patients into distinct risk groups, offering a new tool for predicting

survival and guiding treatment decisions. Our model’s effectiveness

was rigorously tested across multiple datasets, and we further

investigated the molecular and immunological profiles of the risk

categories identified, providing a comprehensive view of the

implications of PANoptosis in breast cancer.
Materials and methods

Data acquisition

The foundation of our research involved the compilation of

PANoptosis genes, encompassing elements of pyroptosis, apoptosis,

and necroptosis, which were meticulously curated from GeneCards,

GSEA gene sets, KEGG pathways, and relevant literature (11, 12).

This curation process yielded a comprehensive list of genes integral

to the PANoptosis pathway, detailed in Supplementary Table S1.

The training dataset was assembled from the TCGA database,

which included gene profiles, mutational data, and clinical
Frontiers in Immunology 02
information from breast cancer cases. Samples without survival

data were carefully excluded from the dataset to ensure data

completeness and accuracy.

To enhance the robustness of our findings and validate our

model, we obtained additional datasets from the Gene Expression

Omnibus (GEO) database and MetaGxData (13). These validation

datasets were comprised of samples from various studies, namely

GSE93601, GSE76250, GSE70947, GSE20685, GSE131769,

GSE96058, GSE20711, GSE24450, GSE202203, GSE21653,

GSE86166, GSE48391, GSE88770 and PNC. This comprehensive

approach allowed us to validate our results across diverse datasets

and strengthen the reliability of our findings.
Single-cell analysis

Single-cell RNA sequencing data for breast cancer was sourced

from the GEO database (accession number GSE161529) as the basis

for our single-cell analysis (14). Our preprocessing protocol began

with the elimination of genes that were not expressed in any

samples, specifically those with zero counts across all cells. This

step was critical to focus our analysis on active genetic elements

within the samples. We then normalized the gene expression

matrix. This normalization process, conducted using the

“SCTransform” function within the Seurat R package, allowed for

the correction of technical variances and the stabilization of

variance across features. Subsequent dimensionality reduction

techniques, including PCA, tSNE, and UMAP, were employed to

distill the high-dimensional data into a more interpretable form,

facilitating the identification of cellular phenotypes and states. Cell

populations were categorized using the “FindNeighbors” and

“FindClusters” functions, which are instrumental in discerning

the heterogeneity within the cell populations. We augmented our

quality control measures by identifying and removing doublets with

the DoubletFinder R package, further ensuring the integrity of our

dataset (15).

Following these rigorous quality control measures, we retained

approximately 37,451 cells for subsequent analyses. The final step

involved cell type assignment; a task made efficient using Celltypist

(16). This comprehensive approach ensured the robust processing

and analysis of the single-cell data, setting a strong foundation for

our research endeavors.
CellChat analysis

For the investigation of intercellular communication within the

tumor microenvironment, we utilized the “CellChat” R package,

which allows for the analysis of cell-cell interactions based on

ligand-receptor pairs (17). We constructed CellChat objects for

each group using their respective UMI count matrices. The

“CellChatDB.human” database was employed as the reference for

known ligand-receptor interactions, enabling us to analyze the

complex signaling networks within our samples. Using the default

settings within CellChat, we performed a comparative analysis of

the interaction counts and strengths between different cell types. To
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synthesize this information across groups, we merged the individual

CellChat objects using the “mergeCellChat” function. This step was

crucial for aggregating data to observe broader trends in cell

communication. Differences in interaction number and strength

among specific cell types across groups were visualized using the

“netVisual_diffInteraction” function. We ascertained variations in

signaling pathways through the “rankNet” function and depicted

the spread of signaling gene expression across groups with

“netVisual_bubble” and “netVisual_aggregate” functions.
Functional analyses

To elucidate the complex landscape of differential PANoptosis-

related gene expression between tumor and normal tissues, we

utilized the GO and KEGG databases for a thorough assessment of

associated functional activities and pathways (18, 19). The

Enrichplot package within R was employed to visualize the results

of this enrichment analysis. In parallel, the clusterProfiler algorithm

facilitated Gene Set Enrichment Analysis (GSEA) to distinguish the

biological functions between distinct breast cancer risk subgroups

identified by our model (20). We established a False Discovery Rate

(FDR) below 0.05 to denote statistical significance, enhancing the

robustness of our findings by performing 1,000 permutations for

each analysis. This comprehensive approach allowed us to identify

key functional pathways differentially activated in our PANoptosis-

related gene sets, providing insight into the molecular

underpinnings of breast cancer pathology and prognosis.
Establishment of the PANoptosis score

To uncover the significance of PANoptosis in BC, a systematic

methodology was adopted. This exploration commenced with a

differential analysis, specifically comparing gene expression patterns

between tumor and normal tissues using the TCGA-BRCA dataset.

To visually depict the outcomes of differential gene expression, we

employed a heatmap, effectively illustrating the observed disparities.

Concurrently, we analyzed gene correlations, utilizing the igraph

package. The crucial PANoptosis Score was then meticulously

calculated. This calculation was based on the differentially expressed

PANoptosis-related genes. In this effort, we utilized the ssGSEA

algorithm for bulk data analysis (21), while for single-cell data, we

employed the Ucell algorithm (22). This dual approach ensured a

comprehensive and robust assessment of the PANoptosis Score,

facilitating a deeper understanding of its role in breast cancer.
Development and validation of the
PANoptosis-model

In constructing a prognostic model for breast cancer based on

PANoptosis, we followed the analytical workflow established by Liu

et al. (23). We integrated ten classical computational algorithms,

including Random Forest (RSF), Least Absolute Shrinkage and

Selection Operator (LASSO), Gradient Boosting Machine (GBM),
Frontiers in Immunology 03
Survival Support Vector Machine (Survival-SVM), Supervised

Principal Components (SuperPC), Ridge Regression, Partial Least

Squares Regression for Cox (plsRcox), CoxBoost, Stepwise Cox, and

Elastic Network (Enet). each bringing unique strengths in

dimensionality reduction and variable selection, as detailed in

Supplementary Table S2. The TCGA-BRCA dataset served as the

training cohort, with the combination of these algorithms being

used to create the prognostic signature. We then evaluated the

model’s predictive power using the average concordance index (C-

index) across five external test cohorts from the GEO database. This

process allowed us to identify the most effective prognostic model

for breast cancer, which we refer to as the PANoptosis-model:

riskscore =o
n

i=1
(bi � Expi)

Where ‘n’ represents the number of PANoptosis genes, ‘Exp’

signifies the PANoptosis gene profile, and ‘b’ denotes the multi-

Cox coefficient.

This model calculates a risk score based on the expression profile of

PANoptosis genes and their respective coefficients derived from

multivariate Cox regression. Patients from the TCGA-BRCA dataset

were stratified into different risk groups according to these scores. The

generalizability of the risk score was then validated using additional

external datasets, which served as independent test cohorts. Kaplan-

Meier survival analysis, conducted with R v4.2, was employed to

discern survival differences between the risk groups, with a p-value

of less than 0.05 indicating statistical significance. This meticulous

approach ensured that the PANoptosis-model was robustly validated

and capable of accurately predicting patient outcomes.
Genomic character analysis

To unravel the genomic alteration disparities between the

PANoptosis-model subgroups, we conducted an extensive

examination of mutation and Copy Number Alteration (CNA)

data within the TCGA-BRCA dataset.

We initiated this analysis by extracting the raw mutation file and

proceeded to calculate the Tumor Mutation Burden (TMB) for each

sample. To provide insights into the genetic landscape, we visually

represented the top 28 genes utilizing the maftools package. Following

the methodology described by Wang et al. (24), we employed the

deconstructSigs package to derive mutational signatures unique to each

patient. Notably, we highlighted four signatures with notable

occurrence frequencies in BRCA: SBS1, SBS3, SBS11, and SBS12.

Furthermore, we selected the top 5 regions exhibiting a high-

level CNA frequency. Particular attention was given to genes within

chromosomes 13q34, including CDK19, SOBP, ATG5, and FYN.

This comprehensive analysis provided valuable insights into the

genomic alterations within the PANoptosis-model subgroups.
Estimation of TME variations

We collected five algorithms [MCPcounter (25), xCell (26),

CIBERSORT (27), quanTIseq (28), and TIMER (29)] to estimate
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the abundance of diverse immune cells through different risk score

groups using the IOBR package (30). Furthermore, we utilized

ESTIMATE and TIDE to assess the composition, structure, and

state of the tumor microenvironment (31, 32). This analysis

provided crucial insights into the biological traits and prognosis

of the tumor. Finally, the expression features of multiple immune

checkpoints were also quantified to explore the immune state,

preliminary predicting therapeutic sensitivity to ICIs therapy.
Selections of therapeutic targets
and agents

For estimating drug targets and predicting chemotherapeutic

responses, we obtained comprehensive target data for 6,125

compounds from the Drug Repurposing Hub (https://clue.io/

repurposing), resulting in 2,249 distinct drug targets after

removing duplicates (33). We used Spearman correlation analysis

to identify potential drug targets associated with unfavorable

prognosis by correlating the gene expression of targetable genes

with risk scores (correlation coefficient > 0.25, P< 0.05).

Subsequently, we correlated CERES scores with risk scores for

brain cell lines from CCLE, identifying genes (correlation

coefficient < -0.2, P< 0.05) associated with poor prognosis

dependence (34).

To predict drug responses accurately, we leveraged CTRP and

PRISM datasets, which contain extensive drug screening and

molecular data across cancer cell lines. We performed differential

expression analyses between bulk and cell line samples. For drug

response prediction, we employed the reliable ridge regression

model within the pRRophetic package. This model was trained on

expression profiles and drug response data from solid Cancer Cell

Lines (CCLs) and exhibited robust performance, validated by

default 10-fold cross-validation (35).

Additionally, we conducted a Supplementary Connectivity Map

(CMap) analysis to assess the therapeutic potential of candidate

agents in BC (36). We performed differential gene expression

analysis between tumor and normal tissue samples and then

submitted the top 300 genes (150 up-regulated and 150 down-

regulated) to the dedicated CMap website (https://clue.io/query).

This analysis drew on gene expression signatures from CMap v1

and the LINCS database. Negative connectivity scores indicated the

potential therapeutic efficacy of perturbations in the disease context.
Human sample collection and IHC staining

In this study, we obtained specimens from a cohort of 30 patients

diagnosed with BC at the Guizhou Provincial People’s Hospital.

These specimens were collected during surgical procedures.

Hematoxylin and eosin (HE) staining was applied to the specimens

based on established protocols. Diagnostic evaluations were

independently conducted by two pathologists. Comprehensive

cohort details are provided in Supplementary Table S3.

Immunohistochemistry (IHC) was conducted on paraffin-

embedded samples, adhering to methods outlined in our earlier
Frontiers in Immunology 04
publications (37, 38). The antibodies utilized are enumerated in

Supplementary Table S4. Evaluation was consistent with established

protocols and scoring guidelines. Two pathologists independently

assessed protein expression levels, consistent with the methodology

described in our previous work (38).
qRT-PCR and patient stratification

RNA was isolated from breast cancer samples using TRIzol

reagent (Invitrogen, Carlsbad, CA, USA). This was followed by the

synthesis of cDNA and qRT-PCR procedures, employing GoScript

reverse transcriptase and Master Mix (Promega), following the

manufacturer’s instructions. Data were captured using the CFX96

Touch Real-Time PCR Detection System (BioRad, Hercules, CA,

USA). The relative quantification of gene expression was performed

with the 2-DDCq method, normalizing against GAPDH as the

reference gene.

Patient stratification into low-risk and high-risk categories was

achieved through the evaluation of gene expression levels, applying

a specific threshold based on the PANoptosis-model’s equation.
Statistical analysis

Data processing and statistical analysis were conducted using R

software (version 4.2.3). We applied the Wilcoxon signed-rank test

to evaluate expression differences between BC patients and controls.

Pearson and Spearman correlation analyses were utilized to

determine statistical correlations between parametric and non-

parametric variables, respectively. Significance was established at a

p-value< 0.05, with gradations indicated as *p< 0.05, **p< 0.01,

***p< 0.001, ****p< 0.0001.
Results

Differential expression of PANoptosis
genes in breast cancer tissues

The overall design of this study is displayed in Figure 1. We

identified 52 pyroptosis genes, 581 apoptosis genes, 101 necroptosis

genes, and 28 potential PANoptosis genes. To comprehensively

evaluate the expression landscape of PANoptosis-related genes in

BC, we conducted differential gene expression analysis comparing

tumor samples to normal counterparts within the TCGA-BRCA

dataset. The heatmap depiction underscores a pervasive pattern of

dysregulated PANoptosis gene expression within BC samples,

delineating a stark contrast between malignant and non-

malignant tissue profi les (Supplementary Figure S1A;

Supplementary Table S5). In our subsequent analysis, we

discerned 61 genes with prognostic significance within the realm

of PANoptosis, segregating these into four distinct clusters of

expression (as depicted in Figure 2A). A particularly compelling

positive correlation emerged between IFNG and FASLG within

cluster A (cor = 0.84, P-value< 0.001), suggesting a concerted
frontiersin.org
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regulatory mechanism at play. Similarly, cluster B showcased a

noteworthy synergistic expression pattern between YWHAZ and

CD24 (cor = 0.300, P-value< 0.001). In stark contrast, cluster D

revealed an intriguing negative correlation between POU4F1 and

SIAH2 (cor = -0.34, P-value< 0.001), hinting at an intricate

antagonistic interaction pertinent to BC progression (Figure 2A).

Further refining our investigative scope, we introduced a novel

metric, the PANoptosis-score, crafted to quantify the cumulative

activity of PANoptosis pathways within BC. Our scrutiny extended

across the foundational TCGA-BRCA dataset and was corroborated

by analyses within three ancillary datasets (GSE93601, GSE76250,

and GSE70947). The data cohesively pointed to an elevated

PANoptosis-score in BC patients relative to normal groups, a

finding consistently replicated across all datasets examined

(Figures 2B–E). The enrichment analyses were conducted to clarify

the function and pathways of these genes within BC patients. The

Proteomaps indicated that these differentially expressed genes related

to PANoptosis displayed strong relationships with 15 top roles, such

as signal transduction, signaling molecules and interaction, and

transcription. Massive signaling pathways were exhibited including

IL19, IL16, PDX1 and IL33 (Supplementary Figure S1B).

Based on the background that tumor microenvironment (TME)

participates in the progression of tumors, the association between the

PANoptosis-score and 26 infiltrated immune cells was further

elaborated as unraveled in Figure 2F, of which Th1 cells, Tregs and

M1 macrophages were positively infiltrated with PANoptosis-score in

BC patients, in contrast, taking M2 macrophages as an example, 11
Frontiers in Immunology 05
immune cells were negatively correlated with PANoptosis-score.

According to the correlation analysis results from Figures 2G, H, it

was confirmed that the PANoptosis-score exhibited a positive

relevance with CD8+T cells, but a negative relation toM2macrophages.
Single-cell analysis reveals PANoptosis
dynamics in BC

To further assess the PANoptosis features in BC, the single-cell

transcriptome analysis was performed, of which a total of eight

patients and two groups (tumor and normal) were enrolled in this

analysis (Figures 3A, B). We then grouped them into fifteen cell

clusters and identified seven cell types (Figures 3C, D). The bar chart

clearly and intuitively presented the proportion of seven cell types in

normal and BC tissues, of which three cell types, including T cells,

macrophages, and epithelial cells, accounted for far over fifty percent

in tumor tissues relative to the normal tissues, and conversely,

Pericytes, fibroblasts and endothelial cells occupied higher

proportion in normal tissues (Figure 3E). To accurately observe the

distribution of these cells, they were individually annotated by their

biomarkers. For example, T cells were marked by IL7R, CD36 was

specifically expressed in the surface of endothelial cells, and

fibroblasts were exclusively annotated by COL1A1 and PFGFRA, in

addition, CD68, CD14, RGS5 and EPCAM were the markers of

macrophages, Pericytes and epithelial cells, respectively (Figure 3G).

Moreover, the mRNA expression levels of massive protein molecules
FIGURE 1

The overall flow of this study.
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were observed across these seven cells (Figure 3H), revealing that

these specifically expressed molecules served as potential biomarkers

for corresponding cell types.

Subsequently, the Ucell algorithm was applied for the

calculation of the PANoptosis-score among diverse cells as shown

in Figure 3F as well as it was outlined that this score existed notable

distinctions in separate cell types. The mountain map plainly and

separately unfolded the divergence of the PANoptosis-score among

these seven cell types, finding that this score was distinctive in each

cell subtype, and noting that epithelial cells, endothelial cells and

fibroblasts possessed higher PANoptosis-score (Figure 3I). We

further utilized copykat algorithms to identify the tumor cell from

epithelial cells in tumor tissues (Figure 3J). Corresponding with the

results of bulk sequence, in epithelial cells, the PANoptosis-scores of

tumor-aneuploid exceeded the score in normal and tumor-diploid

samples, suggesting that the extent of PANoptosis was tightly

correlated with the development of tumor.
Deciphering the variations of cell-cell
interactions within BC patients

To clarify the interaction status among these seven cell types

(epithelial cells, endothelial cells, B cells, T cells, plasma cells,
Frontiers in Immunology 06
macrophages, and fibroblasts) in two groups, the bar chart

revealed that the numbers and strength of cell-cell interaction in

normal groups outperformed BC patients (Figure 4A).

Subsequently, the network map visually displayed the interaction

among seven cells, hence it was found that these three cells,

including epithelial cells, fibroblasts and endothelial cells, had

stronger interaction in normal populations, accompanied by a

weak interaction relationship with the other four cells, such as

macrophages, plasma cells, T cells and B cells, in contrast to BC

patients (Figure 4B). Ulteriorly, the interaction of each intracellular

pathway within distinctive groups was identified, witnessing that

most of the signaling pathways were notably active in normal

populations, such as SELE, ANGPT, CCL, ANGPTL, and other

twenty pathways, whereas the activation of seven pathways, namely

APP, MIF, MK, ESAM, PECAM1, CD99 and SPP1, primarily

occurred in BC patients (Figure 4C).

To accurately identify the cell groups in dynamic situations

where the received or submitted signals were changed, the

comparison based on the outgoing and incoming interaction

strength was developed in 4D space. According to this result, it

was displayed that epithelial cells, endothelial cells and fibroblasts

were classified as primary sources and targets for normal

populations, while the chief sources of BC patients were

macrophages and plasma cells, indicating the potential that they
B C

D E

F G H

A

FIGURE 2

Differential expression of PANoptosis genes in breast cancer tissues. (A) 61 differentially expressed PANoptosis genes were categorized into four cell
clusters (A, B, C, and D), and this network revealed the complicated relationships between these genes. The red or blue line represented a positive or
negative correlation. The larger the circle, the stronger the impact of a single gens on BC. (B) The PANoptosis-score was compared among two
groups in the TCGA-BRCA dataset, (C–E) Validation datasets of GSE93601 (C), GSE76250 (D) and GSE70947 (E) for PANoptosis-score. (F) Relevance
of PANoptosis-score and immune cell infiltration. (G, H) The correlation between PANoptosis-score and CD8+T cells and M2 macrophages.
**P<0.01, ****P < 0.0001.
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partook in the progression of BC (Figure 4D). Additionally, we

further examined the strong interaction probability among T cells,

B cells, plasma cells and macrophages. It was seen that the

interaction obtained between CDL6A2 and CD44 and ITGAV

+ITGB8 exclusively belonged to normal groups, while the

interplay between CD44 and SPP1, FN1 merely occurred in BC

patients (Figure 4E).
Machine learning approaches to develop a
prognostic PANoptosis model

In the TCGA dataset and other five testing cohorts, 55

combined algorithms were leveraged to establish the PANoptosis-

model, as well as obtained the mean C-index value of each

algorithm for each combination (Figure 5A). As the result

unveiled, the mean C-index of the RSF algorithm was highest

compared with other algorithm combinations, emphasizing that
Frontiers in Immunology 07
this algorithm was competent to recruit prognostic genes and

construct a predictive model (Figure 5A). To ensure the

effectiveness of the subsequent established predictive model, the

random forest model was deployed, as well a smaller generalization

error (or OOB error) was strongly demanded. It was seen that OOB

error was continuously decreasing and dynamic equilibrium

between 0.4 and 0.38 (Figure 5B). Meanwhile, based on the

analysis of random forest, we ultimately recruited six of the most

significant genes pertinent to PANoptosis, namely, CD24, BMF,

DAPK2, GNAI3, NR4A2 and SRC, which could be utilized to

construct a prognostic model further (Figure 5C):

riskscore = CD24� 0:3459 + BMF � 0:1461 − DAPK2� 0:1456−

GNAI3� 0:0007 − NR4A2� 0:0413 − SRC � 0:1437

Consequently, two subgroups were successfully divided

according to multivariate coefficient of the six genes, of which the

low-risk group was superior in prognosis, accompanied by longer

OS and more alive people, which was in contrast to the high-risk
B C D

E F G

H I J

A

FIGURE 3

Single-cell analysis reveals PANoptosis dynamics in BC. (A) Distribution of cells collected from 8 patients. (B) Distribution of cells from tumor and
normal tissues. (C) Distribution of 15 cell clusters. (D) Distribution of 7 annotated cell types. (E) Bar chart unveiling the proportion of 7 immune cells
in two groups. (F) PANoptosis activity in each cell. (G) Specific marker genes for each immune cell. (H) Top three marker genes in each immune cell.
(I) Mountain map exhibiting PANoptosis-score in each cell type. (J) Violin map revealing the difference of PANoptosis-score among normal tissues,
tumor-diploid, and tumor-aneuploid in epithelial cells. ****P < 0.0001.
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group. Moreover, the expression profiles of these six genes were

visualized, of which SRC, NR4A2 and DAPK2 were exceedingly

abundant in low-risk populations, while GNAI3, BMF and CD24

exhibited higher expression levels in the high-risk patients

(Figure 5D). Furthermore, the PANoptosis-model predicted the

survival probability of separate-risk patients, displaying that low-

risk patients possessed longer OS than high-risk BC patients

(Figure 5E). The analysis of the Kernel-smoothing hazard also

reflected the fact that the high-risk patients possessed a higher

probability of BC recurrence compared to low-risk BC patients

according to the hazard values (Figure 5F). Ultimately, the ROC

curve evaluated the predictive ability of this model, since the range

of AUC value was between 0.603 and 0.613, demonstrating that it

was a robust and reliable prognostic model (Figure 5G).
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Predictive performance of the PANoptosis
prognostic model

The univariate and multivariate Cox regression analyses were

resorted to evaluate the independence of our prognostic model and

other clinical factors. The result from univariate Cox analysis

indicated that these indicators, including risk score, menopause,

stage, T, N and M, were capable of exerting influences on the

survival rate of BC patients. Interestingly, the multivariate Cox

regression analysis interpreted that risk score and age conformed to

the criteria (P< 0.05), demonstrating that our PANoptosis-model was

equipped with independence of prediction for BC patients

(Figure 6A). Since the stage is a valuable reference in clinical

practice, we then established a PANoptosis-nomogram to precisely
B

C

D E

A

FIGURE 4

Deciphering the variations of cell-cell interactions within BC patients. (A) Comparison of interaction number and strength of multiple cell types
between two groups. (B) Detailed cell communications among each cell type. (C) The bar chart signifies the proportion of massive signaling
pathways from diverse cell types in each population. (D) Identifying the distinctions of interaction strength of incoming outgoing in separate groups.
(E) Dot plot revealing the distribution of multiple signaling molecules in B cells, macrophages, T cells and plasma cells between normal and
tumor samples.
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predict the survival probability for BC patients at one-, three-, and

five-year, which is composed of risk score, stage and age (Figure 6B).

As the calibration curves illuminated, the nomogram-predicted OS

was extremely consistent with the observed OS, confirming the

accuracy of this nomogram (Figure 6C). In addition, the decision

curve analysis (DCA) and the Hosmer-Lemeshow analysis continued

to be conducted to enhance the nomogram persuasiveness. The DCA

manifested that the net benefit of the PANoptosis-model curve far

outweighed the other two curves, representing the efficiency of this

model (Figure 6D). Similarly, its salient performance was again

validated via the Hosmer-Lemeshow analysis, due to the result that

the PANoptosis-nomogram curve did not exist apparent distinction

with the ideal curve (P = 0.132) (Figure 6E), implying a superb

predictive capability of this model. According to these data, it was

summarized that the PANoptosis-nomogram had terrific potential

and value for clinical application.

We also observed the predictive performance of eleven factors via

the ROC curve, of which except for ER (AUC = 0.42) and PR (AUC =

0.4), the AUC value< 0.5, the good predictive potential of other factors

was demonstrated (AUC > 0.5, Figure 6F). The C-index is a

fundamental approach to appraise the predictive capability of

distinctive models. We proceeded to assess the predictive efficacy of

our model against 100 published signatures through C-index

evaluation across the training cohort and ten testing cohorts.

Remarkably, our PANoptosis-model demonstrated consistently
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higher precision compared to other models in the majority of the

cohorts, underscoring model’s robustness (Supplementary Figure S2).
Genomic alterations and their prognostic
implications in PANoptosis

The above findings had preliminarily mentioned genetic

alterations in two groups, to deeply analyze these diversities

between two populations, we introduced multi-omics analysis to

inspect the genetic variations within separate groups (Figure 7A). It

was observed that the tumor mutational burden (TMB) of low-risk

patients was comparatively lower in comparison to the high-risk

populations. Moreover, this finding was again emphasized via the

findings from Figures 7B, C. In Figure 7B, we calculated and

visualized the TMB value, of which a lower TMB value was

detected in low-risk patients instead of in high-risk populations (P<

0.05). Additionally, the TP53 mutational frequency was individually

calculated among these two groups, respectively, as well as a higher

proportion of the TP53 MUT was discovered in high-risk patients,

which accounted for 58% and far surpassed the 38% of low-risk

patients (Figure 7C). These three mutational signatures of SBS12,

SBS1 and SBS11 primarily occurred in high-risk patients. Secondly, it

was also detected that the mutation frequency of other genes, such as

PIK3A, TTN, HMCN1 and CCDC168, also showed obvious
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FIGURE 5

Machine learning approaches to develop a prognostic PANoptosis model. (A) The C-indexes of the 55 machine-learning algorithm combinations in
the six testing cohorts. (TCGA, GSE20685, GSE131769, GSE96058, GSE2071 and GSE24450). (B) The forest model showcases the error rate in several
different trees. (C) The importance of each significant PANoptosis gene. (D) The difference in OS, and survival status between two groups. Heatmap
quantifying the expression levels of six PANoptosis genes in distinctive populations. (E) KM survival illustrates the survival probability in these two
groups. (F) The kernel-smoothing hazard function plot demonstrates the correlation between relapse hazard and moths in two populations. (G) The
ROC curves visualize the AUC values of the PANoptosis-model at one-, three-, and five-year.
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heterogeneity between these two populations. Besides, the

amplification of 3p25.1, 6q21 and 13q34, as well as the deletion of

1p21.2, 17p12, 17q21.31 and 19p13.3 were identified in high-risk

patients. These results were demonstrated due to the gain of

oncogenic genes CDK19, SOBP, ATG5 and FYN in chr6q21

(Figure 7A). After that, the expression levels of six PANoptosis-

related genes were quantified, as the heatmap showcased that SRC,

DAPK2 and NR4A2 were primarily up-regulated in low-risk BC

patients, while other three PANoptosis genes had higher expression

levels in other risk patients (Figure 7D). Subsequently, the relevance

between the risk score and survival status (Figure 7E) and tumor

grade (Figure 7F) was explained, respectively. The risk score

presented a remarkably positive correlation with status and grade,

hinting that PANoptosis was pivotal in BC development. Ultimately,

we compared the enrichment divergences of landmark pathways

between two populations using GSEA analysis, of which five signaling

pathways related to the immunoreaction had lower abundances in

the high-risk patients, such as T cell-mediated cytotoxicity, antigen

processing and presentation of peptide antigen, taking the positive

regulation of epithelial cell differentiation pathway as an example,

these five pathways, which were involved in cell development, were

dramatically down-regulated in the low-risk patients (Figure 7G).
Tumor microenvironment evaluations
using the PANoptosis model

Due to the significance of the TME in tumor development, we

explored the immune discrepancies between these two populations
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using multiple methods, including CIBERSORT, xCell, MCP

counter, TIMER and quanTIseq, to deeply analyze the prognostic

mechanisms. We observed that a majority of immune cell types

were prominently distributed in low-risk BC patients, such as

neutrophil cells, monocyte cells, CD4+T cells and NK cells, and a

minority of cells were found in the high PANoptosis-score patients,

for instance, pDC cells, Tregs, and dendritic cells (Figure 8A).

Consistent with immune infiltration, low-risk patients possessed a

higher abundance of ICIs compared to high-risk patients,

accompanied by a favorable prognosis (Figure 8B). To further

assess the TME variation and validate the analyzed results, we

performed IHC staining based on key cell markers and ICIs in-

house collected samples, the representative IHC images and statical

results are shown in Figures 8C, D.
Prognostic implications of PANoptosis for
ICIs therapy response

Through the evaluation of TME, it was speculated that low-risk

BC patients may be superior in response to immunotherapy based

on more immune cell infiltration and higher expression levels of

ICIs genes, consequently demanding further validation. It is well-

known that TIDE has been widely utilized to examine the efficiency

of immunotherapy, and it typified a negative relevance with the

responsiveness. Here, higher Dysfunction values were observed in

low-risk patients, but there were no prominent differences in the

TIDE and Exclusion scores between these two patients (P > 0.05)

(Figure 9A). The survival probabilities included four combinations
B
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A

FIGURE 6

Predictive performance of the PANoptosis prognostic model. (A) The univariate Cox regression analysis comprised of risk score, age, menopause, LN,
PR, ER, HER2, stage, T, N, and M, and the multivariate Cox regression analysis composed of risk score, age, menopause, stage, T, N, and M.
(B) The establishment of a PANoptosis-nomogram made up of risk score, stage, and age. (C) The calibration curves assess the correctness of this
nomogram prediction for OS at 1-, 3-, and 5-year. (D) The PANoptosis-model possesses higher net benefit and threshold probability than treat all and
treat none. (E) The Hosmer-Lemeshow curve of PANoptosis-nomogram plotted by actual PANoptosis-model and nomogram predicted probability. (F)
11 ROC curves respectively unfolding the corresponding AUC values of the risk score and ten clinicopathological indexes. ***P < 0.001.
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that were separately evaluated as shown by four KM survival curves,

suggesting that low-risk score and high TIDE were superior in the

outcome than other combinations, which claimed that low-risk

patients with high TIDE value implied the further improvement of

prognosis effect and risk score played a domain and decisive

role (Figure 9B).
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We estimated the tumor immunogenicity characteristics

according to these indexes including CTA score, recombination

defect, wound healing and proliferation, since their dysregulation

could furnish new impetus for the development of tumors. As the

outcomes exhibited, these four indexes displayed sensibly positive

relations with the risk score, proposing that high-risk BC patients
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FIGURE 7

Genomic alterations and their prognostic implications in PANoptosis. (A) Genomic alteration landscape according to PANoptosis-model, including
TMB, mutational signature, mutated frequencies of top 28 genes, CNV alteration and the distribution of selected genes in Chr6p21; Bar chart
visualized the proportion. (B) The logarithmic value of TMB was computed in each group. (C) The TP53 MUT separately accounted for 58% and 38%
in high- and low-risk patients, and similarly the percentages of WT were 42% and 62% between them, respectively (D) The heatmap presenting the
expression profiling of five important PANoptosis genes in distinct populations and other clinicopathological factors, such as age, LN, stage, and
HER2. (E, F) The violin charts individually indicated the association of risk score and status (E) and grade (F). (G) GSEA analyses results from the high-
risk subgroup compared with the low-risk one. *P<0.05, **P<0.01, ***P<0.001, ****P < 0.0001.
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possessed inferior prognoses (Figure 9C). Until now, it has not been

determined which groups were more suitable for ICIs therapy, so

we introduced the IPS score from the TCGA dataset to diagnose. It

was emphasized that the IPS scores were all extremely high in low-

risk BC patients, representing that this group was more likely to

acquire benefits from immunotherapy, no matter what alone or

combined therapy methods were (Figure 9D). Ultimately, the

assessment of response to PD1, PDL1, CTLA4 and MAGE-A3

treatment provided the immunotherapy chance for high-risk

populations, but this group was merely limited to response to

anti-PD-1 and MAGE-A3 treatments (P< 0.05) (Figure 9E).

Collectively, the PANoptosis-model predicted the responsiveness
Frontiers in Immunology 12
to ICIs therapy between distinctive groups, as well as low-risk BC

patients were more beneficial for this treatment in clinical.
Chemotherapy response and
PANoptosis signatures

While novel therapeutic approaches, including targeted

therapy, have been explored, chemotherapy remains an essential

option for clinical cancer treatment. Therefore, it is imperative to

employ the PANoptosis model to predict chemotherapy response in

BC patients, to improve the prognosis, especially for high-risk BC
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FIGURE 8

Tumor microenvironment evaluations using the PANoptosis model. (A) The distribution of multiple infiltrated immune cells derived from five algorithms
(xCell, CIBERSORT, quanTIseq, TIMER) in two populations. (B) The expression features of massive immune checkpoints in these two risk-score
subgroups. (C) IHC images of infiltrated immune cells and ICIs targeting the representative makers. (D) Statistical result of (C). *P<0.05, **P<0.01,
***P<0.001, ****P < 0.0001. ns, not significant.
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patients. The identification of therapeutic targets is deemed a

pivotal measurement to breaking undruggable dilemmas. So,

Spearman’s correlation analysis was utilized to select, finding that

four proteins had a higher abundance in high-risk patients, which

also indicated that this group was more prone to chemotherapy.

Moreover, the CERES scores also supported the finding that these

four proteins were considered therapeutic targets for high-risk BC

patients (Figure 10A). Meanwhile, the candidate drug targeting

these four anti-cancer drugs was characterized as having higher

drug sensitivity (Figure 10B). Together, ACTB, SLC15A1, SLC5A6,

and SQLE were recommended as potential therapeutic targets.

In the following, we continued to identify underlying drugs from

PRISM and CTRP datasets. This study displayed that a total of six
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candidate compounds were listed, among them ispinesib and

LY2606368 compounds from the PRISM dataset (Figure 10C), and

the CTRP dataset including SB-743921, paclitaxel, BI-2536 and

GSK461364 compounds (Figure 10D). We also found that lower

AUC value was reported in high-risk patients, hinting a better

responsiveness to chemotherapy in this population. Since the above

finding was unable to determine the most superior drugs, therefore, a

multiple-perspective analysis was further conducted. Among them,

the clinical status, experimental evidence, mRNA expression levels

and CMap score of these six compounds were disclosed, based on the

criterion CMap score< -35, concluding that only BI-2536 and

ispinesib were ultimately chosen as therapeutic drugs for high-risk

BC populations (Figure 10E; Supplementary Table S6).
B

C

D

E

A

FIGURE 9

Prognostic implications of PANoptosis for icis therapy response. (A) Differences of TIDE value, dysfunction value and exclusion value in low- and
high- risk populations. (B) To compare the OS of four combinations composed of (low or high) TIDE and (low or high) risk score, individually. (C) The
relevance of the risk score and CTA score, recombination defect, wound healing and proliferation. (D) IPS (Immunophenoscore) value of each
combination among two risk groups. (E) Putative ICIs therapy response in two risk BC patients.
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Discussion

Our investigation into the role of PANoptosis in breast cancer

marks a significant stride toward refining prognostic tools and

personalizing patient care. By developing a risk score rooted in the

intricate mechanisms of PANoptosis—encompassing pyroptosis,

apoptosis, and necroptosis—we’ve unveiled a multifaceted

perspective on tumor biology and patient outcomes. This

approach not only sheds light on the underlying processes driving

breast cancer progression but also sets the stage for targeted

therapeutic strategies that could dramatically alter the

clinical landscape.

The introduction of our PANoptosis-based risk score has the

potential to revolutionize treatment paradigms in breast cancer care.

By accurately stratifying patients according to their risk, we can pave
Frontiers in Immunology 14
the way for more nuanced treatment strategies—those at higher risk

might benefit from innovative, aggressive treatments earlier in their

disease course, while lower-risk patients could avoid unnecessary side

effects from overtreatment. Moreover, our findings underscore the

potential of targeting the PANoptosis pathway as a novel therapeutic

avenue, offering hope for treatments that could inhibit tumor growth

and metastasis more effectively.

Crucially, our study illuminates the complex relationship between

PANoptosis and key processes in cancer development. While our

analysis provides valuable insights into PANoptosis and its association

with breast cancer prognosis, we did not directly investigate its

relationship with EMT or other specific pathways involved in cancer

metastasis. However, the identification of key PANoptosis-related

genes and their prognostic significance underscores the potential of

further research in these areas. Future studies could explore how these
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FIGURE 10

Chemotherapy response and PANoptosis signatures. (A) The left plots illuminating the spearman’s rank correlation coefficient of five candidates,
among them the red and blue plots signifying the positive and negative correlations, respectively. Correspondingly, the right scatter plots separately
denoting the relevance between the risk score and each candidate’ protein abundance and CERES score. (B) Spearman correlation between mRNA
expression of potential targets and drug sensitivity across cancer cell line. (C, D) Correlation coefficients of two compounds from PRISM dataset (C)
and of four compounds gotten from CTRP (D), of which the larger circle, the lower P-value. Accordingly, the right boxplot illustrating the remarkable
distinction of AUC value between these two risk groups in each compound. (E) A multiple-perspective analysis was constituted by clinical status,
experimental evidence, mRNA expression and CMap score of six compounds. ***P < 0.001.
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genes interact within the broader network of cancer progression

mechanisms, potentially uncovering novel targets for therapeutic

intervention. Understanding how PANoptosis intersects with other

cellular processes to drive or inhibit cancer spread is essential for

developing targeted interventions that could halt progression and

improve survival outcomes.

While our study represents a pivotal step forward, we must

acknowledge the limitations inherent in our current model, most

notably the exclusion of molecular subtypes of breast cancer. This

oversight is significant; the diversity of breast cancer at the molecular

level profoundly influences both prognosis and therapeutic response.

Future iterations of our research will need to incorporate these

subtypes to fully capture the complexity of breast cancer and refine

the applicability of our risk score in diverse clinical contexts.

Looking forward, integrating our PANoptosis-based risk score

with molecular subtyping and other biomarkers could yield a

robust, multifactorial tool for breast cancer prognosis and

treatment planning. Collaborative research efforts that bridge

basic science and clinical practice are essential for translating

these insights into tangible benefits for patients. Moreover,

exploring the potential of combination therapies that target both

PANoptosis pathways and other key drivers of tumor growth and

resistance may offer new hope for challenging cases of breast cancer.

In sum, our study contributes a vital piece to the puzzle of breast

cancer prognosis and treatment, highlighting the importance of

PANoptosis in shaping patient outcomes. While challenges remain

in translating these findings into clinical practice, the promise of

more personalized, effective treatment strategies based on our

understanding of PANoptosis offers a new horizon in breast

cancer care. As we move forward, expanding the scope of our

research to address the limitations identified and exploring the full

therapeutic potential of targeting PANoptosis will be crucial in our

ongoing battle against breast cancer.
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