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Serving as a pivotal immunotherapeutic approach against tumors, anti-PD-1/PD-

L1 therapy amplifies the immune cells’ capability to eliminate tumors by

obstructing the interaction between PD-1 and PD-L1. Research indicates that

immune checkpoint inhibitors are effective when a patient’s gut harbors unique

beneficial bacteria. As such, it has further been revealed that the gut microbiome

influences tumor development and the efficacy of cancer treatments, with

metabolites produced by the microbiome playing a regulatory role in the

antitumor efficacy of Immune checkpoint inhibitors(ICBs). This article discusses

the mechanism of anti-PD-1 immunotherapy and the role of intestinal flora in

immune regulation. This review focuses on the modulation of intestinal flora in

the context of PD-1 immunotherapy, which may offer a new avenue for

combination therapy in tumor immunotherapy.
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1 Introduction

The treatment strategies for tumors are combination of multiple therapies, including

surgery, chemotherapy, radiotherapy, and immunotherapy (1). Recently, researchers have

paid more attention to immunotherapy, making immune checkpoint inhibitors an

important treatment for most types of tumors (2).

Extensive research has delved into the effectiveness of the PD-1/PD-L1 pathway in

cancer. Anti-PD-1 treatment hinders the liberation of negative modulators in the immune

checkpoint, a function with broad applicability across malignancies, offering a sustained

response in contrast to conventional therapies (3). PD-1 is a widely studied inhibitory

regulatory receptor, indispensable in maintaining immune system homeostasis and

regulating the function of T cells. Although anti-PD-1/PD-L1 therapy has demonstrated

its effectiveness against tumors in certain patients, its efficacy is not universal, encountering
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challenges related to treatment resistance in some cases (4). In fact,

it may also be necessary to regulate cancer immune checkpoints,

promote immune tolerance to those immune checkpoints, and

control abnormal angiogenesis, among other factors (5).

Therefore, a combination treatment strategy is considered a

reasonable and feasible way to achieve the most efficacious

therapeutic effect.

Intestinal flora can influence the therapeutic effectiveness of

various cancer treatments, including chemotherapy, radiation, and

immunotherapy (6). Currently, there is widespread concern about

whether the gut microbiome can modify the innate immune

response to tumors and influence the effectiveness of

immunotherapy (7). Studies have uncovered that the gut

microbiome has the capacity to impact both tumor progression

and the effectiveness of cancer treatments (8). The success of ICB

therapy hinges on the existence of particular beneficial bacteria in

the patient’s gut, and certain microbial metabolites have been

identified as regulators of ICB efficacy. This review focuses on the

regulation of intestinal flora against PD-1 immunotherapy, which

may provide a new avenue for combination therapy in

tumor immunotherapy.
2 Results

2.1 Specific elucidation and research
progress of anti-PD-1 mechanism

2.1.1 The typical pathways of anti-PD-1 therapy
Programmed cell death protein 1 (PD-1) is a transmembrane

protein of type I, encoded by the PDCD1 gene (9). Its primary

expression occurs on activated T cells (CD4+ T cells, CD8+ T cells).

However, it is also found on B cells, macrophages, monocytes,

natural killer T cells, and dendritic cells (DCs). PD-1 stands out as

one of the extensively studied inhibitory regulatory receptors,

functioning as a crucial immune checkpoint that governs T cell

and B cell antigen responses. Its role is indispensable in precisely

modulating T cell function and preserving the balance of the

immune system (9). The interaction between PD-1 and its ligand

programmed cell death protein 1 ligand 1(PD-L1) can lead to T-cell

exhaustion and the suppression T-cell function (10).

Within the cytoplasmic domain of PD-1, two tyrosine residues

are present: an immunoreceptor tyrosine inhibitory motif (ITIM)

and an immunoreceptor tyrosine switching motif (ITSM) (11).

Upon binding to a ligand, primarily PD-L1, the tyrosine residues

situated in the PD-1 ITSM undergo phosphorylation, recruiting

protein tyrosine phosphatases (PTPs). These PTPs antagonize the

signals generated by T cell receptor (TCR) and CD28, inhibiting the

effect of TCR activation (12). For example, shp2 inhibits the RAS-

ERK pathway, and ZAP-70, the PI3K-AKT pathway. Therefore,

PD-1 binding to PD-L1 reduces transcription factor activation,

resulting in the inhibition of proliferation, activation, and cytokine

production in T cells (Figure 1). This culminates in the inhibition of

metabolic alterations and the impairment of cytotoxic T

lymphocytes (CTLs) killing function, ultimately leading to the
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demise of activated T cells (13). The PD-L1 signaling pathway is

implicated in various cell types, encompassing dendritic cells,

macrophages, T cells, B cells, and mast cells. Beyond

hematopoietic cells, nonhematopoietic cells such as vascular

endothelium, islet cells, placental trophoblasts, and keratinocytes

are also involved. In healthy tissues, the predominant mechanism

for maintaining physiological peripheral immune tolerance involves

the elevated expression of PD-L1. This control mechanism

mitigates tissue autoimmunity following prolonged inflammatory

responses to tissue injury. However, heightened PD-L1 expression

diminishes T-cell-mediated cytotoxicity, facilitating evasion from

the immune system (14).Tumor-infiltrating lymphocytes (TILs)

stand out as the principal effector cells within the tumor tissue

microenvironment, expressing PD-1 (15). Throughout tumor

progression, tumor cells express negative checkpoint regulators

that stifle immunity, allowing them to elude immune surveillance

(16). Furthermore, interactions involving anti-PD-1/PD-L1 also

contribute to the restoration of CD8+ T cell function within

tumors (17).

Crucially, the inhibition of the PD-1/PD-L1 pathway instigates

the activation of tumor-specific cytotoxic T cells within the tumor

microenvironment (15). The coalescence of PD-L1 and PD-1

fosters the induction of interleukin-10 and T cell apoptosis,

leading to inactivation and depletion of T cells (15, 18).

Additionally, PD-L1 serves as a protective “shield” for tumor cells

against the cytotoxic response mediated by CD8+ T cells (19).

Furthermore, CD80, expressed on activated T cells and antigen-

presenting cells (APCs), acts as a receptor for PD-L1, transmitting

inhibitory signals upon binding to PD-L1 (18). Moreover, PD-L1

can function as a receptor, transmitting signals from T cells to

tumor cells, resulting in resistance of tumor cells to lysis.

Consequently, the blockade of PD-1 and PD-L1 interaction

effectively enhances the cytotoxicity of tumor-infiltrating

lymphocytes(TILs) against tumor cells (20).

2.1.2 Progress in anti-PD-1 research and its
combined therapy

The effectiveness of the PD-1/PD-L1 pathway has undergone

thorough examination in the realm of cancer. Anti-PD-1 treatment,

by impeding the release of negative modulators within the immune

checkpoint, exhibits functionality with broad relevance across

malignancies, yielding a sustained response when contrasted with

conventional therapies (3). Employing the blockade of the PD-1/

PD-L1 checkpoint has become the standard therapeutic approach

for various cancers. Moreover, the inhibition of PD-1/PD-L1 is

currently under intense scrutiny in clinical trials for the treatment of

numerous other diseases (21). Based on clinical trial results,

antibodies against PD-1 and PD-L1 are currently being used to

treat multiple cancers (Table 1).

Despite the robust anti-tumor effects demonstrated in certain

patients by a-PD-1/PD-L1 therapy, the majority are unable to

derive sole benefits from this treatment, owing to the existence of

various primary and secondary immune escape mechanisms (4). In

fact, it may also be necessary to regulate cancer immune

checkpoints and promote immune tolerance towards those
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immune checkpoints, as well as control abnormal angiogenesis, and

so on (5). Eliminating these negative factors could raise the efficacy

and mitigate drug resistance. In turn, reinforcing positive factors

could improve the response to anti-PD-1/PD-L1 medical treatment

(41). Therefore, a combination treatment strategy is considered to

be a reasonable and feasible way to achieve the most efficacious

therapeutic effect. It has been identified that some combination

therapies can work synergistically with anti-PD-1/PD-L1 by raising

the antigen release, and/or APC function and activity (42).

Studies have uncovered that the microbiome residing in the gut

has the capacity to impact both tumor development and the

effectiveness of cancer treatment (8). The success of ICB therapy

hinges on the existence of particular beneficial bacteria in the

patient’s gut, and certain microbial metabolites have been

identified as regulators of the efficacy of ICBs. When dietary

intake is degraded by the gut microbiome, various metabolites are

produced, and liquid chromatography-tandem mass spectrometry

can accurately screen the metabolites of intestinal flora (43). Some

of these metabolites can trigger an inflammatory response, which

aids the regulation of immune function (44). The presence of

specific intestinal flora can cause an increase in the efficacy of

PD-1 drugs four-fold. For example, certain bacteria (Lactobacillus
Frontiers in Immunology 03
johnsonii, Bifidobacterium pseudolongum, Olsenella species)

produce inosine. In combination with checkpoint blockade

immunotherapy, inosine can increase its effectiveness, promote

the anti-tumor capacity of T cells, and ultimately inhibit tumor

development (44). In summary, a deeper understanding of the

interactions between the gut microbiome and the host immune

system is of great importance for developing new cancer

treatment strategies.
2.2 Gut microbiota and anti-
tumor immunity

Tumor and gut microbiota determine cancer progression and

response to treatment through their effects on innate and adaptive

immunity (45). Intestinal flora can directly affect the progression

and metastasis of tumors. Consequently, the presence and

advancement of intestinal tumors stimulate the activity of

intestinal flora. The interaction between tumors and gut

microbiota plays a pivotal role in influencing cancer progression

and the response to treatment, exerting effects on both innate and

adaptive immunity (45). Intestinal flora can directly affect the
FIGURE 1

PD-1/PD-L1 signaling in T cells. When the receptor PD-1 binds to its ligand PD-L1, the PD-1 ITSM is phosphorylated at tyrosine residues, leading to
the recruitment of protein tyrosine phosphatases (PTPs) such as SHP2. SHP2 dephosphorylates ZAP70 and antagonizes positive signals through the
TCR and CD28 receptors, thereby inhibiting T cell function and T cell exhaustion. In addition, PD-1 can inhibit T cell function by up-regulating the
expression of the transcription factor BATF. (Created with BioRender.com).
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TABLE 1 Monoclonal antibodies against PD-1 approved by the US Food and Drug Administration.

Name
of
antibody

Mechanisms of action
of antibodies

Types
of
Antibodies

Affected types of cancer Reference

Atezolizumab
(Tecentriq,
Genetech/
Roche)

● Bound to the ligand PD-L1 on tumor cells
and blocked the binding of PD-L1 to its
inhibitory receptor PD-1 by

Anti-PD-1
humanized
IgG1 antibody

Metastatic NSCLC and Advanced or Metastatic UC (22)

Avelumab ● Inhibited the interaction of PD-1/PD-L1
Anti-PD-1
humanized
IgG1 antibody

MCC and UC (23)

Camrelizumab
(SHR-1210)

● Blocked the interaction of PD-1 with its
ligands
● Dampened tumor cells’ immune evasion

Anti-PD-1
humanized
IgG4
monoclonal
antibody

Relapsed or refractory cHL, B cell lymphoma, oesophageal
squamous cell carcinoma, gastric/gastroesophageal junction
cancer, HCC, Nasopharyngeal Cancer(NPC), NSCLC.

(24, 25)

Cemiplimab ● Blocked T-cell inactivation.

Anti-PD-1
humanized
monoclonal
antibody

Basal cell carcinoma (BCC), NSCLC, Squamous Cell
Carcinoma (SCC)

(26)

Dostarlimab
● Bound to PD-1 on T cells and prevented
PD-1 from interacting with its ligands,
activating the immune response

Anti-PD-1
humanized
IgG4 antibody

Endometrial Cancer (27)

Durvalumab
(Imfinzi,
AstraZeneca)

● Inhibited PD-L1 interactions with PD-1
and CD80

Anti-PD-1
humanized
IgG1 antibody

Advanced UC and NSCLC (28)

Nivolumab

● Blocked the interaction of PD-1 with PD-
L1 and PD-L2 by binding to the PD-1
receptor
● Inhibited T-cell apoptosis, inactivation, and
exhaustion
● Promoted interleukin-10 expression due to
PD-L1 and PD-1 binding
● Preserved T-cell function

Anti-PD-1
human
monoclonal
antibody,

NSCLC, melanoma, advanced RCC, classical Hodgkin
lymphoma (cHL), CRC and HCC, Squamous Cell Carcinoma
of the Head and Neck (SCCHN), UC

(29–32)

Pembrolizumab
(Keytruda,
Merck &
Co/MSD)

● Blocked the PD-1’s binding to its
immunosuppressive ligand
● Attenuated the inhibition of T cells

Anti-PD-1
humanized
IgG4
monoclonal
antibody

Melanomas, NSCLC, SCCHN, cHL, UC, primary mediastinal
large B-cell lymphoma(PMBCL), advanced cervical cancer,
HCC and Metastatic Merkel cell carcinoma (MCC), advanced
or metastatic Gastroesophageal Junction Adenocarcinoma

(33–35)

Prolgolimab
(formerly
BCD-100)

● Contained the Fc-silencing L234A/L235A
(LALA) mutation by eliminating the
interaction between the Fc region of the
antibody and FcgR expressed on various
immune cells.
● Blocked the effector function of antibodies
and enhancing immunity.

Anti-PD-1
humanized
IgG1 antibody

Advanced Melanoma (36)

Sintilimab
● Blocked the interaction of PD-1 with its
ligands
● Recovered T-cell antitumor efficacy

Anti-PD-1
humanized
IgG4 antibody

Hodgkin lymphoma(HL), natural killer/T cell lymphoma
cancer and advanced NSCLC.

(37)

Tislelizumab
● Inhibited the binding of PD-1 to FcgR
on macrophages

Anti-PD-1
humanized
IgG4 antibody

Metastatic PD-L1 UC and cHL (38)

Toripalimab
● Bound to PD-1 and blocked the interaction
with its ligands

Anti-PD-1
humanized
monoclonal
antibody

Lung Cancer, Melanoma, Neuroendocrine Tumors, NPC and
Digestive Tract, Hepatobiliary, Pancreatic Tumors.

(39)

Zimberelimab
● Bound to PD-1 and blocked the interaction
with its ligands

Anti-PD-1
humanized
monoclonal
antibody

NSCLC, and relapsed or refractory cHL, Cervical Cancer (40)
F
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progression and metastasis of tumors. As such, intestinal flora are

stimulated by the occurrence and development of intestinal tumors.

2.2.1 Gut microbiota regulates innate immunity
The gut microbiota modulates innate immunity by regulating

various immune cells, such as dendritic cells (DCs), monocytes, and

natural killer (NK) cells.

The gut microbiota plays a regulatory role in DCs, which

constitute a specialized group of antigen-presenting cells crucial

for T cell activation and anti-tumor immunity (46). When

Bifidobacterium is orally administered, it fosters the activation of

DCs, consequently enhancing tumor-specific CD8+ T cell responses

(47). Additionally, Bacteroides fragilis can promote the maturation

of DCs and augment the IL-12-dependent Th1 cell immune

response, thereby amplifying the anti-tumor efficacy of anti-

CTLA-4 treatment (48).

Moreover, the gut microbiome exerts control over monocytes.

Monocolonization with cdAMP-producing Akkermansia

muciniphila(AKK) triggers a cascade involving monocytes, IFN-I,

NK cells, and DCs, ultimately reinforcing anti-tumor responses

(49). Similarly, Bifidobacterium, through STING signaling, supports

CD47-based immunotherapy (50). Furthermore, Bacteroides fragilis

is implicated in the up-regulation of the proportion of M1

macrophages, enhancing the expression of CD80 and CD86 on

the cell surface and thus promoting innate immunity (51).

The gut microbiota plays a role in regulating NK cells, which

influence anti-tumor immunity by modulating the abundance of

DCs and CD8+ T cells in the TME (46). Lactobacillus plantarum has

been shown to elevate NK cell activity by up-regulating the

expression of natural cytotoxic receptor (NCR) protein (52).

Furthermore, the intratumoral presence of Bifidobacterium and

the subsequent heightened activation of NK cells have been

demonstrated to induce anti-tumor immunity (53).

2.2.2 Intestinal microbiota regulates
adaptive immunity

The gut microbiota exerts control over CD8+ T cells. In a

melanoma clinical trial, a high abundance of Clostridiales,

Ruminococcaceae, or Faecalibacterium is linked to increased

antigen presentation. In comparison to patients with low

abundance, this results in enhanced functionality of CD4+ and

CD8+ T cells in both peripheral blood and the TME. Such

enhancement is advantageous for the anti-tumor effectiveness of

immune checkpoint inhibitors (ICI) (8). Another clinical trial

provides evidence that the relative abundance of Enterococcus

increases in patients’ tumors after receiving fecal microbiota

transplantation (FMT) and anti-PD-1 treatment. This increase

correlates with intratumoral CD8+ T cell infiltration and tumor

cell necrosis (54). Furthermore, Bifidobacterium has been shown to

increase the abundance of CD8+ T cells and enhance the efficacy of

ICI treatment (47).

The gut microbiome exercises control over CD4+ T cells. The

colonization of segmented filamentous bacteria (SFB) is particularly

effective in inducing the growth of Th17 cells within the small

intestine (55). Th17 cells, a vital component of CD4+ effector T cells,
Frontiers in Immunology 05
are proficient producers of IL-17, which plays a crucial role in host

defense against extracellular pathogens (56). SFB induces small

intestinal epithelial cells to produce serum amyloid A (SAA), which

then activates CX3CR1+ phagocytes to produce IL-1b and IL-23.

The synergistic action of IL-1b and IL-23 promotes the production

of IL-22 in group 3 innate lymphoid cells (ILC3). Subsequently, IL-

22 positively influences phagocytes, mediating IL-1b production

and ultimately elevating IL-17 production in RORgt+ CD4+ T cells

(55).Studies have shown that gut microbes exert control over the

functionality of Treg cells by producing metabolites, including

short-chain fatty acids (SCFAs), providing protection against

colitis in mice through a mechanism dependent on Ffar2

(GPR43) (57). The genus Clostridium, especially Clostridium

leptum and Clostridium coccoides, demonstrates the ability to

induce Treg activity in both humans and mice (58). Moreover,

SCFAs, particularly butyrate, possess the capability to augment the

acetylation of Foxp3 sites in Tregs (59).

2.2.3 Regulatory mechanisms of immune cells by
gut microbiota metabolites

Microbiota metabolism generates a multitude of metabolites,

serving as crucial signaling factors and energy substrates that

influence intestinal tumors (60). The key metabolites of gut

microbiota encompass inosine, short-chain fatty acids (SCFAs),

and anacardic acid, among others.

Inosine, a purine metabolite derived from gut microbes AKK

and Bifidobacterium pseudolongum (B. pseudolongum), exhibits

synergistic antitumor effects when combined with ICI therapy

(44). Firstly, the treatment of tumor cells with inosine enhances

the activation of IFN-g and TNFa signaling pathways. IFN-g, in
turn, boosts the release of perforin and granzyme, augmenting

antigen presentation and ultimately fostering anti-tumor immunity

(61). Secondly, inosine enhances the efficacy of ICI by influencing

the adenosine 2A receptor (A2AR) on T lymphocytes (44). Lastly,

inosine can also serve as an alternative carbon source, providing

energy for CD8+ T cells (62).

SCFAs, metabolites of gut microbiota, are also implicated in

cancer antibody therapy (63). Firstly, Faecalibaculum rodentium

PB1 and Helicia biformis (H. biformis) metabolize butyrate, which

inhibits histone deacetylase (HDAC) and activates the NFATc3

transcription factor, leading to the inhibition of tumor cells (64).

Secondly, SCFAs enhance anti-tumor immune responses. Butyrate,

for instance, upregulates the expression of inhibiting DNA binding

2 (ID2) in CD8+ T cells, thereby augmenting the anti-tumor

cytotoxicity of CD8+ T cells (65). Finally, SCFAs can serve as an

energy source for anti-tumor immune cells by modulating

metabolic pathways such as glycolysis, the tricarboxylic acid

(TCA) cycle, and b-oxidation (66).

In addition to purines and SCFAs, several studies have verified

that anacardic acid can also boost antitumor immunity. Anacardic

acid activates innate immunity by phosphorylating mitogen-activated

protein kinases (MAPKs), initiating the classical activation pathway

of macrophages (67). Furthermore, in certain breast cancer models, it

has been confirmed that anacardic acid elevates the levels of tumor-

infiltrating NK cells and CTLs, inducing apoptosis in tumor cells (68).
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Additionally, certain gut microbiota metabolites have been

identified to dampen antitumor immune responses. For instance,

some gut microbes generate the bile acid metabolite 3-oxolithocholic

acid, which hinders the differentiation of Th17 cells (69). Moreover,

the secondary bile acid 3b-hydroxydeoxycholic acid has been found

to attenuate the immune activity of DCs, increase the number of

Tregs, and facilitate immune escape (70).

These discoveries provide critical insights into regulatory

mechanisms of immune cells by gut microbial metabolites,

offering potential directions for developing novel anti-tumor

therapies in the future.

2.2.4 Relationship between the gut microbiota
and irAEs

The relationship between gut microbiota and immune-related

adverse events (irAEs) triggered by immune checkpoint inhibitors

(ICIs) is increasingly gaining attention. A specific category of

toxicities resulting from the immune system’s hyperactivation

induced by ICIs is termed irAEs (71). The gut microbiota is

linked to the occurrence, type, and severity of these irAEs. This

connection is particularly evident in cases of immune-related colitis,

where it is speculated to operate through the regulation of metabolic

pathways (72).

In a research endeavor involving 93 fecal samples obtained from

37 cancer patients undergoing anti-PD-1 treatment, individuals

experiencing irAEs exhibit lower levels of Bifidobacterium,

Faecalibacterium, and Agathobacter. Conversely, the abundance of

Erysipelatoclostridium is notably higher in these patients. Those

with colitis-type irAEs showcase reduced abundance of Bacteroides

and Bifidobacterium, while Enterococcus has a higher prevalence

(72). A thorough examination of the gut microbiota in 150 patients

post-ICI treatment reveals that those with severe irAEs

display elevated levels of Streptococcus, Paecalibacterium, and

Stenotrophomonas. In contrast, patients with mild irAEs

exhibit heightened levels of Faecalibacterium and unidentified

Lachnospiraceae (73).

Analysis of gut microbiota in patients after ICI therapy has

shown significant differences in the abundance of certain microbial

communities between severe and mild irAEs, indicating that the

diversity and abundance of gut microbiota may serve as important

predictive indicators for the occurrence of irAEs (74). Particularly

in patients with ICI-related colitis, changes in the gut microbiota are

closely associated with disease progression (75). These findings

highlight the potential role of gut microbiota in ICI therapy and

offer a new perspective for a better understanding of the

mechanisms, prevention, and treatment of irAEs.
2.3 Regulation of intestinal flora in anti-
PD-1 immunotherapy

The effectiveness of utilizing ICBs to augment immunotherapy

has been documented to diminish in the presence of antibiotics,

while a heightened effectiveness has been noted in the presence of
Frontiers in Immunology 06
specific gut microbiota (76). The manipulation of gut microbiota

composition has been shown to enhance the effectiveness of anti-

PD-1/PD-L1 therapies (77). Numerous clinical studies have

reported that FMT can regulate the intestinal microbiota in

patients and effectively mitigating resistance to anti-PD-1/PD-L1

treatment in melanoma (78). The presence of an abundance of

Clostridium or Difilibacterium in the gut of melanoma patients

indicates a favorable response to anti-PD-1 therapy (8) (Table 2).

2.3.1 Enhancing the impact of intestinal flora on
anti-PD-1 immunotherapy

Anti-PD-1/PD-L1 treatment inhibits the negative signaling of

the PD-1 intracellular domain (ITIM, ITSM) transduction (11).

Biomarkers highly correlated with anti-PD-1/PD-L1 therapeutic

efficacy include PD-L1 expression levels and TILs status (83).

Crucially, the gut microbiome plays a vital role in influencing the

effectiveness of immunotherapy (84).

The transfer of fecal microbiota from cancer patients who

exhibited a positive response to ICIs into germ-free mice or mice

treated with broad-spectrum antibiotics has enhanced the anti-

tumor efficacy of anti-PD-1. Conversely, FMT from non-

responsive patients did not yield the same improvement (76). At

present, through 16s rRNA gene sequencing, nine strains have

been identified that substantially enhance the efficacy of anti-

PD-1 (Figure 2).

2.3.1.1 Bifidobacterium bifidum

The promotion of DC maturation, increased cytokine secretion,

and stimulation of the DC-IL-12-Th1-skewing immune response

are reported as effects of Bifidobacterium bifidum. Moreover, this

genus is found to enhance the overall function of DC, fostering the

activation and survival of tumor-specific T cells. The Th1-skewing

activation mediated by the DC-IL-12 axis contributes to the

improvement of the therapeutic response to PD-1 blockade (47).

Interferon-g(IFN-g) production can be improved by enhancing the

biosynthesis of immune-stimulating molecules and metabolites,

and oral bifidobacterium enhances tumor suppression to the same

extent as specific antibody PD-L1 immunotherapy. Bifidobacterium

bifidum significantly upregulates the secretion levels of IFN-g and
promotes the production of tumor-specific CD8+ T cells (47).

Activation of CD8+ T cells and DCs results in enhanced efficacy

of immunotherapy against melanoma, NSCLC, and Renal Cell

Carcinoma (RCC) (47, 76, 85). Furthermore, Bifidobacterium

pseudocatenulatum is found to secrete inosine, amplifying the

impact of immunotherapy. The combination of inosine with

immunotherapy significantly boosts the anti-tumor activity of T

cells across various tumor types (44).

2.3.1.2 Akkermansia muciniphila (AKK):

A metagenomic examination of fecal samples from cancer

patients reveals a robust connection between the clinical

effectiveness of ICIs and the prevalence of AKK bacteria. Through

the facilitation of the recruitment of CCR9+CXCR3+CD4+ T

lymphocytes to the tumor tissue in mice, AKK bacteria can initiate
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TABLE 2 Regulation of intestinal flora against PD-1 immunotherapy.

Intestinal
flora

Effects on immunity
Effects on
anti-PD-
1 therapy

Affected types
of cancer

Reference

Akkermansia
muciniphila

● Increased number CXCR3+CCR9+CD4+T cells2.
● Improved DC capability and IL12 production
Increased IFN-g
● production of memory T cells

Enhanced PD-1
blocking effect

RCC, Melanoma, and NSCLC (76)

Alistipes
indistinctus

● Reduced resistance to anti-PD-1
Enhanced PD-1
blocking effect

RCC, Melanoma, and NSCLC (76)

Bacteroidales ● Upregulation of MDSC and Tregs
Reduced PD-1
blockade effect

Melanoma, and NSCLC (8)

Bifidobacterium

● Enhanced DC activity
Up-regulated
● tumor-specific CD8+ T cells
● Up-regulated proinflammatory cytokines

Enhanced PD-1
blocking effect

CRC, BC, Melanoma, NSCLC,
and RCC

(47)

Bifidobacterium
adolescentis
Bifidobacterium
longum

● Increased IFN-g secretion
● Increased CD8+ T cell
● tumor infiltration
● Induction of DC pair maturation, promotion of cytokine secretion

Enhanced PD-1
blocking effect

Melanoma (79)

Collinsella
aerofaciens
Klebsiella
pneumonia
Parabacteroides
merdae
Veillonella
parvula

● Reduced peripherally induced Tregs
Enhanced PD-1
blocking effect

Melanoma (79)

Enterococcus
faecium

● The metabolite SagA induces the release of peptidoglycan fragments
to produce NOD2 active polypeptides, reducing peripherally
induced Tregs

Enhanced PD-1
blocking effect

Melanoma (80)

Enterococcus
hirae

● Induces CD8+ T cells
Inhibition of IL-6, TGF-b, IL-17 expression

Enhanced PD-1
blocking effect

Melanoma, HepG-2 Cancer
and HT-29 Human
Colon Cancer

(44)

Faecalibacterium ● Increased CD4+, CD8+ T cells in the tumor
Enhanced PD-1
blocking effect

Melanoma (8)

Faecalibacterium
prausnitzii

● Increased CTL concentrations in the tumor microenvironment
Enhanced PD-1
blocking effect

Melanoma (81)

Lactobacillus
johnsonii

● Produces the metabolite hypoxanthine, improves the effect
of immunotherapy

Enhanced PD-1
blocking effect

Colon Cancer (44)

Lactobacillus
rhamnosus GG

● Increased T-cell and DC infiltration of tumor cells
● Induces the production of type I interferon (IFN) and improves the
production of anti-tumor CD8+ T cells
● Induces IFN-b signalling by cGAS/STING/TANK binding IFN
regulatory factor 7 axis in DCs, promotes immune cell activation

Enhanced PD-1
blocking effect

CRC and Melanoma (82)

Olsenella
● Increased secretion of IL-12 and IFN-g
● Produces the metabolite inosine, enhances the anti-tumor efficacy of
T cells

Enhanced PD-1
blocking effect

CRC, BC, Melanoma, NSCLC (44, 80)

Roseburia
intestinalis
Ruminococcus
obeum

● Enriched in patients with anti-PD-1 resistance
Reduced PD-1
blockade effect

Melanoma (79)

Ruminococcaceae

● Increased numbers of effector T cells in peripheral blood and TIL
● CD8+/FOXP3+CD4+T cell activity in the tumor microenvironment
● Increased CD8+ T cell infiltration in the tumor
Potentiated effects of
● CD4+ and CD8+ T cells
Improved

Enhanced PD-1
blocking effect

Melanoma, and NSCLC (8)
F
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an antigen-specific T cell response. This process promotes the

production of IgG1 antibodies and reinstates the therapeutic

efficacy of anti-PD-1 treatment for RCC, melanoma, and NSCLC

in an IL-12-dependent manner (76).

2.3.1.3 Enterococcus faecium

Enterococcus faecium, expressed NlpC/p60 peptidoglycan

hydrolase SagA, can release peptidoglycan fragments, produce

Nucleotide-binding oligomerization domain 2 (NOD2) active

polypeptides, activate innate immunity, induce a microenvironment

conducive to anti-PD-1 immunotherapy, enhance the effectiveness of

melanoma immunotherapy (86).
2.3.1.4 Enterococcus hirae

The antitumor mechanism of Enterococcus hirae involves

inhibiting tumor proliferation, promoting a proinflammatory

state, and promoting tumor cell apoptosis. Enterococcus hirae can

further promote the migration of immune cells to promote anti-

tumor effect of immune-targeted drugs. This genus inhibited the

proliferation and metastasis of tumor cells like B16F10 melanoma,

HT-29 human colon cancer, HepG-2 liver cancer cells (87). Studies

have revealed that Enterococcus hirae can additionally induce CD8+
Frontiers in Immunology 08
T cells, a function positively correlated with a good prognosis in

HBV-associated hepatocellular carcinoma (HCC) (88).

2.3.1.5 Lactobacillus johnsonii

Lactobacillus Johnsoni produces the metabolite hypoxanthine,

which then binds to inosine receptors, improving the effectiveness

of anti-PD-1 therapy against MC38 colon cancer (44).

2.3.1.6 Olsenella

Much like the situation with Bifidobacterium pseudocatenulatum,

Olsenella amplifies the therapeutic effects by metabolizing inosine.

The immunotreatment-induced reduction in intestinal barrier

function heightens the systemic transport of inosine, fostering the

anti-tumor activation of Th1 cells. This robustly augments the anti-

tumor functionality of T cells across diverse tumor types (44).

Additionally, the effectiveness of anti-PD-1 therapy in NSCLC is

elevated by augmenting the release of IL-12 and IFN-g (80).

2.3.1.7 Lactobacillus rhamnosus GG (LGG)

LGG heightens the production of tumor-infiltrating DC cells

and T cells. When administered in combination with anti-PD-1,

LGG expedites interferon (IFN) production in DCs, enhancing the
FIGURE 2

Intestinal flora increases the anti-PD-1 therapeutic effect by regulating immune cells. Akkermansia muciniphila accelerated the activity of
CXCR3+CCR9+CD4+T cells, produced more IFN-g. Bacteroidales inhibited the infiltration of B cells and T cells. Bifidobacterium and Olsenella
produced metabolites inosine and increase the levels of interleukin-12 (IL-12), interferon g (IFN-g), TNF-a and interleukin-2 (IL-2). Bifidobacterium
bifidum promotes the activation of T cells and B cells. Enterococcus faecium releases the metabolite SagA, produces NOD2 active polypeptide, and
promotes the activation of B cells, T cells. Enterococcus hirae promotes tumor cell apoptosis, weakens the proliferation and migration of tumor
cells, promotes the infiltration of T cells, B cells, promotes the activation of CD8+ T cells. Faecalibacterium promotes the activation of CD8+ T cells.
Lactobacillus rhamnosus GG (LGG), induces IFN-b production, promotes CD8+ T cell activation via the cGAS/STING pathway in DC. Lactobacillus
johnsonii enhances the immunotherapy effect through the metabolite hypoxanthine. Ruminococcaceae increases the number of effector T cells,
induces the activation of effector CD4+ and CD8+ T cells, increases tumor CD8+ T cell infiltration.
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generation of anti-tumor CD8+ T cells. Consequently, this fosters

immune cell activation and augments the immune effectiveness of

anti-PD-1 therapy in colorectal cancer(CRC) and melanoma (82).

2.3.1.8 Ruminococcaceae

Ruminococcaceae improves the infiltration of CD8+ T cells

within tumors, induces the differentiation of effector CD4+ and

CD8+ T cells, and enhances the ratio of CD8+/FOXP3+CD4+ in

tumor-infiltrating T cells. As a result, this increases the immune

efficacy of anti-PD-1 therapy in melanoma and NSCLC (8, 89).

2.3.1.9 Faecalibacterium

Faecalibacterium is associated with the increase in CTL

concentration in the tumor, subsequently potentiating the

immune efficacy of anti-PD-1 immunotherapy on melanoma (8).

The aforementioned flora has all been revealed to activate

immune cells through distinct mechanisms of action, thereby

enhancing the efficacy of immunotherapy. Individuals who

possess these microorganisms in their gut microbiome tend to be

more responsive to PD-1 therapy compared to those who do not.

2.3.2 Inhibitory impact of intestinal flora on anti-
PD-1 immunotherapy

Certain bacteria tend to accumulate in patients who show lower

responsiveness to anti-PD-1 drugs, and these bacteria might

directly diminish the effectiveness of PD-1 drugs. For example,

Bacteroidales restrict the infiltration of lymphocytes and myeloid

cells in tumors, dampen antigen presentation activity, and lead to

impaired systemic immune and anti-tumor immune responses (8).

In melanoma patients with short progression-free survival (PFS),

there is a notable abundance of Bacteroides ovoides (90). Bacteroides

ovatus, on the other hand, may influence the immune system by

inducing IgA, among other mechanisms (91). A reduction in

Bacteroides ovatus has been suggested to contribute to the

enhancement of the efficacy of anti-PD-1 treatment in CRC (92).

Conversely, Bacteroides thetaiotaomicron, Escherichia coli,

Anaerotruncus colihominis, Ruminococcus obeum, and Roseburia

intestinalis were found to be enriched in patients resistant to anti-

PD-1 immunotherapy (8, 79). However, the specific mechanisms

through which these intestinal flora diminish the efficacy of anti-

PD-1 therapy remain to be further investigated.

2.3.3 Application of gut microbiota in mouse
anti-tumor model.

Currently, several bacteria exhibit anti-tumor effects in mouse

tumor models. It has been verified that both endogenous and

externally introduced Akk significantly impede tumorigenesis in

the Lewis lung cancer mouse model (93). Pasteurized AKK has been

shown to mitigate colitis and colitis-associated CRC by regulating

CTLs in a mouse model induced by dextran sulfate sodium (94, 95).

Oral administration of Bifidobacterium alone enhances tumor

control in a mouse model of B16 melanoma, and combined

treatment with a PD-L1-specific antibody virtually eliminates

tumor growth (47). Furthermore, B. adolescents effectively
Frontiers in Immunology 09
counters Dextran Sulfate Sodium Salt (DSS)-induced chronic

colitis by stimulating protective Treg/Th2 responses and

remodeling the gut microbiota. Regular administration of B.

adolescents may enhance treatment outcomes in inflammatory

bowel disease (IBD) (96). Bifidobacterium longum, Collinsella

aerofaciens, and Enterococcus faecium have also demonstrated

efficacy in alleviating colitis in mice, suggesting their potential use

as alternative or adjunct therapies for IBD (97). In the MCA205

mouse tumor model, Enterococcus hirae is found to increase the

intratumoral CD8/Treg ratio and enhance the effectiveness of the

anti-cancer immunomodulator cyclophosphamide (CTX) (98).

Lactobacillus johnsonii inhibited tumor growth in a mouse CRC

model (99). Additionally, LGG recruits a substantial number of

neutrophils and macrophages to the tumor site in a mouse

orthotopic Bladder Cancer(BC) tumor model and is being

explored as a potential substitute for BCG immunotherapy in the

treatment of BC (100).
3 Discussion

The gut microbiota assumes a crucial role in regulating tumor

responses to cancer immunotherapy (79, 92). Clinical approaches to

improving the efficacy of tumor therapy have focused on providing

microbial formulations with immune-stimulating properties (FMT

and other more defined probiotic strains) or improving

immunotherapy outcomes through targeted depletion of

immunosuppressive bacteria. FMT can modify the balance

between beneficial and detrimental bacteria in the gut

microbiome during anti-PD-1 therapy, leading to an

enhancement in therapeutic efficacy (92). The role of gut

microbes is gaining prominence in the treatment of Non-Small

Cell Lung Cancer (NSCLC), RCC, Urothelial Carcinoma (UC), and

HCC (76, 101).

Currently, research regarding intestinal flora is primarily

challenged by the following complications. Further study on

immunomodulatory mechanism could facilitate the precise

identification of immune-promoting and immunosuppressive

bacterial strains or pathways, which could improve therapeutic

efficacy, This may further aid in the avoidance of adverse events

such as infections caused by FMT. The symbiotic nature of the

microbiome means that it also influences tumor development,

suggesting that individuals at high risk of cancer could be

screened by the composition of their microbiome, and cancer be

prevented by modulating the microbiome of high-risk individuals

(102). At present, more accurate detection methods are required for

detecting intestinal flora, these could be applied to the detection of

intestinal flora in cancer patients to accurately predict the reaction

or drug resistance of different intestinal flora to ICI. Similarly,

correlation does not imply causation, and therefore, to overcome

individual differences and biases, continued clinical trials are

required to verify and ultimately achieve the deconvolution of any

causal relationship between intestinal flora and immunotherapy

effect to improve the effectiveness of ICB cancer treatment.
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