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Neuroinflammation is a common pathological process in various neurological

disorders, including stroke, Alzheimer’s disease, Parkinson’s disease, and others.

It involves the activation of glial cells, particularly astrocytes, and the release of

inflammatory mediators. Lipocalin-2 (Lcn-2) is a secretory protein mainly

secreted by activated astrocytes, which can affect neuroinflammation through

various pathways. It can also act as a pro-inflammatory factor by modulating

astrocyte activation and polarization through different signaling pathways, such

as NF-kB, and JAK-STAT, amplifying the inflammatory response and aggravating

neural injury. Consequently, Lcn-2 and astrocytes may be potential therapeutic

targets for neuroinflammation and related diseases. This review summarizes the

current knowledge on the role mechanisms, interactions, and therapeutic

implications of Lcn-2 and astrocytes in neuroinflammation.
KEYWORDS

Lcn-2, astrocytes, neuroinflammation, NF-kB signal pathway, therapeutic application
1 Introduction

Neuroinflammation is the brain’s immune response to various harmful stimuli,

including infection, injury or neurodegenerative disease (1), which is primarily mediated

by brain-resident microglia and astrocytes (2), along with some periphery infiltrating

immune cells (3), involving the activation of neuroglia and the up-regulation of

inflammatory mediators (4). While neuroinflammation can act as a defense mechanism

to protect the nervous system by removing cell debris and promoting tissue repair,

persistent inflammation can impede recovery and have detrimental effects (5, 6).

Numerous studies have shown that neuroinflammation is an important component of

the pathological processes of various neurodegenerative diseases and brain injuries, such as
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Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple

sclerosis (MS) (1, 7). Currently, the detection and treatment of

neuroinflammation present significant challenges, necessitating

further basic and clinical research to elucidate the molecular

mechanisms, developmental processes, and intervention strategies

associated with neuroinflammation.

Astrocytes, the most abundant cells in the central nervous system

(CNS) (8), play a pivotal role in maintaining neuronal function,

regulating the blood-brain barrier (BBB), controlling ion

concentration, supporting neuronal nutrition and metabolism, and

participating in immune response (9–15). During neuroinflammation,

astrocytes are activated into reactive astrocytes, which exhibit different

phenotypes and functions (16, 17). Reactive astrocytes can secrete

various cytokines and chemokines, promoting immune cell infiltration,

thereby intricately influencing CNS inflammation (18, 19). Previous

studies have indicated that Lipocalin-2 (Lcn-2) is overexpressed and

assumes a crucial role in various pathological conditions related to

neuroinflammation, including brain injury, stroke, AD and others (20).

And it is primarily secreted by activated astrocytes (21). Studies suggest

that Lcn-2 can modulate the astrocyte reactivity, disrupt the BBB (22),

induce neuronal death, and inflammation, potentially contributing to

neurodegeneration (23). Therefore, Lcn-2 and astrocytes hold

significant biological and clinical relevance in neuroinflammation,

with Lcn-2 secreted by astrocytes potentially serving as a therapeutic

target for various brain diseases with neuroinflammatory features.

This review will focus on the mechanisms, interactions, and

effects of neuroinflammation, as well as the therapeutic methods

and significance of Lcn-2 and astrocytes as targets for

neuroinflammation treatment.
2 The molecular structure and
biological function of Lcn-2

Lcn-2 is a 25KDa circulating protein from the lipocalin

superfamily (24). The discovery of Lcn-2 can be traced back to

1989 when scientists identified a novel protein by its messenger

RNA 24p3 in mouse model kidney cells infected with simian virus

40 (SV-40) (25). Subsequently, Lcn-2 was isolated from human

neutrophil granules and mouse kidney cells released during

infection and inflammation (26, 27). It is also called neutrophil

gelatinase-associated lipocalin (NGAL), siderocalin and uterocalin

(27, 28). The structure of Lcn-2 consists of an a-helix and an eight-

stranded antiparallel b-barrel connected by a disulfide bond

between Cys-78 and Cys-177 on both sides of the molecule (29).

Lcn-2 possesses a funnel-shaped binding pocket allowing it to

transport small or hydrophobic molecules, such as lipids, steroid

hormones, and iron ions (30, 31).

In normal tissues, Lcn-2 is restricted to peripheral organs, such

as the kidney, liver, bone marrow and adipose tissue. However, in

organs like the brain, heart, skeletal muscle and spleen, Lcn-2 is only

expressed under pathological states, such as infection, inflammation

and cancer (28, 32). As an acute-phase protein, Lcn-2 is mainly

secreted by astrocytes in various CNS diseases, with its expression

generally elevated in response to inflammatory and pathological
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stimuli (21, 33). Moreover, neurons, endothelial cells, microglia and

infiltrating neutrophils can also up-regulate Lcn-2 in the disease

context (20, 34, 35).

Lcn-2 can bind to the cell surface receptors megalin and 24p3R

[also known as LCN2R, solute carrier SLC22A17 or brain-type

organic cation transporter (BOCT)] (36). Megalin is mainly

expressed on the apical surface of epithelial cells, including renal

proximal tubule, epididymal and thyroid cells, and is also found in

reactive astrocytes and neurons (37), while 24p3R is highly

expressed in astrocytes, neurons, microglia, endothelial cells,

neutrophils, macrophages, kidney epithelial cells, epithelia of

respiratory and alimentary tracts (20, 32, 38). Megalin-

internalized Lcn-2 is mainly involved in cellular iron hemostasis

(39), while binding to 24p3R mainly mediates cell death and iron

uptake (40). Additionally, studies have shown that bone-derived

Lcn-2 can cross the BBB and bind to MC4R in the hypothalamus,

thereby inhibiting the neural signals of appetite and food intake,

and regulating energy metabolism and blood glucose levels.

As individuals age, the expression of Lcn-2 increases

throughout the systemic and the CNS. Studies have shown that

Lcn-2 regulates various neurobiological processes, including

inflammation, cell death/survival signaling, iron metabolism, BBB

disruption and others, influencing the pathophysiology of age-

related brain diseases (20, 41). Long-term increases in Lcn-2

levels can make the brain more susceptible to various age-related

brain diseases, potentially contributing to their development (42).

Lcn-2 is a multifunctional protein involved in inflammation

regulation, infection defense, iron homeostasis, and cell migration

and differentiation, among other physiological processes (20, 41,

43). It has been found that specific overexpression of Lcn-2 in

astrocytes within the hippocampal region can lead to

neuroinflammation and cognitive impairments (7). A spinal cord

injury (SCI) study demonstrated that Lcn-2 exhibits pro-

inflammatory properties, while mice with the Lcn-2 gene knocked

out significantly suppress the formation of NLRP3 inflammasomes

and inflammatory response. Additionally, Lcn2 can mediate the

input and output of intracellular iron to regulate iron homeostasis

by binding to 24p3R. A study has revealed that Lcn-2 can induce the

expression of pro-apoptotic protein Bim by decreasing intracellular

iron levels, thus leading to apoptosis (40). Furthermore, several

drugs have been shown to modulate Lcn-2 levels or activity (42).

For instance, researchers found that inhibiting Lcn-2 expression

using Sailuotong capsule effectively prevented neuroinflammation

and recognition memory deficits induced by cerebral ischemia (44).

These findings il lustrate the critical role of Lcn-2 in

neuroinflammatory processes and suggest the potential for

pharmacological interventions targeting Lcn-2.
3 The signaling pathways and
mechanisms of Lcn-2 in the
regulation of neuroinflammation

As an inflammatory protein, Lcn-2 is abundantly released under

inflammatory stimuli and employs different signaling pathways and
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mechanisms to modulate inflammation levels. The following will

introduce some of them.
3.1 NF-kB signaling pathway

One of the signaling pathways is Nuclear factor-kappa B (NF-

kB), which is important for inflammation regulation (33). NF-kB
can be activated by various stimuli and enter the nucleus to initiate

the expression of a series of inflammation-related genes. Studies

have shown that Lcn-2 can trigger NF-kB phosphorylation by

binding to cell membrane receptors (24p3R), then initiate the

expression of inflammatory genes such as interleukin (IL)-b, IL-6
and tumor necrosis factor (TNF)-a (20). Furthermore, NF-kB can

enhance the expression of Lcn-2 by binding to its gene (45), creating

a positive feedback loop that amplifies inflammation.
3.2 JAK-STAT signaling pathway

Another signaling pathway is the Janus kinase-signal transducer

and transcription activator (JAK-STAT) (46). Lcn-2 can activate the

JAK-STAT pathway, which is secreted by activated microglia and

astrocytes, leading to increased inflammatory cells and factors,

resulting in neuronal damage and aggravating neuroinflammation.

In addition, Wang et al. found evidence of Lcn-2/JAK2-STAT3

crosstalk contributing to the activation of neurotoxic microglia and

astrocytes in the spinal cord after SCI, and inhibition of this crosstalk

can reduce neuroinflammation and promote tissue repair (47).
3.3 Immune cell activation

By releasing cytokines that can be pro-inflammatory or anti-

inflammatory, and by phagocytosing or clearing harmful

substances, immune cells can combat infection and injury, which

affects neuroinflammation (48). Lcn-2 can influence the activation

state of immune cells by binding to 24p3R and modulating the

production and release of cytokines, communication molecules

between cells. For instance, Lcn-2 can make macrophages secrete

more TNF-a and IL-b, which are harmful cytokines that promote

neuroinflammation (40). Additionally, in a mouse model of MS,

Sciarretta et al. identified that dysfunctional adipocytes can release

Lcn-2, activate innate immunity, and shape the pro-inflammatory

macrophage phenotype. Genetic deficiency of Lcn-2 can reduce

inflammatory macrophage infiltration in the spinal cord,

highlighting the role of Lcn-2 in exacerbating inflammation

through immune cell activation in MS (49).
3.4 Cell apoptosis and survival

Apoptosis is an ordered and controllable cell death process that

maintains tissue homeostasis and clears damaged cells. However,

excessive or inappropriate cell apoptosis can cause neuron damage

and death, worsening neuroinflammation (50). The effect of Lcn-2
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on brain cell apoptosis is controversial. According to Lee et al., Lcn-

2 secreted by astrocytes can trigger neuronal death by activating

Bim (51). Another study discovered that iron-lacking Lcn-2 binds

to 24p3R, is internalized, binds to the intracellular iron carrier, and

chelates iron to transfer it outside the cell, thereby reducing

intracellular iron levels and inducing the expression of BIM,

eventually leading to apoptosis (40). Furthermore, Chen et al.

showed that Lcn-2 can also directly initiate neuronal death via

mitochondrial apoptotic pathways (52). However, Xing et al.

considered that high levels of Lcn-2 can function as a “help-me”

signal, which makes glial cells more protective by altering their

phenotype that protects neurons in stroke and cerebral ischemia

models (53). The role of Lcn-2 on brain cell apoptosis remains to

be explored.
3.5 Oxidative stress

Oxidative stress refers to the imbalance of redox balance caused by

excessive production or insufficient clearance of free radicals such as

reactive oxygen species (ROS) which promote neuroinflammation (54).

Lcn-2 may affect cell oxidation status by interacting with oxidative

stress-related signaling molecules, thereby regulating inflammatory

responses. For instance, in a non-alcoholic fatty liver disease

(NAFLD) model study, it was found that Lcn-2 could trigger the

secretion of HMGB1, activate TLR4 signaling pathway, induce NOX-2

expression, increase ROS production, then cause neuronal oxidative

damage (55), which increase neuroinflammation. In addition, a recent

study found that mild oxidative stress induced by sodium arsenite

reduced the expression of Lcn-2 in cortical astrocytes, which appears

to be related to the antioxidant response mediated by the nuclear

factor erythroid-2-related factor 2-Kelch-like ECH-associated protein 1

pathway (56). Lcn-2 is involved in the regulation of neuroinflammation

through interacting with oxidative stress-related signaling

molecules, which provides a target for the treatment of

neuroinflammatory diseases.
3.6 The blood-brain barrier

Lcn-2 can also affect the BBB, which is a structure that protects

the brain from harmful substances and inflammatory factors. Lcn-2

may have both protective and damaging effects on the BBB. For

example, a study showed that Lcn-2 may restore endothelial

permeability and zonula occludens-1 (ZO-1) expression after

focal cerebral ischemia, maintaining the normal structure and

function of the BBB in humans (57). But Mondal et al. found that

Lcn-2 may disrupt the integrity and function of the BBB by

changing the expression of tight junction proteins Claudin5, ZO-

1 and increasing the expression of pro-inflammatory cytokines IL-6

and IL-b in brain endothelial cells in NAFLD mouse model (55).

These differences may be due to the different pathophysiological

processes and mechanisms involved in each disease model.

Additionally, the species used in the studies may also contribute

to the divergent results, as the BBB may be differently regulated in

mice compared to humans. Finally, the experimental conditions,
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such as the dose and timing of Lcn-2 administration, may also affect

the results.
3.7 Astrocyte interaction

Lcn-2 can also regulate inflammation by interacting with

astrocytes. Some studies have shown that Lcn-2 can promote the

activation state of astrocytes, thereby affecting cytokine secretion

and neuroinflammation propagation (58). More details will be

discussed in detail later.
4 Interaction between astrocytes and
Lcn-2 in neuroinflammation

In various neurological diseases and neuroinflammation

stimuli, astrocytes are activated into reactive astrocytes with A1

and A2 phenotypes, where A1-type astrocytes show harmful effects

on neurons by upregulating pro-inflammatory mediators such as

ROS, IL-b, IL-6 and TNF-a, while A2-type astrocytes show

protective effects by upregulating the expression of neurotrophic

factors including glial cell line-derived neurotrophic factor and

brain-derived neurotrophic factor that promote neuronal survival

and regeneration (16, 17, 59–61). However, recent studies have

shown that the phenotype of reactive astrocytes is diverse and

dynamic, requiring multidimensional data for classification, rather

than simply dividing them into A1 and A2 types (9).

As one of the main sources of Lcn-2 in various

neuroinflammatory conditions, reactive astrocytes can regulate
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the secretion of Lcn-2 in various ways, and Lcn-2 can act as a

robust marker of pan-reactive astrocytes and cause changes in

them. There is an interactive relationship between Lcn-2 and

astrocytes (33, 62). The changes in Lcn-2 levels and astrocytes

will profoundly affect the development of neuroinflammation.

Thus, understanding their function and activation mechanism

will help to find new therapeutic targets and strategies for various

neurological diseases.
4.1 The mechanism of astrocyte regulation
of Lcn-2

Astrocytes, essential cells in the CNS, can secrete Lcn-2 during

neuroinflammatory processes. Besides, stimuli such as ischemia,

hypoxia, the Ab oligomer (AbO), glutamate, etc. can induce

astrocytes to generate and release Lcn-2, resulting in neurotoxicity

(45, 63, 64). The expression of Lcn-2 is regulated by various

signaling pathways, including those involving endoplasmic

reticulum stress, ROS generation, the NF-kB activation, among

others (52, 65). Here are some mechanisms of the secretion of Lcn-2

regulation in astrocytes (Figure 1).

Firstly, the PRKR-like ER kinase-eukaryotic translation

initiation factor 2a (PERK-eIF2a) signaling pathway is a

mechanism that enables cells to respond to endoplasmic

reticulum (ER) stress. This pathway mediates the unfolded

protein response (UPR) activated by the accumulation of

misfolded proteins in the ER. When astrocytes are activated by

UPR, they can upregulate Lcn-2 and reduce synaptic factors in vivo,

leading to neuronal loss. Inhibiting astrocytic PERK signaling can
FIGURE 1

The mechanism of astrocyte regulation of Lcn-2. ROS production can cause ER stress and activate PERK-eIF2a signaling pathway, thus promoting
the expression and secretion of Lcn-2. NHE1 protein and TNFa can activate the NF-kB signaling pathway in astrocytes, inducing the secretion of
Lcn-2. Inhibiting a2-NKA and proteasome can reduce Lcn-2 secretion by inhibiting the NF-kB signaling pathway, while autophagy activation can
reduce its secretion by enhancing intracellular Lcn-2 degradation.
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reduce the activation state of astrocytes, decrease Lcn-2 expression,

and increase synaptic factor release, modulating astrocytic UPR

signaling to protect neurons (66). Furthermore, after

methamphetamine exposure, researchers demonstrated that ROS

production and PERK-eIF2a signaling pathway can regulate the

expression of Lcn-2. Silencing Lcn-2 or Lcn-2R can mitigate

methamphetamine-induced neuronal death, suggesting that the

Lcn-2-Lcn-2R axis is a potential therapeutic target (52). The

PERK-eIF2a pathway is an important pathway for astrocytes to

regulate the secretion of Lcn-2. Secondly, a study has shown that

nerve growth factor receptor (Ngfr) can suppress the Lcn-2 activity

on Slc22a17, downregulate key transcription mediators Stat1 and

Irf8 and upregulate Nfkbia to block NF-kB signaling to inhibit the

expression of Lcn-2, thereby promoting astrocyte proliferation and

neurogenesis (52). Thirdly, the a2-Na+/K+ ATPase (a2-NKA)

signaling pathway can also affect the secretion of Lcn-2.

Inhibiting a2-NKA reduces astrocyte reactivity, lowers the

expression of Lcn-2, and protects neurons from tau-induced

damage, thus preventing brain atrophy and inflammation (67).

Fourthly, TNFa can activate the NF-kB signaling pathway in

astrocytes, inducing the secretion of Lcn-2 and altering the

bioenergetic spectrum of astrocytes towards mitochondrial

oxidative phosphorylation for ATP production, providing energy

for the secretion of Lcn-2. Teriflunomide, a drug inhibiting the

mitochondrial enzyme dihydroorotate dehydrogenase, shifts

astrocyte metabolism towards glycolysis, reducing the secretion of

Lcn-2 by limiting ATP production. This action reduces astrocyte

inflammatory response by inhibiting the p38 mitogen-activated

protein kinase (MAPK) signaling pathway rather than the NF-kB
pathway (68). Fifth, astrocyte-specific deletion or inhibition of the

Na+/H+ exchanger1 (NHE1) protein reduces the expression of Lcn-

2 and secretion after ischemia, alleviating neuronal damage. NHE1

protein activation triggers NOX4 and ROS production, promoting

the NF-kB signaling pathway, thereby regulating Lcn-2

transcription and expression. NHE1 protein represents a potential

target for mitigating Lcn-2-mediated neurotoxicity after ischemic

stroke (69).

In addition, reactive astrocytes can reduce the secretion of Lcn-

2 in two ways: proteasome inhibition and autophagy activation.

Proteasome inhibition reduces Lcn-2 transcriptional expression by

inhibiting the NF-kB signaling pathway, thereby decreasing its

synthesis. Meanwhile, autophagy activation reduces its secretion

by enhancing intracellular Lcn-2 degradation, offering protection to

neurons. Among them, autophagy flux is negatively regulated by the

MTOR signaling pathway and an N-terminal signal peptide is the

key to Lcn-2 degradation and secretion (70). In Frontotemporal

dementia type 3, Chandrasekaran et al. found that impaired

astrocytic autophagy leads to autophagosome accumulation, and

reduced autophagy clearance, and affects mitochondrial function

and dynamics, this results in reduced astrocyte metabolic activity,

increased the secretion of Lcn-2, activated neuroinflammation, and

inhibited axonal growth (71). Astrocytic autophagy is essential for

Lcn-2 regulation.

Astrocyte-specific deletion or inhibition of proteins such as

PERK-eIF2aa2-NKA and NHE1 can reduce the expression and

secretion of Lcn-2, and also affect the secretion of Lcn-2 by
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autophagy, thereby protecting neurons from damage. Astrocytes

may also regulate the level of Lcn-2 through other mechanisms,

which need further research.
4.2 Effect of Lcn-2 on astrocytes

Astrocytes respond to various pathogenic stimuli through

reactive programs, which include increased glial fibrillary acidic

proteins (GFAP), cell hypertrophy, and profound changes in the

secretion of inflammatory factors (72, 73). Reactive astrocytes are

crucial contributors to neuroinflammation, releasing inflammatory

cytokines and chemokines, and increasing the BBB permeability

and immune cell infiltration (18, 19). Upon binding to glial cells,

Lcn-2 can activate various inflammatory pathways in glial cells,

leading to increased glial cell activation, cytokine production and

inflammation exacerbation (20).

As a multifunctional protein, Lcn-2 can regulate the migration,

polarization and activation of astrocytes in the CNS (Figure 2). In

an experiment to reduce inflammation in zebrafish, Lee et al.

discovered that Lcn-2 induces changes in the phenotype of spinal

cord astrocytes through the Rho-ROCK (Rho kinase)-GFAP

pathway, which is positively regulated by nitric oxide and cGMP.

Inhibiting ROCK partially blocks the morphological changes

induced by Lcn-2 and the expression of GFAP (74). Moreover,

Zhang et al. proved that CXCL10 upregulated by the JAK2/STAT3

pathway in astrocytes is crucial for Lcn-2-induced cell migration in

cerebral ischemia (44). Traditionally, Lcn-2 has been viewed as a

neurotoxic factor that promotes the shift of astrocytes from an anti-

inflammatory to a pro-inflammatory phenotype, characterized by

increased chemokine expression and morphological alterations

(75). However, an in vitro study by Gasterich et al. suggested that

the migration, morphology and proliferation of astrocytes can occur

independently of Lcn-2 (76). The different results can be influenced

by several factors, such as the source of astrocytes, the timing of

treatment, and the duration of treatment. Further experiments are

needed to validate this.

Lcn-2 affects astrocytes in various neuroinflammatory and

neurodegenerative diseases. After oxygen-glucose deprivation, it

was found that Lcn-2 overexpression could promote the classical

activation pathway of astrocytes in the ischemic hemisphere cortex

and hippocampus, manifested by increased iNOS. Lcn-2 exerts

adverse effects on astrocyte polarization in ischemic stroke,

manifested by increased infarct volume and impaired neurological

function. Although the specific mechanism remains unclear, the

effect may be mediated by the interaction between Lcn-2 and the

24p3R on astrocytes (23). In another study, Wang et al.

demonstrated that Lcn-2/JAK2-STAT3 crosstalk was involved in

the activation of neurotoxic microglia and astrocytes in the spinal

cord after SCI (47). Across these diseases, elevated levels of Lcn-2

are associated with astrocyte activation. Moreover, Lcn-2 may

indirectly regulate the activation of NLRP3 inflammasome

through the NF-kB signaling pathway, Lcn-2−/− reduced astrocyte

NLRP3 activation in the spinal cord, subsequently decreasing

astrocyte proliferation (77). Another study revealed that astrocytic

Lcn-2 binds to the 24p3R, activating the NLRP3 inflammasome,
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and inducing astrocyte pyroptosis and pro-inflammatory factor

release in the peri-infarct area after stroke. This cascade of events

leads to neuronal death, iron accumulation and BBB disruption,

exacerbating neuroinflammation (42). An AD model study also

found that neuronal adenosine receptor 1 (A1R) promoted the

release of Lcn-2, leading to abnormal activation of astrocytes in the

hippocampus, while silencing neuronal Lcn-2 improved astrocyte

activation, restored synaptic plasticity and learning/memory.

Importantly, the upregulation of A1R is tau pathology-dependent

and is modulated by miR-133a-3p-mediated transcription of Mef2c

(58). Therefore, Lcn-2 can act as both an autocrine and paracrine

factor for astrocytes, activating them by binding to its receptor.

Lcn-2 can also induce astrocytes to phagocytose molecules such

as iron and myelin phospholipids, resulting in iron accumulation

and demyelination. At the transplant site, astrocyte Lcn-2 interacts

with its receptor BOCT, leading to iron deficiency and apoptosis of

transplanted neurons (78). Following ischemic stroke, reactive

astrocytes in nonischemic areas of the corpus callosum upon

injury express Lcn-2 and acquire a phagocytic phenotype capable

of uptaking myelin phospholipids. Lcn-2 regulates the phagocytic

signaling pathway of astrocytes by binding to low-density
Frontiers in Immunology 06
lipoprotein receptor-related protein 1 in astrocytes (79).

Additionally, Lcn-2 can also trigger activated astrocytes that are

sensitive to death (80).

However, it’s important to note that the effects of Lcn-2 on

astrocytes are not consistently detrimental. For example, in J20

Alzheimer’s disease mouse model, Lcn-2 did not significantly

impact glial cell activation (81). The impact of Lcn-2 on

astrocytes appears to vary depending on different disease models,

time points and levels, as well as other factors such as the source and

signaling pathway of Lcn-2. Consequently, the effects of Lcn-2 on

astrocytes may be bidirectional, and further research is needed to

elucidate the specific mechanisms and regulatory factors governing

the role of Lcn-2 in different neuroinflammatory and

neurodegenerative diseases.

Astrocytes become activated and secrete large amounts of Lcn-2

when stimulated. Lcn-2 exacerbates neuronal damage and death

through NF-kB signaling pathways and other signaling pathways

and mechanisms. At the same time, Lcn-2 can also affect the

function of astrocytes, inducing them to produce more

inflammatory factors, chemokines and necroptosis factors,

thereby further aggravating neuroinflammation. On the other
FIGURE 2

Effect of Lcn-2 on astrocytes. Under the stimulation of neuroinflammation, ischemia, hypoxia, AbO, and glutamate, astrocytes can up-regulate the
expression and secretion of Lcn-2, and Lcn-2 can act as an autocrine signal to induce activation (including polarization, migration, chemokine
expression and morphological alteration), phagotrophy and pyroptosis (the NLRP3 inflammasome is involved) of astrocytes.
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hand, astrocytes can also regulate the level and activity of Lcn-2 by

phagocytosis and other factors, forming a negative feedback

regulation mechanism. Therefore, there is a complex interaction

relationship between Lcn-2 and astrocytes, affecting the

development and outcome of neuroinflammation. However, the

specific signaling pathways and mechanisms still need further in-

depth research to gain a more detailed understanding. In addition,

the role of Lcn-2 in neuroinflammation may vary depending on

stimulus conditions, cell types and other factors, necessitating

verification and comparison under different experimental models

and conditions (81–85).
5 Lcn-2 and other brain cells

In conditions of neuroinflammation, Lcn-2 is secreted not only by

astrocytes but also by other brain cells such as microglia, neurons, and

endothelial cells (Table 1). Microglia, as the resident macrophages of

the CNS, constitute 5% to 15% of adult brain cells and play a crucial

role in maintaining immune defense (92). However, uncontrolled

activation of microglia can lead to neuroinflammatory responses and

neuronal death (93). Additionally, the TNFa and IL-1a secreted by

activated microglia can induce astrocytes to adopt the A1 phenotype,

thereby amplifying neuroinflammation (17). In the context of

neuroinflammation, activated microglia can polarize into either the

M1 pro-inflammatory phenotype or the M2 anti-inflammatory

phenotype. M1 microglia produce pro-inflammatory mediators,

leading to tissue inflammation, which may further contribute to

neurodegenerative diseases. Conversely, M2 microglia contribute to

mitigating neuroinflammation (94). Research has revealed that Lcn-2,

acting as a neuronal signal, induces the formation of pro-inflammatory
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microglial. In a mouse model of surgery-induced neuroinflammation,

knocking down Lcn-2 prevented microglial transition to a pro-

inflammatory state and mitigated neuroinflammation (95).

Additionally, Wei et al. suggested that Lcn-2 may regulate

hippocampal microglial activation via the P38 MAPK pathway

within the poststroke depression, polarizing them toward the M1

phenotype (96). However, the role of Lcn-2 in brain ischemia

models yields conflicting results. While a study proposes that

elevated Lcn-2 levels may shift glial cells toward a protective

phenotype, this outcome may be influenced by experimental models

and other factors (53). Furthermore, Lcn-2 can mediate apoptosis in

microglia. For instance, in methamphetamine-induced striatal

microglial apoptosis, the CCAAT-enhancer binding protein/Lcn-2

axis plays a critical role (97).

In addition to astrocytes and microglia, Lcn-2 also impacts

other brain cells. It can promote neuronal apoptosis, but it exhibits

protective effects in brain ischemia models (40, 53). Additionally,

Lcn-2 regulates endothelial cell permeability and inflammatory

responses, affecting the BBB integrity and function (57). It also

inhibits oligodendrocyte proliferation and differentiation and

reduces myelin sheath formation by activating SLC22A17/early

growth response protein 1 signaling pathway (98). However,

Gasterich et al. believed that Lcn-2 can attenuate oligodendrocyte

loss in mouse models for MS (37). Lcn-2 participates in

neuroinflammation and the development of neurological diseases

by influencing various brain cell types, highlighting its potential as a

therapeutic target for these conditions. While the effects of Lcn-2 on

brain cells are still not fully understood, further research is needed

to explore the roles and potential mechanisms of Lcn-2 in

different diseases.
6 Lcn-2 from the periphery

Lcn-2 is expressed in several tissues including kidney, lung,

bone marrow, liver and others (28). Some studies have shown that

Lcn-2 secreted by peripheral organs can enter the CNS through

blood circulation and participate in the development of

neuroinflammation. For instance, in a NAFLD model, high levels

of Lcn-2 in the blood increased the expression of the Lcn-2 receptor

(24p3R) on brain cells and stimulated the release of HMGB1. Then

induced oxidative stress and activated the NF-kB signaling pathway

by triggering the nuclear translocation of p65 protein via NOX-2.

Moreover, HMGB1 also activated the NLRP3 inflammasome, which

enhanced the secretion of inflammatory cytokines IL-6 and IL-1b
from brain cells. These researchers also discovered that high Lcn-2

in the blood disrupted the function of the BBB, mainly by lowering

the expression of tight junction protein Claudin5 and elevating the

expression of inflammatory cytokines in brain endothelial cells (55).

In addition, some researchers considered that Lcn-2 can enter the

brain through the cerebrospinal fluid circulation, causing

neuroinflammation. However, the mechanism of how Lcn-2

enters the cerebrospinal fluid is unclear (99). It can be seen that

peripheral Lcn-2 also effects neuroinflammation.
TABLE 1 Neuroinflammatory disease and main brain cells associated
with the secretion of Lcn-2.

Neuroinflammation-
related disease

Main brain cells Reference

Multiple sclerosis Astrocytes, Microglia (37)

Parkinson’s disease Astrocytes (86)

Alzheimer’s disease Astrocytes (45)

Spinal cord injury Astrocytes, Endothelial
cells, Microglia

(47, 65)

Traumatic brain injury Astrocytes (87)

Ischemic stroke Astrocytes, Neutrophils,
Endothelial cells

(88)

Hemorrhagic stroke Astrocytes, Microglia,
Macrophages, Neutrophils,
Endothelial cells

(89)

Non-alcoholic fatty
liver disease

Astrocytes, Microglia,
Endothelial cells

(55)

Diabetic encephalopathy Astrocytes, Microglia (90)

Post-traumatic stress disorder Astrocytes (91)
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7 The methods of Lcn-2 and
astrocytes as targets for
neuroinflammation treatment

Lcn-2 is a neuroinflammation regulator that is produced by

reactive astrocytes and activates some pathways, leading to

neuroinflammation and neuronal death. By inhibiting Lcn-2

production or function, it may be possible to reduce secondary

damage and improve neurological outcomes. In addition, Lcn-2 can

also inhibit the development of inflammation by reducing the

formation of reactive astrocytes and their cytotoxicity. Therefore,

Lcn-2 and astrocytes have a potential role in the treatment of

neurodegenerative diseases. Its multiple mechanisms of action may

provide possibilities for developing new therapeutic strategies.

There are currently many therapeutic methods targeting Lcn-2,

which have shown effects in animal models. For example, in the

cerebral ischemic injury model, Deng et al. use microRNA-138-5p-

overexpressing bone marrow-derived mesenchymal stem cells

(100), Sailuotong capsules (44), Lcn-2 monoclonal antibody (88)

and voluntary running (101) to reduce the expression or activity of

Lcn-2, thereby inhibiting neuroinflammation and neuronal

apoptosis, and improving motor function. In the SCI model,

Vismara et al. use Rolipram (102), in situ Lcn-2 pRNA-RNAi

nanotherapy combined with iNSC transplantation (103) and

photobiomodulation (47) to reduce the release or upregulation of

Lcn-2, thereby limiting the pro-inflammatory phenotype of

astrocytes and promoting spinal cord injury repair. In some other

nervous system models, Dekens et al. also use iron chelators (104),

desferrioxamine (86) and low-intensity pulsed ultrasound (105) to

interfere with the signaling pathway or metabolism of Lcn-2,

thereby reducing the occurrence of neuroinflammation. Besides,

Chen et al. found that electroacupuncture stimulation at Baihui

(GV20) and Dazhui (GV14) acupoints can down-regulate the

expression of Lcn-2 in the hippocampal astrocytes or repeated

social defeat stress-treated mice (91), which provides us a new

idea to explore ways to target Lcn-2 in treating neuroinflammation.

Therefore, the current Lcn-2-targeted treatment methods include:

specific inhibitors of Lcn-2 to intervene in the overexpression of Lcn-2

in neuroinflammation, antibody neutralization to reduce its interaction

with astrocytes, small molecule compounds that regulate the expression

of Lcn-2 or activity, targeted drug delivery methods for Lcn-2, etc., as

well as combining drug intervention targeting Lcn-2 with other existing

treatment strategies. In addition, the mechanism pathways that

mediate the interaction between Lcn-2 and astrocytes may be a

potential way to improve neuroinflammation. If we can intervene or

inhibit these pathways, we may be able to reduce the adverse effects of

Lcn-2 and astrocytes on the nervous system. However, this method also

has some risks and challenges. For example, will acting on these

pathways affect other normal physiological functions? Will it cause

adverse side effects or toxicity? Will it interact with other treatment

methods? These questions need to be carefully considered and verified

by us. And drug intervention targeting Lcn-2 can also be combined

with other existing treatment strategies such as immunomodulatory

drugs, cell therapy, antioxidants, and neurodegeneration therapy, etc.

This can alleviate neuroinflammation frommultiple aspects by utilizing
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the advantages of different treatment methods to achieve more

comprehensive, precise and effective interventions and bring better

treatment outcomes for patients. However, the selection and

optimization of combined treatment strategies need to be verified by

in-depth research and clinical experiments.
8 Discussion

In conclusion, Lcn-2, as a crucial regulatory molecule in

neuroinflammation, mediates a complex signaling network and

holds significant therapeutic potential. Among various

neuroinflammatory-related diseases, astrocytes are one of the

primary sources of Lcn-2. While regulating Lcn-2 levels,

astrocytes are also influenced by feedback from Lcn-2, thereby

impacting the development of neuroinflammation. By intervening

in astrocytes, the expression, and secretion of Lcn-2, and their

interactions, it is possible to effectively suppress the progression of

neuroinflammation and yield positive outcomes in the treatment of

neurodegenerative diseases.

However, it is worth noting that there is still debate regarding

whether Lcn-2 exerts exclusively pro-inflammatory effects, and

astrocytes are not the sole brain cells that secrete Lcn-2 in the

context of neuroinflammation. Future research should continue to

explore the molecular interactions and signaling pathways related to

Lcn-2 and neuroinflammation, to better understand its role in

neurodegenerative diseases. At the same time, the development of

new therapeutic methods and drugs based on Lcn-2, as well as the

prospect of applying Lcn-2 to clinical diagnosis and treatment are

also worth exploring. Through the efforts of multidisciplinary

cooperation, Lcn-2 is expected to become an important target for

the treatment of neurodegenerative diseases in the future, bringing

better quality of life and treatment outcomes for patients.
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