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The viral etiology of EBV-
associated gastric cancers
contributes to their unique
pathology, clinical outcomes,
treatment responses and
immune landscape
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Epstein-Barr virus (EBV) is a pathogen known to cause a number of malignancies,

often taking years for them to develop after primary infection. EBV-associated

gastric cancer (EBVaGC) is one such malignancy, and is an immunologically,

molecularly and pathologically distinct entity from EBV-negative gastric cancer

(EBVnGC). In comparison with EBVnGCs, EBVaGCs overexpress a number of

immune regulatory genes to help form an immunosuppressive tumor

microenvironment (TME), have improved prognosis, and overall have an

“ immune-hot” phenotype. This review provides an overview of the

histopathology, clinical features and clinical outcomes of EBVaGCs. We also

summarize the differences between the TMEs of EBVaGCs and EBVnGCs, which

includes significant differences in cell composition and immune infiltration. A list

of available EBVaGC and EBVnGC gene expression datasets and computational

tools are also provided within this review. Finally, an overview is provided of the

various chemo- and immuno-therapeutics available in treating gastric cancers

(GCs), with a focus on EBVaGCs.
KEYWORDS

Epstein-Barr virus, gastric cancer, EBVaGC, tumor microenvironment, immune
landscape, therapeutics, tumor virus, immunotherapy
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1358511/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1358511/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1358511/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1358511/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1358511/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1358511/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1358511&domain=pdf&date_stamp=2024-03-26
mailto:jmymryk@uwo.ca
https://doi.org/10.3389/fimmu.2024.1358511
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1358511
https://www.frontiersin.org/journals/immunology


Salnikov et al. 10.3389/fimmu.2024.1358511
1 Introduction

Epstein-Barr virus (EBV) is a gamma-herpesvirus most known

for influencing B lymphocyte proliferation and differentiation to a

plasmablast/early plasma cell-like phenotype (1, 2), as well as

causing cytopathic effects within mucosal epithelial cells (3). More

rarely, EBV infects T and NK cells, causing lymphoproliferative

disorders (4). By evading both the innate and adaptive immune

systems, EBV can establish lifelong, latent infections within B

lymphocytes, which can lead to reactivation and further infections

(5). In fact, EBV is so successful that it is estimated that over 90% of

the world population may be infected with it (6).

EBV is also associated with a number of different cancers, which

include nasopharyngeal carcinomas (NPCs), EBV-associated

gastric cancers (EBVaGCs), as well as Burkitt and other

lymphomas (7, 8). Overall, EBV infections account for 1.5% of all

cancers globally (9), with 84.6% (10), 8.8% (11), and 50% (10) of

NPCs, gastric cancers (GCs), and Hodgkin’s lymphomas

attributable to EBV infections, respectively. Currently, there are

no approved vaccines against EBV, but there are a number of

prophylactic and therapeutic vaccines currently undergoing trials

(12–14). However, there are several approved therapies targeting

EBV-associated cancers with various levels of effectiveness (9, 15).

Gastric cancer is the fifth most diagnosed cancer, with over a

million new cases annually, and is the third most common cause of

cancer-related death (16). GCs have a number of risk factors, which

include Helicobacter pylori (H. pylori) and EBV infections, genetic

and dietary factors, as well as smoking status and alcohol

consumption (17–19). The etiology of EBV in GCs was first

identified in 1990 by Burke et al. (20), with Shibata and Weiss

demonstrating the presence of the EBV genome within cancerous

and dysplastic cells (21). EBVaGCs have been established as
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molecularly and clinically distinct from EBV-negative GCs

(EBVnGCs) by The Cancer Genome Atlas (TCGA), which

defined 4 different subtypes of EBVnGCs: microsatellite-instable

(MSI) tumors, genomically stable (GS) tumors, tumors with

chromosomal instability (CIN), and tumors with DNA

polymerase epsilon mutations (POLE) (22).
2 EBV infection of gastric
epithelial cells

EBV transmission between individuals is typically mediated by

saliva (23). Indeed, EBV causes infectious mononucleosis, which is

sometimes referred to as the “kissing disease”. Primary infection of

a naïve individual typically occurs when incoming EBV virions

directly infect susceptible B cells in the tonsillar crypt (Figure 1).

Alternatively, an incoming virus may directly infect tonsillar

epithelial cells, which produce progeny viruses that later infect B

cells present in the crypts. EBV establishes latency in the infected B

cells, creating a reservoir of virus-infected B cells that persist

throughout the life of the infected individual. Latently infected B

cells occasionally undergo reactivation, producing viruses that

reinfects oral epithelial cells. These cells then shed viruses into the

saliva at high titre, allowing transmission to naïve individuals

periodically throughout the lifetime of the infected individual

(23). Interestingly, viruses released from infected B cells

preferentially infect epithelial cells, while viruses released from

infected epithelial cells preferentially infect B cells. The molecular

basis for this switch in tropism is related to changes in the

glycoprotein composition in the envelopes of B cell-derived and

epithelial cell-derived viruses and helps to reinforce alternate

replication between the two cell types (24).
FIGURE 1

Model of Epstein–Barr virus infection in relation to gastric cancer. EBV can infect tonsillar epithelium or B cells located in the tonsillar crypt, with the
resulting viral progeny having a preferred tropism for the opposite cell type. Following B cell infection, EBV can establish life-long latency in pools of
B cells. Occasionally, these cells can become reactivated, resulting in subsequent release of viral progeny that exhibit a preferred epithelial cell
tropism. Viral shedding from epithelial cells into salvia can result in EBV transmission to secondary individuals. Alternatively, salvia containing viral
progeny can be swallowed, resulting in infection of gastric epithelial cells. Likewise, latently infected, trafficking B cells can undergo reactivation, and
the resulting viral progeny can then infect gastric epithelial cells. Either of these potential routes could lead to gastric epithelial cell infection, which
may subsequently lead to EBVaGC. Created with BioRender.com.
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Direct infection of gastric epithelial cells could occur from

swallowing saliva containing EBV virions shed from their own

infected oral epithelium (Figure 1). This process would be akin to

virus transmission from person to person, as described above,

except that the infection is spreading from one anatomical

location to another in the same individual. Alternatively, a

productive EBV infection could be reactivated in latently infected

B cells trafficking through the gastric mucosa and released to infect

neighbouring epithelial cells (24). In support of this route of

infection, coculture of epithelial cells with EBV-positive

lymphocyte cells is approximately 800-fold more efficient than

cell-free infection, suggesting the possibility of direct cell-to-cell

mediated virus infection (25). A definitive answer to the exact

mechanism by which gastric epithelial cells become infected by EBV

remains to be determined.
3 EBVaGC histopathology and
clinical features

EBVaGCs are considered to be molecularly and pathologically

distinct entities from EBVnGCs (9, 26–28). This section will

highlight a number of known differences, both macroscopic and

microscopic, molecular and morphological, as well as differences

related to clinical features and patient outcomes between EBVaGCs

and EBVnGCs.
3.1 Histomorphology and histopathology

EBVaGCs preferentially develop in the proximal region of the

stomach, which includes the cardia, fundus, and body (29), with

lymphoepithelioma-like carcinoma and Crohn’s disease-like

lymphocytic reaction being the dominant histological subtypes

(30). In fact, over 90% of lymphoepithelioma-like carcinomas are

EBV-positive (31), where tumor cells are outnumbered by tumor-

infiltration lymphocytes (TILs) (29). In contrast, EBVnGCs

predominate within the antrum region of the stomach (29) and

exhibit a lower infiltration of TILs (32). Gastritis cystica profunda, a

precancerous lesion associated with increased proliferation activity

and cystic gastric glands within the submucosa, is also frequently

associated with a positive EBV-status (33). Immunophenotyping of

EBVaGCs indicates an even split between a gastric-like phenotype,

expressing both the MUC5AC and MUC6 mucins, and a null

phenotype, expressing neither gastric-like, nor intestinal-like

phenotypes (34). A detailed description of the histology and

immunophenotype of gastric differentiation markers in EBVaGC

has been summarized previously (34).

Even though there is a disparity of TILs between EBVaGCs and

EBVnGCs, increased infiltration by lymphocytes can lead to the

formation of tertiary lymphoid structures in both types of GCs,

which often develop their own germinal centers and correlates with

CD4+ and CD8+ T cell infiltration (35, 36). Tertiary lymphoid

structures are generally associated with better outcomes for most

types of cancer (35), including GCs, where the presence of these

structures is associated with higher levels of TILs and increased
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overall survival (32). Further exploration of the histomorphology

and histopathology, in conjunction with the immune landscape, of

EBVaGCs and EBVnGCs may yield deeper insights into the

differences in tumor initiation and progression, as well as

structural feature changes associated with these carcinomas.
3.2 Identification, clinical features and
general outcomes

EBVaGC is commonly identified by in situ hybridization with a

probe that specifically anneals to the small non-coding EBER1 viral

RNA, which is abundantly expressed in EBV infected and

transformed cells (37). These probes enable accurate detection of

EBV-infected cells with high specificity in formaldehyde-fixed and

paraffin-embedded GC samples (38). This is especially relevant, as

EBV infections are associated with an 18-fold increased risk of

developing GC (11).

Both EBVaGCs and EBVnGCs have a higher incidence in men

as compared to women (39, 40). In contrast, EBVaGCs have a better

prognosis and greater median survival time (30, 41, 42), an

increased presence of TILs (43, 44), increased promotor

hypermethylation (45, 46), and higher levels of MHC-I and

MHC-II expression (47, 48) compared to EBVnGCs. EBVaGCs

are also found more often among young individuals as compared to

EBVnGCs (49, 50). A lower density of TILs is also associated with

increased presence of lymph node metastasis, an important negative

determinant of disease progression in GCs (51) that is also

associated with poorer patient outcomes (28). Additionally, co-

infections of H. pylori and EBV may result in earlier and more

aggressive GC progression (52).
3.3 Cell markers associated with patient
outcomes in EBVaGC

There are a number of differentially expressed cellular genes

associated with differences in outcomes for patients with EBVaGC.

Programmed death-ligand 1 (PD-L1), an immune checkpoint

protein that binds to its receptor PD-1 on T cells and other

immune cells, is overexpressed in EBVaGCs. Indeed, in a recent

meta-analysis of 43 publications encompassing a total of 11,327

patients, there was a very clear increase in the association between

PD-L1 expression and EBVaGC (OR = 6.36, 95% CI 3.91-10.3, p <

0.001) (53). This increase in PD-L1 likely occurs as a response to

higher intratumoral levels of IFN-g via activation of IRF3 and is

associated with worse patient outcomes (54, 55). Poorer patient

outcomes have also been associated with increased expression of

indoleamine 2,3-dioxygenase 1 (IDO1), another potent immune

suppressor (56, 57). Human epidermal growth factor receptor 2

(HER2) is a proto-oncogene that is downregulated by LMP2A, an

EBV-encoded protein, in some cases of EBVaGC (49, 58). However,

the increased expression of HER2 is associated with lower overall

patient survival in EBVaGC (59). The identification of additional

prognostic markers for EBVaGC will help develop a greater

diversity of personalized and targeted therapies (60, 61).
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3.4 Impact of H. pylori infection
on EBVaGC

In addition to EBV, chronic inflammation and tissue damage

induced by H. pylori infection increases the risk of developing GC

(62). Multiple studies suggest that in the context of co-infections,

these microorganisms may cooperate to promote infection,

inflammation and possibly carcinogenesis (63–66). The

mechanisms controlling the interactions between these two

infectious agents are not entirely known and have been reviewed

in detail by others (67). However, in a recent large cohort study,

EBV and H. pylori co-infection was not identified as a clinically

significant independent prognostic factor for the development of

gastric cancer (68). Similarly, EBV and H. pylori co-infection did

not significantly affect overall survival rate compared to those with

EBV alone (68). It should also be noted that co-infection is clearly

not essential for carcinogenesis, as EBVaGCs can still occur many

years after successful eradication of H. pylori (69) and only a

fraction of EBVaGCs are co-infected with H. pylori (22, 52).
4 Role of EBV-encoded proteins in
EBVaGC tumor progression

EBV-encoded proteins play a major role in shaping the immune

microenvironment of EBVaGCs and promoting tumor growth.

EBV encoded latency protein Epstein–Barr nuclear antigen 1

(EBNA1) is uniformly expressed in EBVaGCs, with variable

expression of latent membrane protein 1 (LMP1) and latent

membrane protein 2A (LMP2A) (70, 71).
4.1 The functions of EBNA1 in EBVaGC

EBNA1 is expressed in all forms of EBV latency in proliferating

cells and in all EBV-associated tumours (72). It performs critical

roles in maintaining the persistence of latent EBV genomes in the

nucleus as episomes and also plays a role in transcriptional

activation of viral genes (73). Additionally, mounting evidence

suggests that EBNA1 functions more directly to impact cell

survival and oncogenesis (72). These include antagonism of the

Tumor protein P53 (TP53) pathway (74), degradation of

promyelocytic leukemia (PML) tumor suppressor protein (75),

modulation of various signal transduction pathways (76), and

increased oxidative stress (77). Most recently, a previously

unknown link between EBV and genomic instability between

EBNA1-induced breakage at 11q23 and the acquisition of

chromosome 11 structural variations was identified, but this has

yet to be specifically confirmed in EBVaGC (78).

Interestingly, specific amino acid changes in EBNA1 have been

identified that were strongly associated with viruses isolated from

EBVaGCs and NPCs, but not isolates from lymphoma and healthy

individuals (71). One of these mutations (Thr85Ala) results in a

gain of function interaction with the procollagen-lysine,2-

oxoglutarate 5-dioxygenase (PLOD) 1 and PLOD3 lysyl
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hydroxylases (79). PLOD family proteins are strongly linked to

multiple cancers, and several PLODs are recognized as a prognostic

marker of gastric carcinoma (80). Future work will reveal whether

these EBNA1-PLOD family interactions impact GC development

and prognosis.
4.2 The functions of LMP1 and LMP2A
in EBVaGC

Variable expression of both LMP1 and LMP2A can be detected

in a subset of EBVaGC (70, 71). Both are transmembrane proteins

located in the plasma membrane that function as constitutively

active growth factor receptors. Together, in EBV infected B cells,

they mimic normal antigen-derived signals that force differentiation

into memory B cells, creating a long-lasting reservoir of EBV-

infected cells and contributing to B cell oncogenesis (81, 82). The

roles of LMP1 and LMP2A in EBVaGC are less clear, but are

thought to similarly impact signal transduction pathways involved

in epithelial cell growth and survival. Both have been recently

reviewed in depth, although much remains to be discovered about

their roles in EBVaGC (83, 84).
5 Role of EBV miRNAs in EBVaGC
tumor progression

In addition to the two non-coding EBER viral RNAs expressed

in all cells harbouring EBV, the EBV genome encodes up to 48

mature micro RNAs (miRNAs) (85). These viral miRNAs impact a

variety of cellular functions, which include remodelling the cellular

transcriptome, interference with immune signalling, and contribute

to tumor progression and immune escape (86–88). Additionally,

EBVs are known to produce long noncoding RNAs (lncRNAs),

some of which play roles in hijacking human miRNAs and assisting

viral replication, amongst other roles (89, 90). This section will give

an overview of a number of miRNAs and lncRNAs produced by

EBV and their association with EBVaGCs and other EBV-

associated cancers.
5.1 The role of BART and BHRF1 miRNAs
in EBVaGCs

The most highly transcribed viral RNAs in EBVaGCs map

within the BamHI-A region of the genome (22), including the

BamH1-A rightward transcripts (BARTs) (Figure 2). These encode

44 intronic viral miRNAs from 22 precursor hairpins (91). The

EBV-encoded BARTmiRNAs are a group of small regulatory RNAs

under 100 nucleotides long and are often highly expressed in EBV

malignancies (92), suggesting that they may play a role in

tumorigenesis (93). Unlike most cellular miRNAs, both the 5’ and

3’ sides of the miR-BART precursor hairpins are efficiently loaded

into the RNA-induced silencing complex (94, 95). Roughly 99% of

all virally derived polyadenylated transcripts in EBVaGCs are from
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the 44 miR-BARTs (92, 95). The viral miR-BARTs are also highly

expressed, representing >10% of the total pool of miRNAs in

EBVaGCs (96).

These viral miRNAs regulate gene expression post-

transcriptionally by guiding the RISC complex to partially

complementary sequences within target mRNAs, leading to mRNA

destabilization (Figure 2) (97). Although the current understanding

of EBV miRNA function is far from complete, many viral miRNAs

target viral and cellular factors involved in host cell growth, survival,

signalling pathways, metabolism and anti-viral immune responses

(91, 98–102). Much of the existing work has been done in lymphoid

cells and the exact roles that most EBV miR-BARTs play during the

processes of gastric carcinogenesis are virtually unknown (85). The

only comprehensive experimental study to identify cellular mRNAs

targeted by miR-BARTs utilized photoactivatable ribonucleoside-

enhanced crosslinking and immunoprecipitation (PAR-CLIP) in

latently infected lymphoblastoid cell lines. This identified 531 sites

of interaction between seed sequences within EBV miRNAs and

cellular 3’UTRs. This large number of interactions suggests that EBV

miRNAs have profound and widespread effects on cellular gene

expression (103).

Although in their infancy, existing studies of the roles of BART

miRNAs in a variety of EBVmalignancies have identified numerous

functions, including the targeting of specific cellular transcripts

(87), impairing NK cell-mediated recognition of infected cells (104,

105), decreased pathogen-recognition receptor (PRR)-mediated

signalling and interferon induction (106), and impairment of

antigen presentation pathways (101, 103).

Of note, EBV-miR-BART7-3p is one of the most highly

expressed miRNAs in EBVaGCs (107) and plays a role in

inducing cell proliferation and epithelial-to-mesenchymal

transition (108). Additionally, EBV-miRNAs have been shown to

modulate viral gene expression, often for the purposes of latent

infections and evasion of immune surveillance (5, 109). Specifically,

miR-BART5-5p and miR-BART19-5p are able to downregulate

LMP1, an activator of many cellular immune signalling pathways

(109, 110). Upregulated expression of EBV miRNA is associated

with a 3-times higher mortality risk in NPCs and GCs (111), with
Frontiers in Immunology 05
miR-BART20-5p specifically associated with worse recurrence-free

survival in EBVaGCs (112).

Although BamH1 fragment H rightward facing 1 (BHRF1)

miRNAs are known to play a role in B cell transformation (113,

114), they are almost undetectable in GCs and NPCs (115). Indeed,

the BHRF1 promoter is hypermethylated in almost all EBVaGC

tissue, and this epigenetic modification likely contributes to its lack

of expression (Figure 2) (116).
5.2 The role of lncRNAs in EBVaGCs

Long non-coding RNAs are defined as RNAs over 200

nucleotides long and lack protein-coding abilities (117). Both

EBV and their host cells are known to produce a number of

lncRNAs (89, 117, 118). In particular, several host cell lncRNAs

are differentially expressed in EBVaGC, including small nucleolar

RNA host gene 8 (SNHG8), which modulate the expression of a

number of cellular and viral genes, as well induces cellular

proliferation and invasion (119, 120). Though several EBV

BART-encoded lncRNAs have shown to downregulate a number

of genes in vitro (93), their in vivo functionality has not yet

been confirmed.
6 Impact of genotype and
polymorphisms on EBVaGC

Most EBV associated cancers, including NPC, Burkitt

lymphoma and T/NK lymphomas, display distinct and non-

overlapping geographic distribution patterns. In contrast, the

frequency of EBVaGC shows no such regional variation (121).

This suggests that regional environmental or host genetic

differences may play a lesser role in EBVaGC compared to other

EBV-associated cancers (121). It remains an open question whether

genetic differences between EBV subtypes are associated with

increased risk of developing EBVaGC post EBV infection.
FIGURE 2

The role of EBV-miBARTS in EBV associated gastric cancer. The EBV genome encodes 22 BART-pre-miRNAs, which are highly expressed in
EBVaGC. Following nuclear translocation, the BART pre-miRNAs are processed by Dicer, resulting in 44 EBV-miBARTs. EBV-miBARTs then guide the
RISC complex to partially complementary sequences within target mRNAs, leading to targeted mRNA destabilization. This EBV-miBART-mediated
regulation of gene expression promotes the expression of genes involved in tumor progression and survival, while decreases the expression of genes
involved in immune signalling processes. Hypermethylation of the BHRF1 promotor leads to almost undetectable expression of BHRF1 miRNA in
EBVaGC. Created with BioRender.com.
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There are two major genotypes of EBV, type 1 and 2, which

differ in the sequence of a number of important viral genes (122).

Type 1 EBV is the predominant strain in Western and Asian

countries while type 2 EBV is frequently found in Africa.

Significantly, EBV-1 and EBV-2 differ in their ability to transform

B lymphocytes and epithelial cells into a state of continuous

proliferation, as well as their association with both cancerous and

non-cancerous disease (123, 124). Few studies have assessed if these

genotypes, or the myriad of more subtle variants, contribute

differently to the burden of EBVaGC (125). The possibility that

functional differences between genetically distinct EBV variants

contribute to CG risk clearly warrants further investigation on a

large scale.
7 Hallmarks of cancer in EBVaGCs

All cancer features can be divided into “hallmark characteristics”,

which include genomic instability, sustained proliferative signalling,

replicative immortality, and angiogenesis (126, 127). Some of these

hallmarks of cancer differ between EBVaGCs and EBVnGCs (34,

128–130). This section will explore the changes in the host genome,

cell signalling pathways, and cell cycle regulation in EBVaGCs, and

how such changes impact tumor progression and growth, as well as

patient outcomes.
7.1 Genetic changes

EBV has been associated with a number of genetic changes

within EBVaGCs (Figure 3). In particular, EBVaGCs are strongly
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associated with somatic mutations of PIK3CA and ARID1A, a

feature it shares with the MSI GC subtype (131, 132). Mutations in

PIK3CA are associated with increased activation of the Akt

pathway, tumor growth, and invasiveness (133, 134), with the

overexpression of PIK3CA being associated with poorer patient

outcomes (Figure 3A) (135). Furthermore, PIK3CA can serve as a

marker of tumor differentiation and morphology, with increased

PIK3CA expression being associated with low grade tumor

histology and intestinal-type GCs (135–137). Similarly, loss of

ARID1A expression is associated with poorer outcomes in non-

MSI EBVnGCs (138, 139), with decreased expression associated

with TNM stage and depth of invasion (140) (Figure 3A).

Furthermore, loss of ARID1A is also associated with the

deficiency of the mismatch repair pathway and is correlated with

the MSI subtype of GC (141, 142). Apart from PIK3CA and

ARID1A, genes such as PTEN, SMAD4, CTNNB1, and NOTCH1

that are involved in Wnt and Notch signalling pathways, or cell

cycle and chromatin regulation, are also frequently mutated in

EBVaGCs (Figure 3A) (130). Interestingly, mutations of the tumor

suppressor gene TP53 are rare in EBVaGC, albeit frequently

mutated in other human cancers (143). Apart from mutations,

EBVaGCs are also associated with amplification of 9p24.1, which

contains the genes encoding JAK2, as well as PD-L1 and PD-L2,

both of which are T cell exhaustion ligands (Figure 3A) (83, 130).

There are a number of mechanisms which may be responsible

for the aforementioned genetic changes (Figure 3B). One such

mechanism is APOBEC-mediated DNA damage in EBVaGCs,

where it is associated with activating mutations in the PIK3CA

kinase (144). EBNA1, an EBV-associated protein, is also associated

with DNA damage via the downregulation of promyelocytic

leukemia nuclear bodies, resulting in impaired DNA repair
BA

FIGURE 3

Known mechanisms that lead to genetic changes in EBV associated gastric cancer (A) ARID1A, PIC3CA, PTEN, SMAD4, CTNNB1, and NOTCH1 exhibit
frequent somatic mutations in EBVaGC, resulting in deficiencies in the mismatch repair pathway, increased AKT pathway activation, impacts on wnt
and notch signalling, as well as cell cycle and chromatin regulation. EBVaGCs are also associated with amplification of the chromosomal regions
encoding JAK2, PD-L1 and PD-L2, which contributes to the increased expression of T cell exhaustion markers. (B) APOBEC and EBNA1, via
downregulation of promyelocytic leukemia nuclear bodies (PML-NB), contributes to DNA damage. Frequent MMR pathway mutations result in an
increase of frameshift and missense mutations. These different mechanisms can lead to genetic changes in EBVaGC. Created with BioRender.com.
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responses, reduced p53 responses, promotion of cell survival

signals, and increased reactive oxygen species (ROS) production

and accumulation (75, 145). Additionally, many of the DNA

mismatch repair pathway genes are mutated in EBVaGCs (146),

resulting in an increased number of frameshift and missense

mutations in both oncogenes and tumor suppressor genes (147),

though such a highly mutated phenotype is often associated with

positive responses to immune checkpoint inhibitor therapy, as they

can lead to the generation of tumor neoantigens (148–150).
7.2 Epigenetic changes

Apart from genetic changes, EBVaGCs often feature epigenetic

dysregulation, whether through altered DNA methylation patterns,

the expression of EBV-associated miRNAs, or variable regulation of

human miRNAs. Based on the CpG-island methylator phenotype

(CIMP), EBVaGCs belong to the high (CIMP-H) category (129,

151). In fact, over 1000 genes have been found to be differentially

methylated by EBV, with hypermethylated genes enriched in Wnt

and protein kinase signalling pathways, among other cancer-

associated pathways (152–154). EBV is also noted to express a

number of miRNAs, with said miRNAs functioning to inhibit pro-

apoptotic genes and promote cell survival, as well as regulate the

expression of EBV-associated genes (115, 155). Additionally, EBV is

known to downregulate a number of human miRNAs with tumor

suppressor functions, particularly members of the let-7 and miR-

200 families (156).
8 Tumor microenvironment

The TME is the ecosystem of the tumor and surrounding

regions, allowing the tumor to persist, expand, and spread

metastatically (157). Due to the molecular and pathology-

associated differences between EBVaGCs and EBVnGCs,

variations within the TME are also expected and are of potential

interest. In addition to cellular neoantigens derived from tumor-

specific DNA alterations that give rise to novel protein sequences,

EBVaGCs express foreign viral antigens that represent excellent

targets for T cell responses (158, 159). The presence of these non-

self viral antigens in EBVaGCs is likely a key factor influencing the

overall anti-tumor immune response and altered tumor immune

microenvironment as compared to EBVnGCs (160). This section

will give an overview of the known differences present between

EBVaGCs and EBVnGCs, as well as various aspects of the TME

in GCs.
8.1 Immune infiltration and immune
cell composition

EBVnGCs are considered to be “immune-cold” tumors, with little

to no T cell infiltration (161–163). EBVaGCs, on the other hand, are

“immune-hot”, with high infiltration of immune cells, including CD8

+, CD4+, and dendritic cells (DCs) (164, 165). The high lymphocytic
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infiltration of EBVaGCs is a common defining histological

characteristic compared to EBVnGCs (20). Indeed, in a recent

cohort study of 421 primary GCs, the density of CD3+ T cells in

the tumor epithelium was 3.27 times higher (P<0.0001) than the next

highest GC subtype (166). In EBVaGCs, the ratio of CD8+ to CD4+ T

cells is 10:1, indicating increased cytotoxic antitumoral activity (167),

with RNA-seq analysis of GCs showing that cytotoxic CD8+ T cell

(CTL) signatures are strongly correlated with EBV viral load, which is

expected given that viral antigens will be recognized as non-self by the

host immune system (168). Though the level of infiltrating DCs is

higher in EBVaGCs as compared to EBVnGCs (43, 165, 167), few are

CD1a+, resulting in tolerogenic responses of T cells against tumor

cells (164) (169, 170). EBV-infected epithelial cells help facilitate this

process by secreting exosomes that inhibit DC maturation and

contributes to tumor progression (165). Additionally, the TME of

EBVaGC promotes CD4+ differentiation to Foxp3+ regulatory T cells

via PD-1/PD-L1 signalling, contributing to the immunosuppressive

environment of the TME (171, 172). Genes related to Th17

differentiation are also differentially expressed in EBVaGCs (173),

with accumulation of Th17 cells associated with tumor progression

and metastases via IL-17 secretion (174), as well as poorer patient

outcomes for GCs (175, 176). Furthermore, a unique subpopulation

of biphenotypic B cells, expressing both B and T cell markers, have

been previously identified in EBVaGCs, though their role has not

been deciphered (177).

In addition to the beneficial immune cells within the TME,

there are also cells actively contributing to the immunosuppressive

TME. One such group of immunosuppressive cells are the tumor-

associated macrophages (TAMs), which are most often associated

with the anti-inflammatory M2 phenotype and contribute to tumor

cell proliferation and angiogenesis (178, 179). EBVaGCs, in

particular, have a greater proportion of pro-inflammatory M1

macrophages compared to EBVnGCs (180). Even so, the role of

macrophages within EBVaGCs may depend on the proportion of

M1/M2 macrophages, with M1 TAMs dominating at early stages of

the tumor and M2 TAMs during later stages (181–183). Another

group of immunosuppressive cells are myeloid-derived suppressor

cells (MDSCs), which are an adverse prognostic factor in GCs (184,

185) and are known to inhibit adaptive and innate immune

antitumoral responses via a variety of mechanisms (186). MDSCs

arise from myeloid progenitor cells that have not terminally

differentiated into mature granulocytes or macrophages. MDSCs

are also associated with increased regulatory T cell presence within

the tumor and the Th2 cytokine, IL-13 (185). Interestingly, Th2

skewing of the CD4+ T cell helper response makes it the

predominant phenotype in GCs (187). However, there is

conflicting information, with Th2 shown to display both anti-

tumor activity and benefitting tumor growth (188, 189). Even so,

higher ratios of Th1/Th2 cells are associated with better

outcomes (190).
8.2 Differences in antigen presentation

Effective T cell-specific anti-tumor responses require the

presentation of a tumor-associated antigens in either the context
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of major histocompatibility complex class-I (MHC-I) or class-II

(MHC-II) (191). Surveilling antigen-presenting cells (APCs)

acquire exogenous peptides and present them in the context of

MHC-II on the APC cell surface to activate antigen-specific

CD4+ helper T cells (192). In conjunction with the ligation of co-

stimulatory molecules between the APC and T cell, this two step

process triggers proliferation and survival of antigen specific T cells

(193). These activated CD4+ helper T cells subsequently stimulate

CD8+ cytotoxic T cells specific for the same peptide antigen. This

CTL response targets and lyses tumor cells displaying that specific,

endogenously-derived antigenic peptide in the context of cell

surface MHC-I (194, 195).

A prevalent mechanism of tumor cell evasion of the CTL

response is the loss or down-regulation of the presentation of

tumor antigens by the cancer cell in the context of MHC-I (196).

Intriguingly, EBVaGCs express higher levels of MHC-I than other

GC subtypes (47, 197). Indeed, EBVaGCs display high mRNA levels

for all MHC-I components, including heavy and light chains, as well

as factors required for loading, in comparison to both normal control

tissues or EBVnGCs (47). This is likely a consequence of higher IFN-g
levels in EBVaGCs (168, 198). Intratumoral IFN-g is produced by

tumor-infiltrating lymphocytes and is a known inducer of

transcription of the genes encoding MHC-I and components of the

antigen loading complex (199). Interestingly, EBVaGCs were recently

reported as exhibiting the highest IFN-g gene response signature of all
the GC subtypes (200, 201). Thus, EBVaGCs may more effectively

display endogenously-derived antigenic peptides compared to

EBVnGCs, enhancing their detection and lysis by CTLs.

As mentioned above, presentation of viral or tumor-derived

neoantigens occurs in the context of MHC-II molecules, which are

primarily expressed by professional APCs, such as DCs, macrophages

and B cells (202). However, exposure of epithelial cells to IFN-g also
induces expression of MHC-II. These epithelial cells can subsequently

function as accessory APCs to present antigens and stimulate an

effective CTL response (203). Increased levels of MHC-II proteins on

epithelial cells should enhance the presentation of exogenously-

derived viral- and tumor-specific peptide antigens, enhancing CTL

responses (204). Indeed, the underappreciated role for tumor cell

derived MHC-II in anti-tumor immunity is becoming apparent, with

numerous reports suggesting that tumor-specific MHC-II expression

is correlated with favorable outcomes inmany cancer types, including

GCs (205, 206).

Interestingly, EBVaGCs display high mRNA levels for virtually

all MHC-II genes, as well as the MHC-II-like a- and b-chains, and
the invariant chain encoded by CD74 as compared to EBVnGCs

(48, 198). The coordinated upregulation of MHC-II pathway genes

by IFN-g is clearly illustrated by strong global correlations in

transcript abundance (48). These conclusions are supported by

single cell RNA sequencing (scRNA-seq) analysis that conclusively

shows much higher expression of MHC-II mRNAs in malignant

epithelial cells isolated from an EBVaGC case compared to EBV-

negative GCs (207). Immunohistochemical analysis also confirms

higher protein expression of various MHC-II classes in EBVaGCs

(167, 207, 208).

The coordinated upregulation of the components of both the

MHC-I and MHC-II antigen presentation pathways by higher IFN-
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g levels, combined with the expression of exogenous viral antigens,

may help explain why the clinical outcomes for EBVaGCs are

superior to EBVnGCs. An analogous situation is present in the

TME of human papillomavirus-associated head and neck cancers,

which similarly display upregulated MHC-I and II pathway

components and better patient outcomes compared to those

without a viral etiology (209, 210).
8.3 Molecular mechanisms
of immunosuppression

As compared to EBVnGCs, a number of immunosuppressive

genes are upregulated in the TME of EBVaGCs. One such gene is

IDO1, a potent inhibitor of immune cells, allowing virus-associated

tumors to persist in opposition to the increased local immune cell

concentration (164, 168). IDO1 functions by exhausting tryptophan

within the TME, producing kynurenine in the process. Reduced

environmental tryptophan results in reduced proliferation, immune

cell function, and contributes to tumor escape and metastasis (211).

Programmed cell death protein 1 (PD-1), encoded by PDCD1, and

its ligand PD-L1, encoded by cluster of differentiation 274 (CD274),

are also upregulated in EBVaGCs (53, 212). Typically, PD-1 is

expressed on T cells, and PD-L1 on TAMs and tumor cells within

the TME (213). The interaction of PD-1 and PD-L1 inhibits T cell

proliferation and a number of effector functions (214, 215).

Additionally, PD-L1 has been shown to play roles in modulating

epithelial-to-mesenchymal transition and chemoresistance in many

types of cancers, including GCs (216). A number of other immune

checkpoint molecules are also expressed by activated immune cells

in EBVaGCs. These include hepatitis A virus cellular receptor 2/

Tcell immunoglobulin and mucin domain 3 (TIM-3), encoded by

HAVCR2/TIM-3 (217), lymphocyte activation gene 3 (LAG-3),

encoded by LAG3 (218), and cytotoxic T lymphocyte associated

protein 4 (CTLA-4), encoded by CTLA4 (219). These collectively

modulate the magnitude and duration of immune response (220).

The activation of these checkpoints has been noted in many other

types of cancers and normally serves to protect the host from the

negative consequences of sustained immune activation during

infection or cancer (221). The overexpression of TIM-3, LAG-3,

and CTLA-4 is also associated with non-response to immune

checkpoint blockade monotherapy for PD-1/PD-L1 (222).

Combined inhibition of immune checkpoints augments antitumor

immunity and results in enhanced tumor clearance (223).
9 Immunotherapy and
other treatments

Due to the differences in the TME and cellular targets present

within EBVaGCs and EBVnGCs, there are also differences in overall

treatment effectiveness and patient responses (40, 161, 164, 224). A

number of therapies have been shown to be effective within

EBVaGCs and related cancers, with this section highlighting those

currently approved, those still undergoing testing, and potential

immuno- and chemo-therapeutics (225–227).
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9.1 Immunotherapeutics

EBVaGCs are known to exhibit differential gene expression

compared to EBVnGCs, with some of these gene products serving

as targets for immunotherapeutics. Both PD-1 and PD-L1 are

overexpressed in EBVaGCs (53) and are associated with worse

patient outcomes (228). Pembrolizumab, an anti-PD-1 antibody, is

an immunotherapeutic approved for treating a wide range of cancers,

with a favourable benefit-to-risk profile and impressive antitumoral

activity (229, 230). In a ground-breaking study by Kim et al., an

overall response rate of 100% was demonstrated in EBVaGCs, raising

hopes that this therapeutic would revolutionize treatment for these

cancers (231). It was also demonstrated that response-rate was related

to PD-L1 expression, thus making EBVaGCs prime candidates for

the testing of anti-PD-1 immunotherapeutic targets (232).

Pembrolizumab is currently undergoing clinical trials for EBVaGCs

(NCT04795661, NCT05166577). Camrelizumab, also an anti-PD-1

antibody, has shown inconclusive results, possibly due to low PD-L1

positivity and small sample size (233). Avelumab, another anti-PD-

L1 antibody, has been considered for maintenance therapy for GCs as

an alternative to first-line chemotherapeutic treatments, with it

demonstrating increased safety, but no effect on overall survival

(234, 235). Trastuzumab, an anti-HER2 antibody, has been

tested in conjunction with chemotherapy, resulting in higher

overall survival as compared to chemotherapy alone (236). The

identification of a wider range of targets, as well as improved

EBVaGC patient stratification likely to respond to these targeted

agents, would increase effectiveness and diversity of options for

monoclonal antibody therapy (237, 238).

Apart from antibodies, a number of other immunotherapeutic

treatment options are being considered for treatment of EBVaGCs

(239–241). One such option is chimeric antigen receptor (CAR) T cell

therapy, with multiple clinical trials recruiting GC patients for these

studies (NCT05583201, NCT05393986, NCT05396300,

NCT04650451). Studies have shown that a number of antigens,

which include HER2, CEA, EpCAM, Claudin 18.2, and NKG2D,

could be potential targets for CAR T cell-based therapy (242, 243).

CAR T cell therapy has been reported to provide 5 more incremental

quality-adjusted life-years compared to 4.6 years for

nonpharmaceutical approaches (surgery, radiation therapy, stem

cell transplants), at a similar level of cost-effectiveness (244).

However, CAR T cell therapy has a number of downsides, which

include the side effects of targeting antigens present on tissues besides

the tumor (245, 246), cytokine storm syndrome (247, 248) and

decreased effectiveness due to the immunosuppressive environment

often present within cancers (249). These issues can be partially or

fully resolved with engineering CAR T cells to have inducible rather

than constitutive cytokine production (250, 251) and employing CAR

T cells in conjunction with immune checkpoint inhibitor therapy

(252, 253). As an alternative to CAR T cell therapy, CAR natural killer

cell (CAR NK-cell) therapy has shown promising results with human

GC cell lines in mouse models (254). CARNK-cell therapy appears to

have several advantages, including a reduced risk of alloreactivity and

graft-versus-host disease, and the ability to kill cancer cells through

non-MHC-restrictive effects (255, 256).
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Cancer vaccines represent another potential avenue for

EBVaGC immunotherapy given the expression of “non-self”,

virally encoded proteins, which should be highly antigenic. Such

vaccines come in many flavors, including whole tumor cell vaccines,

DNA vaccines, DC vaccines, peptide vaccines, cancer stem cell

vaccines, and neoantigen-based vaccines (257). A number of these

vaccines have been approved and been successfully employed in

various cancers (258–261). In GCs and related cancers, a candidate

vaccine against the gastrointestinal peptide gastrin inhibits tumor

growth and metastases in addition to modifying the TME when

given alone or alongside immune checkpoint inhibitors (262, 263).

Currently, a DNA vaccine specific for EBVaGC and other EBV-

associated cancers is currently undergoing preclinical trials (264).

This vaccine targets the BARF1 antigen of EBV, which is highly

expressed in EBVaGCs (265), and has been found to promote cell

proliferation and block apoptosis (266, 267). BARF1 has previously

been identified as a potential therapeutic target (268, 269). Results

of the preclinical trial indicate that the vaccine elicits high titers of

antibodies specific for BARF1 and supresses tumor growth via a

CD8+ T cell mechanism (264).

The well-established ability of EBV to actively evade both

intrinsic and adaptive immune responses via a plethora of

different mechanism could compromise anti-tumor vaccines (5).

Specifically, viral interference with the recognition of antigenic viral

peptides via downregulation of MHC-I-based antigen loading and

presentation during infection has been well described and could

greatly blunt the effectiveness of MHC dependent T cell responses

(5, 270). However, this may not be as significant of an impediment

as anticipated, as recent studies have shown strong MHC-I and -II

expression in EBVaGC, likely due to upregulation by the

inflammatory cytokines in the TME (47, 48).
9.2 Chemotherapeutics

EBVaGCs are resistant to a number of chemotherapeutics,

including 5-fluorouracil (271) and docetaxel (272), both of which are

effective in EBVnGCs (273, 274). However, other chemotherapeutic

options may effectively treat EBVaGCs. These include combination

therapies, which exhibit improved effectiveness over monotherapies,

with examples such as 5-fluorouracil with LY294002, a selective

inhibitor of PI3K (271), the PI3K/mTOR dual inhibitor CMG002

with chloroquine (275), and ganciclovir with gemcitabine (276).

Additionally, there is also the option of adjuvant therapy, in which

surgical intervention is followed by a monotherapy or combination

therapy. One such study employed gastrectomy followed by either

capecitabine and oxaliplatin or S-1 monotherapy, although no

difference in outcomes was observed between EBVaGCs and

EBVnGCs (277). Additional studies were performed to identify

better combinations of chemotherapeutics, although only limited

results were achieved (278, 279).

Since EBVaGCs are often associated with hypermethylation of

promoters within the genome, particularly those of tumor

suppressors and negative regulators of the cell cycle (280, 281),

drugs target ing DNA methylat ion using either DNA
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methyltransferase or histone deacetylase inhibitors have been

suggested to have therapeutic potential. Currently, two DNA

methyltransferase inhibitors, azacitidine and decitabine, have been

approved for acute myeloid leukemia and myelodysplastic

syndrome (282), but may also be employed in EBVaGCs.

Another drug currently undergoing clinical trials, zebularine, was

previously shown to demethylate the STING promoter, which

regulates expression of the cGAS/STING innate immune

pathway, resulting in increased CD8+ T and NK infiltration, as

well as reduced tumor burden in GC cell line-based models (283).

The benefits of these classes of drugs include the reversibility of

effects, due to epigenetic changes, as well the possibility of reversing

changes in the TME (154, 284). Downsides of such drugs include

the potential of non-specific gene activation as a result of

demethylation, which may include oncogenes, as well as the lack

of studies exploring the long-term effects of epigenetic therapies

(129). Further research in this class of therapeutics is necessary to

determine their ultimate value as new treatment options

for EBVaGC.
9.3 Drugs stimulating EBV reactivation
from latency

EBV persistence in the infected individual is lifelong and largely

mediated by the maintenance of the latent state of viral episomes in

infected cells (285). Reactivation of latent virus could provide a

means of killing EBVaGC cells, akin to the “shock and kill”

strategies suggested for curing HIV (286, 287). In this way,

reactivation of EBV infection from latency activates viral

transcription, protein expression and virion production,

potentially triggering cytolysis, immune-mediated clearance, and

sensitivity to antiviral drugs such as ganciclovir and

valganciclovir (288).

Reactivation of latent EBV infection is commonly referred to as

lytic-induction therapy. This treatment approach typically involves

a combination of a lytic inducer and nucleoside analogue antiviral

pro-drugs (289). Reactivation of the EBV lytic cycle leads to the

expression of numerous additional viral proteins not expressed

during latency. These include the viral BGLF4 encoded protein

kinase, which converts antiviral prodrugs like ganciclovir into their

cytotoxic forms, consequently killing the infected cell (290) and

adjacent cells via “bystander killing” (291). These additional viral

products also potentially represent non-self antigens that may

trigger improved anti-tumor responses or could be useful targets

for CAR T cell-based therapy.

Multiple approaches for EBV lytic reactivation have been

reported, primarily representing epigenetic-targeted therapies,

such as histone deacetylase inhibitors (292, 293). Intriguingly,

chemotherapy itself appears to trigger some level of EBV

reactivation, which can be further enhanced by epigenetic

modulators (294, 295). Although limited, existing studies

assessing lytic induction therapy suggest potential utility in

EBVaGC (276, 296), with ongoing screens searching for more

effective small molecule inducers of EBV reactivation (297).
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10 Datasets and tools in EBVaGC

This section serves to highlight public datasets and tools

available for the exploration of EBVaGCs. The availability of said

tools and datasets are most beneficial when performing in vitro or in

vivo research, providing additional sources of validation and

comparison. They can also assist in the process of hypothesis

generation, by helping narrow down possible research targets that

could be of interest when exploring oncogenesis, as well as potential

biomarkers and therapeutic targets.
10.1 TCGA and TCGA-derived datasets

The Cancer Gene Atlas (TCGA) has a large collection of

stomach adenocarcinoma (STAD) tissue samples, including bulk

tumor gene expression data for up to 30 EBV-positive and 353

EBV-negative GC samples (22). The original dataset features

patient clinical information, expression data for 20,531 cellular

mRNAs and 1046 cellular miRNA genes, and methylation across

395,405 unique genomic probes. The aforementioned datasets can

be accessed through the Broad Institute GDAC Firehose web portal

(https://gdac.broadinstitute.org/) or other tools. Furthermore,

additional sequencing of TCGA GC tissue samples have yielded

datasets for expression levels of EBV-encoded mRNAs (201) and

miRNAs (87), compilation of immune landscape features (298), and

standardized patient outcome data (299). As one example of the

utility of this data, bioinformatic comparisons confirmed that the

EBVaGC TME exhibits many aspects of a T cell-inflamed

phenotype, with greater T and NK cell infiltration, increased

expression of many immune checkpoint markers (BTLA, CD96,

CTLA4, LAG3, PD1, TIGIT and TIM3), and multiple T cell effector

molecules in comparison with EBVnGCs (300).
10.2 EBVaGC-centric tools

The computational nature of working with molecular

expression datasets may present a barrier to researchers not well-

versed in computational techniques, which limits the accessibility of

such datasets. While a number of viral-centric tools featuring

molecular gene expression have been developed (301, 302), they

are often few and far between. The same has been true for EBVaGCs

up until recently; the development of the EBV-GCR web suite of

tools (303) represents a useful addition. This tool set allows users to

quickly query both viral and cellular gene expression data from

single cell and bulk tumor GC mRNA sequencing data. Users can

also easily obtain data regarding correlations between viral and

cellular gene expression, genome-wide methylation, immune

landscape features, and patient outcomes.
11 Perspectives and discussion

Even with the great wealth of existing knowledge related to

EBVaGCs, there is still much to discover and understand to improve
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treatment options and patient outcomes. In particular, employing

scRNA-seq for cancers can provide a deeper understanding of the

TME composition, immune heterogeneity in tumors, evaluation of

tumor escape mechanisms, as well as mechanisms of drug or therapy

resistance (304). Currently, there are few studies leveraging scRNA-seq

data for comparing EBVaGCs with EBVnGCs (207). Further, larger

scale studies would be beneficial in understanding the various

dimensions of EBVaGCs and their differences compared to

EBVnGCs. Additionally, therapeutics targeting EBV-associated

miRNAs are relatively unexplored (111) and given the roles for these

virally encoded miRNAs in EBV-positive malignancies (100), could

make for effective targets. An example of such a therapeutic was in a

recent study in which researchers employed anti-miRNAs to silence

miR-BART7-3p, reducing tumor growth in tested animal models

(305). Another study found that circRNAome miRNA sponges of

EBV can decrease the expression of multiple host miRNAs, thus

helping drive carcinogenesis (306). In turn, microRNAs targeting

EBV miRNAs could be developed in order to downregulate their

expression. Advances in precision- and immuno-therapeutics should

result in improved treatment options and patient outcomes.
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