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The type 1 diabetes susceptibility
locus Idd5 favours robust
neonatal development of highly
autoreactive regulatory T cells in
the NOD mouse
Jérémy C. Santamaria †, Sylvia Vuillier †, Ariel O. Galindo-Albarrán,
Sarah Castan, Claire Detraves, Olivier P. Joffre, Paola Romagnoli
and Joost P. M. van Meerwijk*

Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Institut National de la santé et
de la recherche médicale (Inserm) UMR1291 – Centre national de la recherche scientifique (CNRS)
UMR5051 – University Toulouse III, Toulouse, France
Regulatory T lymphocytes expressing the transcription factor Foxp3 (Tregs) play

an important role in the prevention of autoimmune diseases and other

immunopathologies. Aberrations in Treg-mediated immunosuppression are

therefore thought to be involved in the development of autoimmune

pathologies, but few have been documented. Recent reports indicated a

central role for Tregs developing during the neonatal period in the prevention

of autoimmune pathology. We therefore investigated the development of Tregs

in neonatal NOD mice, an important animal model for autoimmune type 1

diabetes. Surprisingly, we found that, as compared with seven other commonly

studied inbred mouse strains, in neonatal NOD mice, exceptionally large

proportions of developing Tregs express high levels of GITR and PD-1. The

latter phenotype was previously associated with high Treg autoreactivity in

C57BL/6 mice, which we here confirm for NOD animals. The proportions of

newly developing GITRhighPD-1+ Tregs rapidly drop during the first week of age.

A genome-wide genetic screen indicated the involvement of several diabetes

susceptibility loci in this trait. Analysis of a congenic mouse strain confirmed that

Idd5 contributes to the genetic control of GITRhighPD-1+ Treg development in

neonates. Our data thus demonstrate an intriguing and paradoxical correlation

between an idiosyncrasy in Treg development in NOD mice and their

susceptibility to type 1 diabetes.
KEYWORDS
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Abbreviations: B6, C57BL/6; BC1, first generation backcross; CD4SP, CD4+CD8−TCRhigh thymocytes;

DN3, CD4−CD8−CD44−CD25+ thymocytes; Idd, insulin-dependent diabetes-susceptibility locus; NOD,

non-obese diabetic; T1D type I diabetes; Tconv, conventional T lymphocytes; Treg, Foxp3+CD4+ regulatory

T lymphocytes.
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Introduction

Regulatory T lymphocytes (“Tregs”) play a central role in the

control of immune responses. The importance of these cells in the

prevention of autoimmune and inflammatory pathologies is best

illustrated by the observation that individuals and mice with

mutations in the gene encoding FOXP3/Foxp3, the “master”

regulator for Treg function, develop lethal autoimmune and

inflammatory pathology, of which type I diabetes (“T1D”) is, in

humans, a prominent component (1). In the etiology of T1D in

individuals carrying polymorphisms in genes other than FOXP3,

more subtle defects in the action of Tregs may be involved.

Most Tregs develop as an independent lineage in the thymus. In

this organ, agonist recognition—by developing T cells—of MHC/

self-peptide complexes drives the development of an autospecific

Treg repertoire particularly adapted to the control of autoimmune

responses (2). In mice, the Treg population emerging from the

thymus is phenotypically and functionally diverse (3–5). Also, Tregs

developing at distinct time points during life have distinct roles.

Thus, Tregs developing in neonates protected substantially better

from lethal autoimmune pathology than Tregs developing in adult

animals (6). These observations urge for a more detailed analysis of

Tregs when assessing their potential implication in the etiology

of immunopathology.

Inherited defects in Treg-mediated immunoregulation may be

involved in susceptibility to autoimmune diseases such as T1D. It

was reported that the TCR repertoire expressed by Tregs developing

in NOD mice was of limited diversity (7), but our recent high-

throughput TCR-mRNA sequencing data challenged this

conclusion (8). Polymorphisms in genes encoding IL-2 and its

receptor components, which may affect in-vivo Treg function, are

linked to diabetes in humans and mice (9–13). In-vitro Treg-

mediated suppression of activation of T cells from NOD mice or

T1D patients is of limited efficacy (14–16). Finally, polymorphisms

in the Idd9.1 and Idd6 loci appear to affect in-vivo Treg function in

NOD mice (17, 18). These data suggest that Treg-mediated

suppression is defective in T1D in humans and mice. Further

elucidat ion of the involved mechanisms and genetic

polymorphisms should help the design of novel diagnostic and

therapeutic tools.

Differentiation and selection of the T-cell repertoire in the

thymus plays a central role in the in-vivo function of these cells.

Therefore, we and others compared Treg development in the

thymus of NOD mice to that in the T1D-resistant reference strain

C57BL/6 (B6). Paradoxically, in NOD mice, substantially more

Tregs develop than in B6 animals (19, 20). Our more recent work

demonstrated that this phenomenon only occurs in neonatal mice.

Later on, Tregs that had recirculated from the periphery back to the

thymus inhibit the particularly robust Treg development in NOD

mice, which thus reaches a level similar to that found in B6 animals.

We showed that Treg recirculation was very prominent in NOD

mice and that this was due to exceptionally strong Treg activation in

peripheral lymphoid organs (21). Treg development in NOD vs. B6

mice therefore appears different which may be involved in the

distinct susceptibility of these mice for T1D.
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Based on the particularly robust activation of peripheral Tregs

we previously reported in NOD mice, we here investigated the

potential qualitative differences in Treg development, focusing on

the very important neonatal Treg population.

Results

Particularly robust thymic production of
GITRhighPD-1+ Tregs in neonatal NOD mice

It was previously shown that Tregs developing during the

neonatal period protect better from lethal autoimmunity upon

adoptive transfer into AIRE-deficient NOD mice than cells

differentiating in adult animals (6). We investigated the

development of this population in NOD mice and compared it

with that in other commonly used inbred mouse strains. Wyss and

colleagues previously showed that newly developed Tregs

expressing a GITRhighPD-1+ phenotype are more autoreactive

than their GITR+PD-1− counterparts (3). We therefore

investigated the GITR vs. PD-1 phenotypes of Tregs newly

developing in neonates (3 to 4 days old) of B6, BALB/c, C3H,

CBA, DBA/1, FVB, NOD, and SJL mice. The proportions of

GITRhighPD-1+ cells among CD4+CD8−TCRhighFoxp3+ Tregs

(gated as shown in Supplementary Figure S1A) varied

dramatically, from 20.6% ± 2.1% in C3H mice to 49.4% ± 5.8% in

NOD animals (Figure 1A). NOD mice also had particularly great

proportions of GITRhighPD-1+ Tregs among CD4+CD8−TCRhigh

thymocytes (CD4SP, Supplementary Figure S1B). These data

suggested a genetic control of the development of strongly

autoreactive GITRhighPD-1+ Tregs, paradoxically very robust in

the NOD mouse.

Treg precursors are not entirely resistant to thymic deletion

(22). It was therefore important to evaluate if the potentially highly

autoreactive newly developed GITRhighPD-1+ Tregs can leave the

thymus and populate the periphery. To assess this question, we first

analyzed the expression of S1PR1, sufficient for the thymic export of

T cells (23). Among thymus export-competent (S1PR1+) Tregs, we

observed substantially more GITRhighPD-1+ cells in NOD mice

than in B6 neonates (Figure 1B, Supplementary Figure S1C). We

also observed much higher proportions of GITRhighPD-1+ cells

among peripheral (splenic) Tregs in 4-day-old NOD than in age-

matched B6 mice (Figure 1C).

Phenotypic differences between NOD and B6 Tregs have, to our

knowledge, not been described. Moreover, it was reported that very

autoreactive Tregs develop during the neonatal period, but not later

on (24, 25). We therefore assessed the kinetics of GITRhighPD-1+

Treg development in NOD and B6 mice. Intriguingly, we observed

higher levels of these cells in NOD than in B6 thymi only during the

first week of age. Already at 1 week of age, the proportion of

developing GITRhighPD-1+ Tregs had strongly dropped in NOD

mice, and later on, they were similar in the two mouse strains

(Figure 1D). Combined, these data indicate that, paradoxically,

particularly high proportions of potentially strongly autoreactive

GITRhighPD-1+ Tregs develop during the neonatal period in the

NOD thymus and populate peripheral lymphoid organs.
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The robust GITRhighPD-1+ NOD Treg
development is genetically controlled in a
T-cell lineage-intrinsic manner

The difference in neonatal GITRhighPD-1+ Treg development

between NOD and B6 mice may be controlled by genetic factors

acting within developing T cells and/or provided by the thymic

microenvironment. To investigate this issue, we generated

reconstituted fetal thymus organ cultures (rFTOC, Supplementary

Figure S1D). We depleted fetal NMRI thymi of hematopoietic cells

and we seeded these emptied thymic lobes with T-cell precursors

from 8-week-old B6 or NOD mice. To avoid the potential

contribution of dendritic cells and B lymphocytes developing

from thymic T-cell precursors, we used FACS-sorted thymocytes

at the DN3 stage of development (CD4−CD8−TCR−CD44−CD25+),

known to only have T-cell precursor potential (26). Whereas 36.6%
Frontiers in Immunology 03
± 7.2% of Tregs developing from B6 DN3 in such rFTOC expressed

PD-1 and high levels of GITR, 49.4% ± 7.8% of NOD Tregs had this

phenotype (Figure 1E). These results indicated that part of the

difference in GITRhighPD-1+ Treg development between B6 and

NODmice was due to factors acting within the T-cell compartment.

Since the precursor cells seeded into the cultures were of adult

origin, our observations also showed that the difference is not

caused by factors intrinsic to newborn precursors.
GITRhighPD-1+ NOD Tregs have a
phenotype suggesting high autoreactivity

It was paradoxical to find particularly robust development of

GITRhighPD-1+ and, therefore, presumably highly autoreactive,

neonatal Tregs in the T1D-prone NOD mouse. However, the
B C

D E

A

FIGURE 1

Particularly robust production of GITRhighPD-1+ Tregs by the neonatal NOD thymus. (A) Thymocytes from 3-day-old mice of indicated strains were
analyzed by flow cytometry using indicated markers (cf. Supplementary Figure S1A). The left panels show typical PD-1 vs. GITR expression patterns
on CD4+CD8−TCR+ (CD4SP) Foxp3+ cells, and the right panels show the quantification using gates indicated in the left panel. (B) As in (A) but
analyzing 4-day-old Foxp3-Thy1a Rag2-Gfp mutant B6 vs. NOD mice and thymus exit-competent S1PR1+GFP+Thy1.1+ CD4SP thymocytes (cf.
Supplementary Figure S1C). (C) As in (B) but analyzing CD4+TCR+Foxp3+ splenocytes (Tregs). (D) Kinetics of GITRhighPD-1+ Treg development in
Foxp3-Thy1a Rag2-Gfp mutant B6 vs. NOD mice. (E) NMRI fetal thymi were depleted of hematopoietic cells before being reconstituted with adult
Foxp3-Thy1a Rag2-Gfp B6 or NOD DN3 precursors (cf. Supplementary Figure S1D). After 12 days of culture, the proportions of GITRhighPD-1+ cells
among developing CD4+CD8−TCR−Thy1.1+ Tregs were determined by flow cytometry. In (A–C), dots represent individual mice and in (E) individual
thymic lobes, and bars are mean values ± SD. In (D), dots indicate mean values and bars SD. ns, not significant; **, p < 0.01; ***, p < 0.001; ****, p <
0.0001, Mann–Whitney test.
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highly autoreactive nature of GITRhighPD-1+ Tregs was described

for B6 mice (3) and may or not be valid for NOD Tregs. Also, for

technical reasons, we did not include in our study the CD25 marker

used by Wyss and colleagues, which might bias the interpretation of

our results. We therefore compared the autoreactivity of

GITRhighPD-1+ vs. GITR+PD-1– Tregs in NOD and B6 mice.

Neonatal GITRhighPD-1+ Tregs from B6 and NOD mice

expressed significantly lower levels of TCR and higher levels of

Nur77 and CD5 than GITR+PD-1– cells (Figures 2A–C,

Supplementary Figures S2A, B). These data suggested a similarly

higher autoreactivity of GITRhighPD-1+ than of GITR+PD-1– Tregs

in NOD and B6 mice (27–29), thus confirming and extending

previously published data on B6 animals (3). Moreover, in NOD but

not in B6 mice, thymic stromal cells express a superantigen encoded

by the endogenous mammary tumor virus-3 (Mtv-3). When

presented by the MHC class II molecule I-Ag7, the Mtv-3

superantigen strongly activates all T cells expressing the TCR Vb3
variable segment. Strongly autoreactive Vb3-expressing T-cell

precursors are therefore deleted in the NOD thymus (30). Given

that superantigens can also induce the selection of reactive Tregs

(31), we investigated the development of Vb3-expressing Tregs,

highly autoreactive in Mtv-3-expressing NOD but not in B6 mice

which lack Mtv-3. We found many more Vb3-expressing cells

among GITRhighPD-1+ than among GITR+PD-1– Tregs in NOD

but not in B6 neonates (Figure 2D, Supplementary Figure S2C).
Frontiers in Immunology 04
Combined, these data suggested that, as in B6 mice, in NOD

animals GITRhighPD-1+ Tregs were substantially more

autoreactive than GITR+PD-1– cells.
GITRhighPD-1+ NOD Tregs are highly
reactive in vivo

To formally assess the particularly (most probably auto-)

reactive nature of NOD GITRhighPD-1+ Tregs, we next analyzed

their activation in the periphery. Upon leaving the thymus, a large

proportion of Tregs is activated in the periphery (32). The

expression levels of the T-cell activation marker CD44 were

noticeably higher on GITRhighPD-1+ than on GITR+PD-1– Tregs

(Figure 2E, Supplementary Figure S2D). We also found many more

cells expressing the proliferation marker Ki67 among GITRhighPD-

1+ than among GITR+PD-1– Tregs (Figure 2F, Supplementary

Figure S2E). In Rag2-Gfp mice, GFP accumulates in developing T

cells up to the extinction of Rag2 expression upon positive selection

and then degrades with an in-vivo half-life of 56 h (33). The

proliferation of recent thymic emigrants, which still express

detectable levels of GFP, will lead to the dilution of GFP. At the

age of 4 days, Tregs just start to leave the mouse thymus (34). In the

spleen of 4-day-old mice, GITRhighPD-1+ recent thymic emigrant

Tregs displayed markedly lower GFP fluorescence levels than
B

C D E

F G H

A

FIGURE 2

Neonatal GITRhighPD-1+ Tregs are more autoreactive than their GITR+PD-1− counterparts. (A, B) Thymocytes from indicated 3-day-old Foxp3-Thy1a

B6 and NOD neonates were analyzed by flow cytometry. Depicted are typical patterns (left panels) and quantifications (gMFI, right panels) of the
expression of indicated markers by CD4+CD8−Thy1.1+ cells (Tregs) (gated as shown in Supplementary Figure S2A). (C) As in (A, B) but indicating the
mean CD5 expression levels. (D) The proportions of Mtv-3 superantigen-specific cells among GFP+CD4+CD8−Thy1.1+ Tregs in 4-day-old Foxp3-
Thy1a Mtv-3− B6 and Mtv-3+ NOD mice. (E–G) As in (A–D) but for CD4+Thy1.1+ splenocytes (Tregs, gated as shown in Supplementary Figure S2D)
from 4-day-old neonates. Typical flow cytometry patterns for data shown in (C, D, F) are shown in Supplementary Figures S2B, C, E. (H) GITRhighPD-
1+ preferentially recirculate back to the thymus. The proportions of GITRhighPD-1+ cells among peripheral Tregs (splenic Tregs) and among
recirculating GFP− Tregs (Recirc. Tregs) in the thymus of 4-day-old B6 and NOD mice. Dots represent individual mice and lines represent paired data
(same mouse). *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001, Wilcoxon test.
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GITR+PD-1– cells (Figure 2G), indicating a higher proliferation rate

of GITR+PD-1+ cells compared with their GITR+PD-1–

counterparts. Upon their activation in the periphery, Tregs

recirculate back to the thymus (21, 35). If GITRhighPD-1+ are

more activated than GITR+PD-1– cells, the former cells should

preferentially recirculate to the thymus. Consistent with this

premise, we found that the proportions of GITRhighPD-1+ cells

among recirculating GFP− Tregs in the thymus were much higher

than those among Tregs in the spleen of B6 newborns and, to an

even greater extent, of NOD mice (Figure 2H). These data indicate

that GITRhighPD-1+ Tregs preferentially recirculate back to the

thymus. Combined, our data confirm and extend the particularly

(probably auto-) reactive nature of GITRhighPD-1+ Tregs (3).

Importantly, we obtained very similar differences between
Frontiers in Immunology 05
GITRhighPD-1+ vs. GITR+PD-1– Tregs in B6 and NOD mice.

Taken together, these data further indicate that a particularly high

proportion of strongly autoreactive Tregs develops in the neonatal

NOD thymus.
At least two genomic loci control
development of GITRhighPD-1+ Tregs

The very diverse levels of GITRhighPD-1+ Tregs we found in

distinct inbred mouse strains (Figure 1A) suggested that their

development is modulated by genetic factors. To more formally

address this possibility, we next performed a genetic analysis. We

crossed NOD mice to B6 animals and analyzed neonatal Treg
B

C D E
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A

FIGURE 3

Genetic control of neonatal development of GITRhighPD-1+ Tregs. (A) Thymocytes from indicated 3-day-old Rag2-Gfp Foxp3-Thy1a-mutant
neonatal mice were analyzed by flow cytometry and the proportions of GITRhighPD-1+ cells among GFP+CD4+CD8−TCR+Thy1.1+ cells (Tregs)
determined. F1, (NODxB6)F1; BC1, (F1xB6)BC1. (B) Proportions of GITRhighPD-1+ cells among thymic Tregs in BC1 mice carrying B6 and/or NOD
alleles of indicated Idd (as determined by PCR). For the complete list of analyzed Idd, see Supplementary Figure S4. (C–H) Genome-wide SNP
profiling was performed on genomic DNA from B6, NOD, and 94 BC1 mice (f/m). LOD scores of GITRhighPD-1+ Treg development for (C) the whole
genome (except for the Y-chromosome), (D) chromosome 1, and (E) chromosome 8. Locations of Idd5 and Idd22 are indicated with horizontal bars.
The proportions of GITRhighPD-1+ cells among Tregs in BC1 mice carrying the indicated B6 and/or NOD alleles on (F) Chr. 1, 60.5 Mb; (G) Chr. 1,
96.4 Mb; (H) Chr. 8, 38.8 Mb; and (I) in 4-day-old NOD vs. NOD.B10 Idd5 congenic mice. Dots represent individual mice, and bars mean values ±
SD. ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001, Mann–Whitney test. In (C–E), the horizontal dashed lines indicate
the LOD score of 3.0 above which the genetic linkage was considered statistically significant.
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development. In the thymus of F1 mice, we found proportions of

GITRhighPD-1+ cells among Tregs similar to those observed in

NOD mice (Figure 3A). The B6 phenotype therefore appears

recessive. We then backcrossed F1 mice to B6 animals. These

“backcross 1” (BC1) animals displayed a large diversity in the

proportions of GITRhighPD-1+ cells among Tregs (Figure 3A).

These results formally confirmed genetic control of the

development of GITRhighPD-1+ Tregs and indicated its

polygenic nature.

The I-Ag7 allele expressed by NOD mice is a major T1D

susceptibility locus (“Idd1”) and regulates non-cognate negative

selection in the thymus (36). Given the highly autoreactive nature of

GITRhighPD-1+ Tregs, we postulated that I-Ag7 may play an

important role in their differentiation. To assess this possibility,

we identified homozygous I-Ab/b and heterozygous I-Ab/g7 mice

among the BC1 neonates and compared the proportions of

GITRhighPD-1+ cells among newly developing (i.e., GFP+) Tregs.

We did not observe any difference between I-Ab/b and heterozygous

I-Ab/g7 mice (Supplementary Figure S3), excluding a role for the I-

Ag7 allotype in GITRhighPD-1+ Treg development.

More than 40 other T1D susceptibility loci have been identified

(37). To investigate the potential implication of these loci in the

development of GITRhighPD-1+ Tregs, we first determined the Idd

genotypes of the BC1 neonates by PCR and then compared the

proportions of GITRhighPD-1+ Tregs among GFP+ Thy1.1+ CD4SP

Tregs (Supplementary Figure S4). Several Idd appeared involved in

the development of these cells. Thus, the heterozygous presence of

the NOD alleles of Idd5 and Idd26 (both localized on chromosome

1, “Chr. 1”) conferred increased proportions of GITRhighPD-1+

Tregs (Figure 3B). By contrast, the heterozygous presence of the

NOD allele of Idd8 (Chr. 14), Idd12 (Chr. 14), and Idd22 (Chr. 8)

unexpectedly conferred reduced proportions of GITRhighPD-1+

Tregs (Figure 3B). These data indicate that T1D susceptibility loci

genetically control the development of GITRhighPD-1+ Tregs.

To comprehensively identify genomic loci controlling the

development of GITRhighPD-1+ Tregs, we submitted genomic

DNA from the BC1 animals to genome-wide, high-density single

nucleotide polymorphism (SNP) profiling (Figure 3C). We thus

identified loci on chromosomes (Chr.) 1 and 8 that control the

difference in GITRhighPD-1+ Treg development between B6 and

NOD mice (Figures 3D, E). On Chr. 1, two loci may be involved

(Figure 3D). In BC1 mice heterozygous (B6/NOD) for these two

loci, significantly more GITRhighPD-1+ Tregs developed than in

homozygous (B6/B6) pups (Figures 3F, G). These observations

confirm the dominance of the NOD allele(s) which favour(s) the

development of GITRhighPD-1+ Tregs. However, the difference

between mice homozygous and heterozygous for these loci was

substantially smaller than the difference between B6 and (B6xNOD)

F1 mice (cf. Figures 3A, F, G), again indicating the polygenic control

of the GITRhighPD-1+ Treg phenotype. In BC1 neonates

heterozygous (B6/NOD) for the locus identified on Chr. 8,

significantly less GITRhighPD-1+ Tregs developed than in

homozygous (B6/B6) pups (Figure 3H). This observation

indicates the dominance of the NOD allele(s) which, in contrast

to the locus on Chr. 1, inhibits the development of GITRhighPD-1+
Frontiers in Immunology 06
Tregs. The NOD alleles of the loci on Chr. 1 and 8 therefore control

GITRhighPD-1+ Treg development in an opposite fashion.
The type 1 diabetes susceptibility locus
Idd5 controls the development of
GITRhighPD-1+ Tregs

The identified loci on chromosome 1 largely overlap with the

diabetes susceptibility locus Idd5 (38) (Figure 3D). To assess the

potential implication of Idd5 in neonatal GITRhighPD-1+ Treg

development, we analyzed congenic NOD neonates carrying the

Idd5 locus of B10 origin (NOD.B10 Idd5 mice, strain R974 (39)).

Among Foxp3+ CD4SP Tregs in the thymi of NOD.B10 Idd5 mice,

we found lower proportions of GITRhighPD-1+ cells than among

NOD Tregs (Figure 3I). These data thus show that the particularly

robust development of GITRhighPD-1+ Tregs in NOD mice is, in

part, controlled by the T1D susceptibility locus Idd5.
Discussion

The data presented here indicate that, paradoxically, a

particularly high proportion of Tregs developing in the thymus of

neonatal NOD mice has the GITRhighPD-1+ phenotype previously

associated with high autoreactivity in B6 mice (3). We confirm that

these Tregs are highly autoreactive in NOD animals. We found that

robust GITRhighPD-1+ Treg development was restricted to the

neonatal period and rapidly dropped by 1 week of age when we

did not observe a drop in GITRhighPD-1+ Treg development in B6

mice. Genetic analyses indicated the involvement of diabetes

susceptibility loci, in particular Idd5, suggesting a causative link

with the disease. Our data thus suggest an indirect link between an

idiosyncrasy in the development of Tregs in neonatal NOD mice

and their susceptibility to T1D.

The Treg population developing in neonatal NODmice appears

substantially more autoreactive than that differentiating in the

thymus of several other inbred mouse strains. This conclusion is

based in part on the particularly high proportion of NOD Tregs

expressing a GITRhighPD-1+ phenotype, previously shown to be

highly autoreactive in B6 mice (3). In the NOD as well as in the B6

thymus, GITRhighPD-1+ Tregs expressed higher levels of Nur77 and

CD5 and lower levels of TCR than GITR+PD-1– cells, indicating

recent stronger signaling through the TCR. Dong and colleagues

recently found that intrathymic NOD vs. B6 Tregs expressed similar

levels of CD5, but they analyzed adult animals and did not

distinguish between GITR+PD-1– and GITRhighPD-1+ cells (40).

In NOD mice, Mtv-3 superantigen-specific TCR Vb3-expressing
Tregs were enriched in the GITRhighPD-1+ as compared with the

GITR+PD-1– Treg subset. In the periphery, the expression of the

activation marker CD44 and of the proliferation marker Ki67 was

substantially greater on GITRhighPD-1+ than on GITR+PD-1–

Tregs, both in B6 and NOD mice, confirming higher reactivity,

most probably to self-antigens. GITRhighPD-1+ Tregs were also

more represented among intrathymic Tregs that had recirculated
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back from the periphery than among peripheral Tregs, consistent

with their higher in-vivo activation (21). Combined, these

observations confirm the very autoreactive nature of GITRhighPD-

1+ Tregs in both mouse strains.

In the spleen, substantially more GITRhighPD-1+ than GITR+PD-

1– Tregs proliferated in both NOD and B6 mice. However, for both

populations, much fewer cells proliferated in NOD than in B6mice. It

was recently shown that whereas the diversity of the TCR repertoire

expressed by newly developed Tregs is similar in B6 and NOD mice

(8), in peripheral lymphoid organs, this diversity is higher in NOD

than in B6 mice. This phenomenon was apparently due to reduced

clonal Treg expansion in NOD mice (41), which in turn is probably

caused by limited production of IL-2 in NOD as compared with B6

mice (9). It is therefore important to distinguish between the

autoreactivity of Treg (controlled by their specificity and/or by

other Treg-intrinsic factors) and their proliferation (controlled by,

e.g., IL-2 availability or responsiveness).

Further work will be required to identify molecular mechanisms

involved in the development of the particularly autoreactive nature

of neonatal NOD Tregs. Several genes within the thus far identified

genomic region encode products that are involved in Treg

development and/or function: CTLA-4 modulates the selection of

the TCR repertoire expressed by developing Tregs and plays a major

role in the suppressive function of this T-cell population (42, 43),

and Tregs appear to be functionally impaired in ICOS-deficient

NOD mice (17). However, hundreds of other genes are encoded

within the Idd5 locus and may be involved (39). It will now be

important to assess which gene(s) within the Idd5 locus is (are)

responsible for the development of the particularly autoreactive

Treg population in the neonatal NOD thymus and which

mechanisms are involved.

We observed that the particularly robust development of

GITRhighPD-1+ Tregs in the NOD mouse only occurs very early

after birth and drops rapidly after. In rFTOC, we found that adult

NOD precursors more efficiently develop into GITRhighPD-1+

Tregs than adult B6 precursors, indicating that the decline we

observed was not due to potential differences between neonatal

and adult precursor cells. Our observation is coherent with the

report that Tregs developing early in life are more autoreactive than

Tregs developing later on (24). A potential explanation for the latter

phenomenon lies in defective intrathymic deletion of autoreactive

T-cell precursors early in life, allowing Tregs specific for certain

autoantigens to differentiate (25). After the neonatal period,

peripheral DC homing to the thymus induced the deletion of the

very autoreactive T-cell precursors, pre-empting their

differentiation into Tregs. However, the drop in the development

of GITRhighPD-1+ Tregs we observed in NOD mice occurred earlier

than the drop in the development of Tregs specific for the

autoantigens in B6 mice reported by Stadinski et al. (25). An

alternative mechanism appears therefore involved. Rapid homing

back to the thymus of Tregs activated in the periphery may

somehow play a role (21).

Our genetic analyses indicate a link between a particularity in

Tregs neonatally developing in NOD mice and their susceptibility

to T1D. Since neonatal Tregs apparently play a crucial role in the

protection from autoimmune pathology (6), we hypothesize that
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anomalies in these neonatal Tregs may somehow be involved in the

etiology of T1D in the NOD mouse. For example, the expression of

PD-1, a modulator of Treg activity (44–46), may hamper the

capacity of Tregs to protect from T1D. The correlation between

robust neonatal Treg autoreactivity and T1D susceptibility may also

be related to the increased recirculation of activated peripheral

Tregs back to the thymus which we observed. In the thymus, these

cells may modulate the selection of Tconv, thus affecting their

diabetogenic potential (35, 47, 48). It also remains possible that

molecular mechanisms involved in robust GITRhighPD-1+ Treg

development operate in other cells and alter susceptibility to T1D

in a Treg-independent manner. Finally, we cannot exclude the

possibility that the idiosyncrasy in Treg development we here

described is unrelated to T1D susceptibility. It will now be

important to identify the precise gene(s) and mechanism involved

in neonatal GITRhighPD-1+ Treg development and to assess if and

how it affects T1D susceptibility.

The observations described here may ultimately lead to the

identification of genes and mechanisms involved in disease

susceptibility of the NOD mouse, a very widely used animal

model for T1D (49). This is an important issue since, despite the

identification of more than 40 T1D susceptibility loci in mice and

humans, only very few involved genes and mechanisms have thus

far been identified (49). Understanding the potential defects in

Treg-mediated immune suppression involved in susceptibility to

T1D will also help in the development of innovative therapies

against this debilitating disease affecting increasing numbers of

children at a progressively younger age (50).
Methods

Mice

B6, BALB/c, C3H, CBA, DBA/1, and FVB mice were purchased

from Janvier labs (Le Genest-Saint-Isle, FRA), and NOD and SJL

were from Charles River (Wilmington, USA) Laboratories. Foxp3-

Thy1a Rag2-Gfp-mutant B6 and NOD mice were previously

described (21). NOD.B10 Idd5 congenic R974 mice (39) were

from JAX (Bar Harbor, USA) Laboratories. All experiments

involving animals were performed in compliance with

governmental and institutional guidelines (ethical approval

APAFIS#4151-201602171 0481496.v6).
Antibodies

We used the following monoclonal antibodies (mAbs) and

secondary reagents: APC-Cy7- and Pacific Blue-labeled anti-CD4

(GK1.5), biotin-labeled anti-CD4 (RM4.4), PE-CF594-labeled anti-

CD8a (53.6.7), BV510-labeled anti-CD8b (H35-17.2), PE-Cy7- and

PE-labeled anti-CD25 (PC61), PECF-BV421- and biotin-labeled

anti-TCRb (H57-597), BV421- and APC-labeled anti-Thy1.1 (OX-

7), AF647-labeled anti-Ki67 (B56), PE-labeled anti-Nur77 (12.14),

PE-labeled anti-CD5 (53-7.3), PE-labeled anti-I-Ab (AF6-120.1),

biotin-labeled anti-RT1B (OX6) for the detection of I-Ag7, biotin-
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labeled anti-TCR Vb3 antibody (KJ25) (all from BD (Franklin

Lakes, USA) Biosciences); PECy7-labeled anti-GITR (DTA-1),

PerCP-ef710-labeled anti-PD-1 (J43), biotin-labeled anti-Thy1.1

(HIS51), PE-labeled anti-TCRb (H57-597), PerCP-Cy5.5-labeled

or APC-ef780-labeled anti-CD44 (IM7), APC-labeled anti-CD62L

(MEL-14), ef450-BV605-PE-Cy7- or PE-labeled streptavidin, PE-

labeled anti-H-2Kd (SF1-1.1), biotin-labeled anti-H-2Kb (AF6-

88.5), PE-labeled anti-CCR7 (4B12), ef450- and ef660-labeled

anti-Foxp3 (FJK16S) (all from eBioscience (thermofisher)

(Waltham, USA)); and BV605-labeled anti-CD73 (TY/11.8) (from

Biolegend (San Diego, USA)); anti-S1P1/EDG-1 antibody (713412,

R&D (Minneapolis, USA) Systems); and biotin-SP (long spacer)

AffiniPure F(ab’)2 Fragment Donkey Anti-Rat IgG (H+L)

(polyclonal, Jackson immuinoresearch (West Grove, USA)).
Flow cytometry

Sample preparation and staining were essentially performed as

previously described (51). FACS data were acquired using an LSRII

or a Fortessa flow cytometer (BD Biosciences, San Jose, CA, USA)

and analyzed using FlowJo software (Tree Star, Ashland, OR, USA).

Doublets and dead cells were excluded from the analysis by using

appropriate FSC/SSC gates.
Reconstituted fetal thymus organ cultures

Thymic lobes from NMRI mice were collected and individually

cultured on transwell inserts (0.4mm pores, polycarbonate

membrane, Corning (Corning, USA)) at the air–liquid interface

using a complete medium (10% FBS) containing 1.35 mM of 2-

deoxyguanosine (2dGUO, Sigma (Burlington, USA)). Six days later,

lobes were intensely washed and cultured for 24 h in hanging drops

containing 50,000 DN3 (CD4−CD8−TCR−CD25+CD44-) cells

FACS-sorted from thymocytes (CD8-depleted using mAb 31M

and rabbit complement) from 8-week-old NOD or B6 mice.

Lobes were then cultured on transwells for 12 days (cf.

Supplementary Figure S1D). Lobes were collected and digested in

RPMI containing 4 mg/ml of Liberase and 0.1 mg/ml of DNAse I

(Roche (Basel, Switzerland)) for 5 min at 37°C with vigorous

pipetting every 2 min. Cells were then washed, counted, and

stained for flow cytometry analysis.
Idd genotyping

DNA was prepared from tail clips of 3-day-old NOD, B6, F1,

and BC1 mice using standard procedures. Idd genotyping was

performed by PCR using published primers (52).
Genome-wide SNP profiling

DNA was prepared from the tail clips of 3-day-old NOD, B6,

and BC1 (n = 94) mice using standard procedures, quality-
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controlled using a fragment analyzer Agilent (Santa Clara, USA)),

quantified using PicoGreen, amplified, and hybridized to Illumina

GGP Mouse GIGA-MUGA Arrays according to the supplier’s

instructions (Infinium HTS Assay Protocol Guide, 15045738

Rev.A October 2013, Manual Protocol). Arrays were scanned

using an iScan System (Illumina (San Diego, USA)).

Thus, the obtained raw data were quality-controlled and analyzed

using GenomeStudio Software 2010 with the Genotyping module

(Illumina). After optimization of the cluster file and exclusion of

uninterpretable SNPs, we retained 34,003 SNPs polymorphic between

NOD and B6 (out of the 143,446 SNPs on the arrays). LOD scores

were calculated and genome regions graphed with a customized script

under R programming language using the “qtl2” package (53). The

analysis was performed using the “backcross” parameter taking as

inputs the genomic map, the physical map (mm10), and the

phenotype table (% of GITRhighPD1+ cells among thymic

CD4+CD8−TCRhighGFP+Thy1.1+ Tregs). The “error probabilities”

parameter was arbitrarily fixed to 0.002. The script and tables are

available at https://github.com/arielgalindoalbarran/Idd5NOD.
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