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Primary graft dysfunction (PGD) is a common complication after lung

transplantation. A plethora of contributing factors are known and assessment

of donor lung function prior to organ retrieval is mandatory for determination of

lung quality. Specialized centers increasingly perform ex vivo lung perfusion

(EVLP) to further assess lung functionality and improve and extend lung

preservation with the aim to increase lung utilization. EVLP can be performed

following different protocols. The impact of the individual EVLP parameters on

PGD development, organ function and postoperative outcome remains to be

fully investigated. The variables relate to the engineering and function of the

respective perfusion devices, such as the type of pump used, functional, like

ventilation modes or physiological (e.g. perfusion solutions). This review reflects

on the individual technical and fluid components relevant to EVLP and their

respective impact on inflammatory response and outcome. We discuss key

components of EVLP protocols and options for further improvement of EVLP

in regard to PGD. This review offers an overview of available options for centers

establishing an EVLP program and for researchers looking for ways to adapt

existing protocols.
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1 Introduction

End-Stage Lung Disease (ESLD) often requires lung transplantation (LuTx) as a last

resort for treatment. Despite the efforts to supply the demand, mortality on the waiting list

remains a challenge (1). A possible countermeasure to this problem is the utilization of

extended criteria donors (ECD). However, ECD lungs pose the risk of higher primary graft
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dysfunction (PGD). Extended criteria donor lungs have

significantly higher early PGD 3 and lower intraoperative

extracorporeal membrane oxygenation weaning rates in

comparison to standard criteria donor lungs. However, survival

and bronchiolitis obliterans syndrome rates do not differ (2, 3). To

evaluate ECD lungs, pioneering centers established ex vivo lung

perfusion (EVLP) as a means to assess organ quality. EVLP is a

complex and multidimensional technology. The various individual

specifications of the hardware, software and perfusate such as the

type of pump, the ventilation modes or the composition of the

perfusion solutions are evolving. While the core functions of EVLP

have been well established, the evolution of this technology has only

just started and a great many aspects remain to be advanced in

order to eventually support stable multi-day long lung preservations

suitable for organ regeneration and repair. Further to the immediate

benefit for organ transplantation, EVLP may also serve as a research

platform for primary or secondary lung cancer as described by

Slama et al. (4) In order to create a meaningful platform for lung

cancer research, EVLP might need to be prolonged to several days

mimicking a physiological setting. First steps in this direction have

been taken by Ali et al., who performed successful 3-day lung

preservation utilizing a a cyclic normothermic ex vivo lung

perfusion strategy. This strategy involved initial 6 hours of cold

static storage at 4°C, followed by cold static storage at 10°C with two

cycles of EVLP in-between (5). In liver perfusion models, extension

of perfusion times allows for testing of new therapies ex vivo and

thereby accelerate their development and eventual clinical use (6).

This may add a valuable translational model system to the current

armamentarium and help reduce animal testing.

At current, experimental, mostly porcine, setups report stable

EVLP for up to 72 hours (5, 7). Clinical implementation of these

prolonged protocols is still lacking. Previously described

interventions for prolongation of stable EVLP include the

optimization of the perfusate by adding nutritional factors and

dextran, positioning maneuvers, negative pressure ventilation,

perfusion pressure/volume or modifying the perfusion temperature

and other (Figure 1) (8–12).
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1.1 Mechanisms of action

Ischemia reperfusion injury (IRI) is a process induced by

retrieval, storage and transplantation. In contrast to other solid

organs, hypoxia is a reduced driving force amongst the mechanisms

leading to injury since the lungs remain ventilated during the

retrieval process and are cold stored in an inflated, but ischemic

state. Hence tissue oxygenation is maintained to a certain extend.

Nevertheless, the interruption of blood flow induces depolarizing

mechanotransductional effects. This sparks production of reactive

oxygen species (ROS) via the activation of NADPH oxidase and NO

synthase eventually resulting in vasodilatation and angiogenesis

(13). ROS can induce hypoxia-inducible factor 1a (HIF-1a) under
normoxic conditions, which further promotes lung edema

formation by inducing vascular endothelial growth factor (VEGF)

(14–16). Mediated through this cascade, prolonged cold ischemia

times leads to activation of necroptosis pathways and inflammatory

cell infiltration (17). Nevertheless, literature is lacking data

regarding anti-VEGF treatment during EVLP to reduce IRI.

Following reperfusion, oxidant production and complement

activation is induced (18, 19). As a result, excess ROS production in

the electron transport chain, as key factors in IRI, is prompted (20–22).

With rising oxygen levels, also increased ROS production is triggered

(18, 23). ROS cause oxidative stress and cell damage, death and

inflammation through damage to nucleic acids, proteins and lipids.

This damage activates apoptosis and necrosis and triggers an immune

response through endogenous damage-associated molecular pattern

molecules (23, 24). At the onset of apoptosis the redistribution of

phosphatidylserine and loss of anticoagulant surface factors leads to

increasing procoagulant tendencies in the endothelial cells (25).

Hypoxia further causes a rise in plasminogen activator inhibitor-1

(PAI-1), which is associated with increased pulmonary fibrin

deposition, intravascular fibrin and 125I-fibrinogen/fibrin. These

mechanisms advance hypoxia-induced thrombosis and form a

procoagulant and blood flow restricting milieu (26, 27).

Apoptosis can be induced via an extrinsic or an intrinsic

pathway through caspase 8, or caspase 9. Extrinsic apoptosis is

mediated through tumor necrosis factor alpha receptors and

intrinsic apoptosis through intracellular mechanisms, such as

oxidants or genotoxic effects (28). For intrinsic apoptosis Bcl-2

family proteins stabilize the outer membrane of mitochondria to

keep cytochrome c in the cristae. Nevertheless, Bcl-2 proteins

include proapoptotic proteins like Bax and Bac too. Bax and Bac

lead to increased permeabilization of the outer membrane of

the mitochondria. This starts a destabilizing cascade on the inner

membrane of the mitochondria leading to a release of cytochrome c.

If a specific threshold of cytochrome c is released, through damage

to a large amount of mitochondria, apoptosis follows (29, 30). After

binding to apoptotic protease-activating factor 1 apoptosomes are

formed, activating procaspase 9 (31, 32). At the end of both

induction pathways the executioner caspases 3 and 7 are activated

(28). An overview of the extrinsic and intrinsic apoptosis pathway is

shown in Figure 2.

During hypoxia adenosine triphosphate (ATP) decreases and leads

to accumulation of hypoxanthine (33). Fisher et al. report of a

threshold of 7 mmHg or lower partial pressure of oxygen in the
FIGURE 1

Overview of EVLP and PGD connections. EVLP, ex vivo lung
perfusion, PGD, primary graft dysfunction.
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alveoli for this decrease in ATP to take place (34). Independently from

ischemia, xanthine dehydrogenase is distributed in many tissues such

as the lungs and liver. During ischemia xanthine dehydrogenase is

increasingly converted to xanthine oxidase. When the partial pressure

of oxygen rises again after reperfusion/reventilation, xanthine oxidase

oxidizes the accumulated hypoxanthine and results in a burst of

superoxide and hydrogen peroxide (35–37). Accompanying hypoxia

seems to increase the activity of xanthine oxidase, while hyperoxia

inversely influences activity levels (38). A rat model by Maia et al.

proposes that xanthine dehydrogenase might be an even more efficient
Frontiers in Immunology 03
producer of superoxide when (hypo-)xanthine oxidation is induced

(39). Additionally, interferon gamma, upregulated via interleukin-12

and interleukin 18, induces xanthine dehydrogenase and oxidase

activity (40, 41).

A schematic outline of IRI is shown in Figure 3. PGD occurs as a

result of IRI and negatively impacts the outcome. Even if PGD is

treated successfully, patients are at a higher risk for developing

Bronchiolitis obliterans syndrome (BOS) and face worse long-term

lung function (42). Further factors influencing the development of

IRI are described in the sections below.
FIGURE 3

Visualization of ischemia reperfusion injury. NK-Cell, Natural Killer Cell.
FIGURE 2

Visualization of the extrinsic and intrinsic apoptosis pathway. APAF1, apoptotic peptidase activating factor 1; BAK, BCL2 antagonist/killer 1; BAX, BCL2
associated X; BCL-2, BCL2 apoptosis regulator; BCL-XL, B-cell lymphoma-extra large (encoded by the BCL2 like 1 gene); BH3, BCL2 homology
region 3; BID, BH3 interacting domain death antagonist; FADD, Fas associated via death domain; FAS receptor, Fas cell surface death receptor; MCL
1, MCL1 apoptosis regulator; ROS, reactive oxygen species; SMAC, second mitochondria-derived activator of caspase; tBID, truncated BID; XIAP,
X-linked inhibitor of apoptosis.
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2 EVLP methodology and optimization

Since its first clinical use in 2000 in Lund (Sweden), various

commercially available EVLP systems have been developed (43).

Most of the systems apply similar basic principles (Figure 4) and

protocols described as the Lund, Toronto or the Organ Care System

(OCS™) protocol. Currently commercially available systems

include, but are not limited to, the OCS (Transmedics, Andover,

MA, USA), XVIVO Perfusion System (XPS™,XVIVO Perfusion

AB, Göteborg, Sweden) and TorEx Lung Perfusion System

(Traferox,Technologies Inc., Mississauga, Canada).

Systems vary in their ventilation and perfusion setting options

and their respective recommended protocols. The XVIVO XPS and

TorEx both use the Toronto protocol while for the OCS a separate

protocol is recommended. The OCS system operates with an open

circuit, meaning that no atrial cuff is used, and uses a pulsatile pump

in comparison to a continuous one. An advantage of the XVIVO

XPS represents its organ chamber design, which allows for easy

radiographic imaging. Publicly available information for the TorEx

Lung Perfusion System is scarce except that it is based on the
Frontiers in Immunology 04
Toronto protocol and is considered a plug-and-play system, which

simplifies the setup.

These protocols vary in perfusate, perfusion parameters and

ventilation. An overview can be seen in Table 1.
2.1 Perfusion solution

There are two types of perfusion solutions for EVLP: cellular

and acellular. The Toronto protocol uses an acellular perfusate,

while the Lund and OCS protocol utilize RBCs (47). The Lund and

Toronto protocol both use STEEN Solution™ as a basis (XVIVO

Perfusion, Goteborg, Sweden), while the Lund protocol employs red

blood cell concentrates. The OCS is approved to be used with the

OCS™ Lung Solution (Transmedics, Andover, MA, USA) with

added red blood cell concentrates (44–46). The outcome of the

respective studies comparing different perfusion solutions remains

inconclusive (48–50).

Perfusion solutions may have a significant impact on ROS

production making them a viable point for optimization. A

promising option is to reduce cell-damage by introducing iron

chelators with the perfusion solution, such as Custodiol-N or

Custodiol-MP (Dr. F. Köhler Chemie, Bensheim, Germany). This

has proven to significantly reduce ROS production and improve

functional parameters (18, 51, 52). Ferroptosis leads to iron-

dependent programmed cell death through lipid peroxidation

(Figure 5). In ferroptosis the outer membrane of the mitochondria

fragments while the cristae disappear. The pathway starts with iron

entering the cell through transferrin receptors. After disintegration

from endosomes iron is stored in the labile iron pool. An overload of

the labile iron pool together with hydrogen peroxide leads to ROS

production through the Fenton reaction. ROS is responsible for lipid

peroxidation, because of reacting with polyunsaturated fatty acids of

lipid membranes, which ultimately leads to ferroptosis (53, 54). An

inhibitory pathway of ferroptosis is initiated with cystine entering

the cell through cystine/glutamate reverse transporters. Afterwards it

is reduced to cysteine. Glutamate-cysteine ligase and glutathione

synthetase synthesize glutathione with the use of cysteine, glutamic

acid and glycine. Glutathione then acts as a cofactor for glutathione

peroxidase 4, which reduces lipid peroxidation and suppresses

ferroptosis (54–56). These ferroptosis pathways can be targeted

with iron chelators (e.g. deferoxamine) through a reduction of the

iron load (53).

RBC-based perfusates offer the advantage of assessing and

perfusing the lungs under more physiological conditions. The

addition of erythrocytes to the perfusate leads to better oxygen

binding capacity and a more precise evaluation of the oxygenation

capability. Acellular perfusion might lead to a flawed assessment of

oxygenation capability using blood gas analysis as shunting during

ex vivo perfusion might have reduced effects on the measured

partial pressure of oxygen as a result of linear curve of oxygen

content and partial pressure of oxygen (in comparison to the

sigmoidal relationship for perfusates with hemoglobin) (57–59).

This is of utmost importance, since blood gas analysis is a key

determining factor during EVLP for predicting the outcome.

Conversely, RBC based perfusates hold the risk of hemolysis
FIGURE 4

Basic EVLP setup.
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during EVLP. Because of the mechanical stress towards RBCs

through pumping of the perfusate, red blood cells may rupture

and become dysfunctional or irreversibly stiffened. Thus the

increased physical resistance may lead to consecutive mechanical

lung injury (44, 60–62).

Further to functional aspects, RBC-based perfusion requires

more personnel because of subsequently rising demand for blood

concentrates. This also further aggravates costs related to EVLP and

might deter from using EVLP with a RBC-based perfusate.

Additionally, blood concentrates might be scarce or not available

at all leading to a possible ethical dilemma for research protocols

using cellular perfusates. For clinical settings alternative perfusion

solutions should be in place to avoid unsuccessful EVLP due to

constrained blood concentrate availability.

Recent data by Olbertz et al. suggest that using Custodiol-N

with added glucose monohydrate, dextran 40 and albumin helps

stabilizing lung function through a higher oxygen capacity and

lower wet-to-dry ratio in comparison to STEEN Solution™.

Moreover, Olbertz et al. report a lower peak airway pressures

when using the above-mentioned perfusate (51). The same group

also showed a significantly better oxygenation capacity, lower

lactate dehydrogenase activity and lower lactate concentrations

when using Custodiol-MP in a porcine EVLP model (52) (Table 2).

Huang et al. proposed a newly designed perfusate based on

Dulbecco’s Modified Eagle Medium, containing essential and non-

essential amino acids and specific vitamins, in combination with

5 g/L dextran 40 and 7% albumin. This perfusate (“D05D7A”)

showed improved cell confluence, reduced apoptosis and better

migration in a cell culture based study when compared to Steen

Solution. D05D7A also lead to higher glutathione production,

which is a key factor in inhibition of ferroptosis. Interestingly, the

low apoptosis rate in the D05D7A group could be sustained for
Frontiers in Immunology 05
continuous 48h, which provides a possibility for further stabilizing

prolonged EVLP protocols (64). A trial of this solution, outside of

culture based protocols, is still missing.

The use of cytokine adsorption filters during EVLP might

further mitigate pro-inflammatory effects of cytokines. Various

studies have shown the positive effects of cytokine filtration on

pulmonary edema development, microscopic lung injury,

inflammatory response, peak airway pressure and decreased pro-

inflammatory cytokines (65–68). Boffini et al. even report of

reduced in-hospital mortality and 1-year death rate in a cytokine

adsorption cohort when retrospectively comparing their EVLP

patients. Yet it has to be noted, that the cohort without cytokine

adsorption was in the beginning of their EVLP program and

required cardiopulmonary bypass during transplantation more

often (68).

In conclusion, the optimal perfusate remains unclear.

Considering above-mentioned aspects, the use of acellular

perfusates in prolonged EVLP might be advantageous. This might

avoid detrimental effects of hemolysis and mechanical lung injury,

which cumulate over time during EVLP. For shorter perfusion

times and routine clinical use, RBC based perfusates may offer an

advantage for evaluation of the donor lungs.
2.2 Perfusion characteristics

EVLP protocols differ with respect to flow rate and flow pattern.

Favorable results have been shown for certain settings. Flow rates

in clinical EVLP protocols range from fixed values (2 - 2.5 l/min) to

40 - 100% of cardiac output (47). Perfusion volume per minute is

highest in the Lund protocol with a flow of 100% of cardiac output.

The Toronto protocol applies 40% of cardiac output. Both protocols
FIGURE 5

Ferroptosis Signaling Pathway. Cys, cysteine; DMT1, divalent metal transporter 1; FE, iron; GCL, glutamate-cysteine ligase; Gln, glutamine; GLS,
glutaminase; Glu, glutamate; Gly, glycine; GPX4, glutathione peroxidase 4; GSH, glutathione; GSS, glutathione synthetase; PUFA, polyunsaturated
fatty acid; SLC1A5, solute carrier family 1 member 5; STEAP3, six-transmembrane epithelial antigen of prostate.
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initiate EVLP with lower than targeted flow rates and gradually

increase flow while temperature increases to 37°C (12, 69, 70). The
Frontiers in Immunology 06
OCS protocol predetermines the flow rate at 2 and 2.5 l/min and

also gradually increases flow from start of EVLP until reaching the

target temperature of 37°C (70–72).

Beller et al. suggest a low flow protocol with only 20% of

predicted cardiac output. They have shown significantly higher

pulmonary pO2, compliance, reduced lung wet-to-dry ratio and

lower IL-1b (73). These low flow protocols were already successfully

used in a rat and in a porcine model (73, 74). The improved results

may be attributed to the reduced vascular stress and subsequent

inflammation and fluid permeability (47, 73, 74).

The pulmonary arterial pressure (PAP) should not exceed 20

mmHg perfusion pressure in both the Lund and OCS protocol, and

15 mmHg PAP in the Toronto protocol (11, 44, 47, 69, 75, 76).

Upper limits for perfusion pressure are important for clinical

evaluation of donor lungs since a higher PAP corresponds with

impaired lung function and possible edema formation. Various

study groups examined flow mechanics on EVLP and confirmed

this finding (73, 77, 78).

Management of the left atrium further influences the vascular

behavior and flow dynamics. The Lund and OCS protocol both use

an open system, while the Toronto protocol attaches a cuff to the left

atrium. With this cuff, the left atrial pressure is kept at about 3-5

mm Hg. Linacre et al. show that an open circuit in EVLP results

in a lower success rate in prolonged EVLP because of worse

oxygenation, decreased lung compliance, increased vascular

resistance and peak inspiratory pressure. Consistent with these

findings, the wet-to-dry ratio and lung edema score was worse in

the open group. Linacre et al. hypothesize that this difference might

be due to the missing venous afterload pressure with a subsequent

change in lung perfusion zones and “a cyclical open-close

phenomenon at the capillary level with ventilation exacerbated at

low after-load pressures and leading to endothelial cell injury,

vascular dysfunction, alteration of permeability and edema

formation” (78). This may amplify the proinflammatory and

procoagulant hypoxia-induced changes through translocation of

phosphatidylserine, stimulating activated platelet adhesion (27).

Phosphatidylserine offers a possibility for targeted therapy.

Diannexin is a homodimer of Annexin V, which binds to

phosphatidylserine and inhibits prothrombinase complexes and

secretory phospholipase A2. Consequently, hydrolyzation of cells’
TABLE 1 Overview of clinically used EVLP protocols (44–46).

Lund Toronto OCS ™

Perfusion Solution STEEN Solution
™ with added

red
cell concentrates

STEEN

Solution ™
OCS ™ Lung

Solution with
added red

cell concentrates

Perfusion Flow 100% of
cardiac output

40% of
cardiac
output

2-2.5 l/min

Pulmonary Arterial
Pressure (mmHg)

≤20 ≤15 ≤20

Center Atrial
Pressure (mmHg)

O (no atrial cuff) 3-5 0 (no atrial cuff)

Mode of
Perfusion Flow

Continuous Continuous Pulsatile

Mode
of Ventilation

Volume
Controlled

Volume
Controlled

Volume Controlled

Tidal Volume
(ml/kg)

6-8 7 6

Peak End-
Expiratory
Pressure (cmH2O)

5 5 5

Fraction of Inspired
O2 (%)

50 21 21

Ventilation
Frequency (bpm)

10-15 7 10

Temperature at
Start of Ventilation
(°C)

32 32 32

Inflow Temperature
of Perfusate at Start
of Perfusion (°C)

15 25 32

Temperature at
Start of Assessment
(°C)

37 37 37
Adapted from Andreasson et al. (47).
FIGURE 6

Visualization of atelectrauma through repeated recruitment and derecruitement of functional lung airway units.
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phospholipids is inhibited and reduces coagulation (79). Data from

a murine transplant study showed lower wet-to-dry ratio, higher

partial pressure of oxygen, lower alveolar fibrin deposition score

and reduced caspase-cleaved cytokeratin 18, which acts as a marker

for apoptosis (27). Clinical data of its usage as a prophylactic IRI

therapy in EVLP is still lacking.

Furthermore, flow characteristics can be divided in continuous

and pulsatile flow. Most EVLP devices use continuous flow, while

the OCS Lung (Transmedics, Andover, MA, USA) applies pulsatile

flow generated by a piston pump (47, 80). Even though effects of

pulsatile flow on functional outcome parameters such as

inflammation or pulmonary edema are still unclear, it might

provide a more physiological setting for evaluation (80, 81).
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2.3 Ventilation

During EVLP, donor lungs are mechanically ventilated to assess

and preserve their function. Ventilator settings during EVLP are similar

to conventional ventilation. However, mechanical ventilation (MVe)

with positive pressure bares the risk of ventilator induced lung injury

(VILI). VILI may be induced in the donor and prior to organ retrieval

and and/or during EVLP MVe. The driving pressure during EVLP

MVe is a result of various factors, which are dependent on the lungs

and surrounding tissue, but also influenced by ventilator settings,

including: flow at the tracheal opening, lung resistance (LE), lung

elastance, and lung volume, which is relative to the functional residual

capacity (82, 83). The most important and modifiable parameter is LE.
TABLE 2 Composition of modified Custodiol-N, Custodiol-MP base perfusion solution, Custodiol-MP final perfusion solution and Steen Solution™.

Modified Custodiol-N
(mmol/L)

Steen Solution™
(mmol/L)

Custodiol-MP
Base Solution

Custodiol-MP
Final Solution*

Sodium 16 86 18.8 ~47

Potassium 10 4.6 8.4 5.8

Magnesium 8 0.8 11.5 8.0

Calcium 0.02 1.5 0.06 0.04

Chloride 30 26.2 ~<45

L-Histidine 124 110.0 76.5

N-a-Acetyl-
L-Histidine

57 77.4 53.8

Tryptophan 2 2.6 1.8

a-Ketoglutarate 2 1.6 1.1

Aspartate 5 4.2 2.9

Arginine 3 4.5 3.1

Alanine 5 8.4 5.8

Glycine 10 14.6 10.2

Sucrose 33 41.8 29.1

Deferoxamine 0.025 0.025

LK-614 0.0075 0.0075

Pyruvate 4.2 2.9

Caprylate 4.4

N-
Acetyltryptophan

4.4

Dextran 40 (g/l) 50 5

Albumin (g/l) 7 70 54.5

Glucose - 11 8.8

Phosphate - 1.2 0.6 0.4

pH 7.0 7.4 adjusted 7.0 7.0

Osmolarity
(mosm/l)

306 335 <312
Values in mmol/L.
*including lyophilisate, 35 ml 5% glucose solution, 300 ml human albumin 20% (CLS Behring GmbH, Marburg, Germany).
Data taken from Olbertz et al., Kniepeiss et al. and Kalka et al. (51, 52, 63).
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Volutrauma and atelectrauma are the twomain stressors triggering

LE and progression of VILI. Barotrauma does not seem to be relevant

for the development of VILI. Data generated by Dreyfuss et al. suggest

that the increased inflation volume through high pressures is

responsible for tissue damage. Rat lungs ventilated with high tidal

volume ventilation showed significantly increased edema development

while high pressure ventilation did not (84). In-situ, damage through

high driving pressure may be reduced as the thoracic cavity provides

some natural resistance against massive distension of the lungs. With

EVLP, this natural resistance is completely lost. Therefore, optimal

settings of EVLP MVe need to focus on tidal volume and associated

driving pressure.

Atelectrauma is the result of multiple opening and closing

events of lung airway units, which are caused by recruitment of

these units during inspiration and derecruitement during

expiration. Emerging shear forces injure the epithelium and lead

to epithelial necrosis, as is depicted in Figure 6.

To mitigate the risk of atelectrauma optimal positive end-

expiratory pressure (PEEP) settings are warranted in order to reduce

the number of recruitment cycles and keep lung units open (83, 85, 86).

Therefore, all three clinical EVLP protocols utilize a volume-controlled

ventilation mode with settings between 6 and 8 ml/kg donor weight.

PEEP is kept at 5cmH2O in all protocols (47). With these settings, the

dynamics of the driving pressure to achieve target volumes have merit

as functional parameters for lung assessment.

Recent data suggest, that flow-controlled ventilation (FCV) may

further reduce VILI. In flow-controlled ventilation, the expiration is

linear, the inspiration/expiration-ratio equal and independent of

recoil forces of the lung. Through this ventilation, the amount of

dissipated energy during ventilation cycles is minimized and lung

tissue damage prevented (87, 88). Moreover, FCV improves

oxygenation and carbon dioxide elimination during MVe (89).

Goebel et al. reported increased lung compliance, lower PEEP and

lower wet-to-dry ratios in a porcine model (88). These results are

reproducible in EVLP. Ordies et al. show that in a porcine EVLP

model, FCV provides significantly better oxygenation and improved

lung compliance in a larger area of ventilated lung tissue. Despite

these superior functional results, total lung injury did not differ in

comparison to volume controlled ventilation (90).

Another promising method is negative pressure ventilation (NPV)

in which inspiration is modelled by placing the donor lungs in an air-

tight chamber and applying negative pressure. This method does not

rely on the force of positive pressure ventilation and might therefore

reduce the risks of physical damage to the lung. Supporting evidence

for this concept was generated in an EVLP model. Better compliance,

reduced pulmonary vascular resistance and reduced weight gain during

EVLP were found, while oxygenation remained unchanged (91). NPV

is associated with reduced secretion of proinflammatory cytokines,

such as tumor necrosis factor alpha, interleukin-6, and interleukin-8.

Noteworthy, Aboelnazar et al. reported weight reduction and lower

lung injury through NPV (92). Buchko et al. tested NPV in a clinical

trial with 12 LuTx patients. They have established feasibility and

demonstrated good outcomes with a PGD grade 0 rate at 72 hours

of 83% (grade 1: 0%, grade 2: 17%, grade 3: 0%) (93).

The fraction of oxygen (FiO2) is set at 21% for the Toronto and

OCS protocol and at 50% for the Lund protocol (47, 70). Various
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randomized trials are examining higher vs. lower FiO2 in ventilated

patients on intensive care units displaying a trend towards an

increase in mortality and serious adverse event, but the effects of

higher FiO2 in EVLP remain unknown (94). To our knowledge, no

studies addressing the influence of FiO2 in EVLP are available. In

theory, higher FiO2 may lead to hyperoxemia and hyperoxia, which

results in increased ROS (hydroxyl radicals and superoxide ions)

production. This effect is evident in EVLP, since IRI is induced –

albeit in a different form. Furthermore, higher FiO2 causes an

alveolar nitrogen washout, which is subsequently responsible for

atelectasis through the dislocation of oxygen from the alveoli to

capillaries (23). Further studies are needed to assess the relevance of

different FiO2 strategies in EVLP.

Respiratory rate is set at seven breaths per minute (bpm) in the

Toronto protocol, 10 bpm in the OCS protocol and 10-15 bpm in

the Lund protocol (47, 70). The standard MVe respiratory rate

is 12-16 bpm and dynamically adjusted accordingly to achieve

eucapnia. The respiratory rate may be increased to avoid

hypercapnia or to compensate acidosis. Each increase of the

respiratory rate, however, poses the risk of dynamic hyperinflation

and volutrauma in donor lungs (95, 96). Specific data regarding

the respiratory rate during EVLP are not available, but an

extrapolation from in-vivo data may help. In an analysis of

102.632 cases, Santer et al. report that an increased respiratory rate

(median 8 vs. 15 bpm) was associated with a significantly higher rate

of postoperative respiratory complications and postoperative

healthcare utilization (97). All three protocols use respiratory

settings in or below the physiological range, but a direct

comparison has not been performed. An overview of the influence

of different ventilation modification on the lung during EVLP is

visualized in Figure 7.
2.4 Lung positioning

As primary graft dysfunction (PGD) is associated with elevated

levels of interstitial fluid retention, gravitational forces should be

considered. Conceptually, lungs could be treated as healthy lungs or

rather as borderline intensive care unit patients. The typical EVLP

setup places the donor lungs in a supine position. For treatment of

acute respiratory distress syndrome (ARDS) and acute lung injury,

prone positioning has shown to reduce mortality and positively

impact oxygenation. Complete avoidance of edema formation during

EVLP or ARDS seems difficult, but optimal management may help to

reduce its negative impact. When edema is forming, the pressure of the

superimposed lung parenchyma leads to a collapse of the surrounding

parenchyma and impact organ function. Placing the lungs in a prone

position helps to recover the dorsal regions through changing

the direction of gravitational forces and respective hydrostatic

pressure (98, 99). Ordies et al. demonstrated, that prone EVLP leads

to a more homogenous distribution of pulmonary edema (100). The

dorsal regions possess a higher volume of lung parenchyma, whichmay

explain this observation.

Findings in EVLP confirmed this effect. Prone position EVLP

improves partial pressure of oxygen/fraction of inspired oxygen ratio

(P/F) and compliance. Interestingly, prone position reduces the
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amount of inflammatory cytokine expression (interleukin-1b,
interleukin-8, tissue tumor necrosis factor alpha) in the lower lobes,

while the interleukin-10, which has an anti-inflammatory effect

through inhibition of macrophages or tissue tumor necrosis factor

alpha among others, did not change significantly (100–102). A cytokine

profile triggering increased granulocyte recruitment as a result of pro-

inflammatory cytokines and reduced inhibition through interleukin-

10, might be an important factor for PGD development. Neutrophils

are capable of releasing ROS and neutrophil extracellular traps (NET).

Through increased ROS production, NETosis increases and leads to

further aggravation of inflammation and edema (103–105). The impact

on lung injury and associated PGD was confirmed in a murine PGD

model. In this study, NET formation and PGD development could be

reduced with administration of acetylsalicylic acid and disrupted with

direct intrabronchial administration of DNaseI (106).

Studies with human lungs demonstrate the benefit of prone

position during EVLP. Niikawa et al. showed that three out of five

human lungs, which were rejected for clinical use, could have been

suitable for transplant after prone EVLP while zero out of five lungs

placed in the supine position fulfilled the criteria for transplantation

(102). Niikawa et al. also demonstrated the feasibility of prone EVLP in

a case report, in which one of two human prone EVLP lungs, both with

reduced lung edema after EVLP, was successfully transplanted (107).
2.5 Antimicrobial treatment

During EVLP, donor lungs may be susceptible for colonization

of microbial organisms. Contamination during organ retrieval is

not uncommon and colonization during EVLP with massive germ

transmission during transplantation represents a realistic threat.
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Heavy immunosuppression upon transplantation further

aggravates this situation and makes is potentially life threatening.

Aguilar-Guisado et al. reported an incidence of 72 episodes of post-

transplant pneumonia per 100 LuTx. Bacterial infections were the

most common cause (82.7%) (108). Colonization in the donor was

responsible for 7.6% recipient infections (109). Such infections

negatively affect short- and long-term outcome in LuTx patients

(110). Andreasson et al. demonstrated that antimicrobial treatment

with a single-dose of Meropenem (500mg) at the start of EVLP

significantly reduces bacterial load after EVLP. Moreover, the yeast

load increased during EVLP without anti-fungal treatment but

decreased if Amphotericin B (50mg) was administered at the start

of perfusion (110). Data by Nakajima et al. confirmed the

importance of antimicrobial treatment during EVLP and the

therapeutic possibilities. EVLP lungs, which were treated with

Ciprofloxacin or Azithromycin, Vancomycin and Meropenem,

showed significantly reduced bacterial counts in BAL, improved

pulmonary oxygenation better compliance and reduced vascular

resistance (111). These results also provide a cornerstone for EVLP

as a therapeutic platform for reconditioning donor lungs with

infections for transplantation, which would otherwise be rejected.

Because it is not possible to receive bacterial cultures for targeted

anti-microbial therapy in time, treatment mostly remains empirical.

Established treatment regimens show promising results, but further

refinement of the anti-microbial drug therapy is warranted. Prolonged

EVLP requires broad-spectrum anti-microbial treatment to prevent

microbial infections and inflammation.

The lung microbiome is thought to play a role in PGD

development, acute rejection, bronchiolitis obliterans syndrome and

restrictive allograft syndrome (112, 113). Pseudomonas species,

especially Pseudomonas aeruginosa (which is sensitive to
FIGURE 7

Aspects of the influence of ventilation during EVLP on the lungs. EVLP, ex vivo lung perfusion; FCV, flow-controlled ventilation; FiO2, fraction of
inspired oxygen; ICU, intensive care unit; IL-6, interleukin 6; IL-8, interleukin 8; NPV, negative pressure ventilation; PEEP, positive end expiratory
pressure; TNF-a, tumor necrosis factor-a; ROS, reactive oxygen species.
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Meropenem), are related to the development of BOS and inferior

outcome (112, 114). Of note, the addition of Azithromycin to the

perfusion solution improved survival in early stage BOS treatment and

hence should be considered irrespective of its antimicrobial effect. This

protective effect has been related to the effect on neutrophilic airway

inflammation via decreased lipopolysaccharide stimulated release of

Interleukin-8 and granulocyte macrophage colony stimulating factor

(115, 116).

Apart from antibiotics application of high-dose (>160 ppm)

nitric oxide (NO) may be used to treat infections caused by bacteria

and viruses (117, 118). Although low-dose NO is already clinically

used for treatment of ARDS its potential side effects such as

hospital/ventilator-acquired pneumonia, acute kidney injury and

increase in methemoglobin levels impairs prolonged and/or high-

dose NO therapy (118–123). EVLP in combination with an acellular

perfusate can overcome this obstacle and allows for continuous

high-dose NO treatment. Michaelsen et al. showed the feasibility of

high-dose inhaled NO for 12 hours in a porcine EVLP model and

reported no differences in vascular resistance, static and dynamic

compliance, graft oxygenation, peak airway pressure, levels of pro-

inflammatory cytokines or edema formation. Methemoglobin

stayed in a safe range during acellular EVLP (118). Although

regimens with intermittent, in contrast to continuous, high-dose

inhaled NO have been successfully clinically tested, they failed to

achieve the same results as in-vitro studies (117).
3 Summary

EVLP is used for clinical and research purposes. It has become a

routine procedure in specialized centers. EVLP plays an important role

in the assessment of donor lungs and may ameliorate PGD. A plethora

of mechanisms contribute to the effect of EVLP such as reduction of

interstitial fluid retention and improvement of function.

Future studies assessing physiological lung assessment and

determination of the susceptibility for PGD, might consider using

pulsatile perfusion with a cellular perfusate at a flow rate similar to

cardiac output and an NPV of 21% FiO2 as suitable settings. FiO2

should not be set to higher-than-normal in order to avoid a possible

increase in ROS production, which in turn advances IRI (23). The

commercially available perfusion systems and the established protocols

have their distinct features while a head-to-head comparison is lacking.

Current trends aim at prolonging EVLP, minimizing PGD rates,

and reconditioning of donor organs. For these goals to be achieved, a

better understanding of edema formation during EVLP and PGD

development after LuTx is key. An important goal in this context is the

minimization of ROS and pro-inflammatory cytokine production. This

can be achieved by altering the perfusate composition, e.g. through

adding iron chelators, acetylsalicylic acid or DNaseI (18, 51, 52, 106). A

low flow protocol may also contribute to reduce the wet-to-dry ratio

and pro-inflammatory cytokine expression (73, 74). MVe settings

impact PGD development, most likely through volu- and

atelectrauma. FCV improved oxygenation, lung compliance and wet-

to-dry ratio (88–90). NPV reduces secretion of pro-inflammatory

cytokines and PGD rates in clinical studies (92, 93).
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EVLP can be improved by placing the donor lungs in prone

position. Prone positioning reduces pro-inflammatory cytokine

expression, protects against PGD and improves P/F and compliance

(100–106).

Nevertheless , most of these findings lack cl inical

implementation and testing, apart from porcine or murine

models. As a result available protocols remained greatly

unchanged over the last period.

No consensus on the EVLP setup exists and different

indications might call for different settings. Although ex vivo

perfusion of organs is a clinical reality, many questions remain

unanswered. Further prolongation of perfusion times without

diminishing organ quality is the immediate goal.
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