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Dysregulated FGFR3 signaling
alters the immune landscape in
bladder cancer and presents
therapeutic possibilities in an
agent-based model
Daniel R. Bergman1, Yixuan Wang1, Erica Trujillo2,
Anthony A. Fernald2, Lie Li2, Alexander T. Pearson2,
Randy F. Sweis2 and Trachette L. Jackson1*

1Department of Mathematics, University of Michigan, Ann Arbor, MI, United States, 2Department of
Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, United States
Bladder cancer is an increasingly prevalent global disease that continues to cause

morbidity and mortality despite recent advances in treatment. Immune

checkpoint inhibitors (ICI) and fibroblast growth factor receptor (FGFR)-

targeted therapeutics have had modest success in bladder cancer when used

as monotherapy. Emerging data suggests that the combination of these two

therapies could lead to improved clinical outcomes, but the optimal strategy for

combining these agents remains uncertain. Mathematical models, specifically

agent-based models (ABMs), have shown recent successes in uncovering the

multiscale dynamics that shape the trajectory of cancer. They have enabled the

optimization of treatment methods and the identification of novel therapeutic

strategies. To assess the combined effects of anti-PD-1 and anti-FGFR3 small

molecule inhibitors (SMI) on tumor growth and the immune response, we built an

ABM that captures key facets of tumor heterogeneity and CD8+ T cell

phenotypes, their spatial interactions, and their response to therapeutic

pressures. Our model quantifies how tumor antigenicity and FGFR3 activating

mutations impact disease trajectory and response to anti-PD-1 antibodies and

anti-FGFR3 SMI. We find that even a small population of weakly antigenic tumor

cells bearing an FGFR3 mutation can render the tumor resistant to combination

therapy. However, highly antigenic tumors can overcome therapeutic resistance

mediated by FGFR3 mutation. The optimal therapy depends on the strength of

the FGFR3 signaling pathway. Under certain conditions, ICI alone is optimal; in

others, ICI followed by anti-FGFR3 therapy is best. These results indicate the

need to quantify FGFR3 signaling and the fitness advantage conferred on bladder

cancer cells harboring this mutation. This ABM approach may enable rationally

designed treatment plans to improve clinical outcomes.
KEYWORDS

agent-based model, bladder cancer, FGFR3, immune checkpoint inhibition, CD8+
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1 Introduction

Bladder cancer, any tumor that originates in the urinary bladder,

is the tenth most commonly diagnosed cancer worldwide, and its

prevalence is increasing globally (1). While treatment options for

bladder cancer have expanded in recent years, the 5-year survival rate

remains low, highlighting the clinical need for new therapeutic

approaches (2, 3).

In recent decades, there have been significant advancements in

developing innovative therapeutic options that target tumors with

specific molecular perturbations (2). These novel treatment options,

referred to as targeted therapies, have revolutionized the approach

to managing several cancer types (2). Within the complex landscape

of bladder cancer, genomic analysis has revealed that about 80% of

early-stage bladder cancers exhibit frequent alterations in fibroblast

growth factor receptor 3 (FGFR3) that lead to both over-expression

and constitutive activation, even in the absence of its natural ligand

(4, 5). These mutations in FGFR3 lead to both increased

proliferation and survival of bladder cells, making this protein not

only a potent oncogenic driver in bladder cancer but also a

predictive biomarker of response to FGFR3 small molecule

inhibitors (5, 6). Evidence has also linked the presence of FGFR3

mutations to a lack of immune infiltrate, specifically CD8+ T cells

(7), highlighting the need to understand the role of this mutation in

perturbing the immune response.

In addition to small molecular inhibitors targeting FGFR3

mutations, immune checkpoint inhibition (ICI) is another avenue

of therapeutic efficacy. Monoclonal antibodies targeting immune

checkpoint pathways have yielded favorable outcomes for some

patients with bladder cancer (8). Nevertheless, the objective

response rate to these treatments alone remains disappointingly

low, and FGFR3 mutations potentially hinder the impact of ICI

immunotherapy (9).

Given the modest efficacy of targeted small molecule inhibitors

and monoclonal antibodies when administered as monotherapies,

synergistically combining potent immune checkpoint and specific

FGFR3 inhibitors may improve therapeutic response rates.

Emerging clinical data indicate combinations are feasible and

suggest improved efficacy (10, 11). However, determining the

optimal and most effective dosing strategies while minimizing

toxicities remains elusive, underscoring the need for further

exploration and innovation.

Mathematical modeling is a tool that has been successfully

deployed to enhance our understanding of biological systems,

including how to combine multiple therapeutics to improve efficacy.

Ordinary differential equation (ODE) modeling has been used to

predict patient responses to intermittent androgen deprivation in

prostate cancer (12) and has demonstrated promising results in

informing a pilot clinical study treating patients with metastatic

castration-resistant prostate cancer (13). Similar work has been

undertaken with PARP inhibitors for the treatment of ovarian cancer

(14). In bladder cancer, ODE models have been used to understand

immunotherapy response (15–17). We previously analyzed a model of

FGFR3mutation in bladder cancer, considering the therapeutic efficacy

of combination ICI and a small molecule inhibitor (SMI) of

FGFR3 (18).
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Such ODE models have been most commonly used due to their

high level of abstraction resulting in computationally tractable,

often reductionist systems that can be calibrated to time course

data and be used to predict with high accuracy scalar metrics such

as tumor volume. The limitation of these models is their lack of

spatial context and intra-compartment cellular heterogeneity.

Partial differential equation (PDE) modeling, accounting for the

spatial context and thereby cell-cell interactions, has been used to

study cancer immunotherapies (19). Agent-based models (ABMs),

moreover, provide a modular, mechanistic framework to

incorporate these features and further interrogate the dynamic

processes that determine tumor evolution and response to

therapy (20–24). In particular, they include cell-cell interactions,

hybrid modeling of diffusive molecules, and therapeutic

interventions (25, 26). Additionally, some models include other

aspects important to cancer biology such as evolution and the

extracellular matrix (27, 28). Even while techniques are being

developed to calibrate these computationally expensive, stochastic

models to real-world data (29–31), ABMs are situated to integrate

domain expertise and bioinformatics analyses in a unified

framework that can both generate and test hypotheses to advance

basic and translational science (32).

In this paper, we develop a 3D multiscale, ABM of the tumor

immune landscape to predict, understand, and suggest ways to

improve ICI and small molecule inhibitor therapies that target the

frequently mutated FGFR3 receptor in bladder cancer. The ICI we

consider here is anti-PD-1 monoclonal antibodies that block

signaling in the PD-1/PD-L1 axis. We also use the model to gain

a robust understanding of how FGFR3 mutations affect the immune

system and ultimately impact the efficacy of combining these two

therapies. We simultaneously explore the impact of heterogeneity in

antigen expression by tumor cells, resulting in differential activation

of T cell-mediated killing pathways. As higher antigen levels have

been correlated with more perforin/granzyme activity in CD8+ T

cells (33), we assume that cytotoxic T lymphocytes (CTLs) employ

perforin/granzyme to eliminate high antigen tumor cells but resort

to Fas ligand (FasL) for the elimination of low antigen tumor cells.

We first show how the response to ICI monotherapy depends on the

tumor composition–both antigenicity and FGFR3 mutation status–

and the resulting immune infiltrate. We then look at how FGFR3-

targeted therapy can improve upon ICI therapy and work

synergistically to improve outcomes in certain contexts. Finally,

we identify how the strength of the constitutively active FGFR3

pathway can alter these results in a clinically relevant manner.
2 Methods

We employ a 3D, on-lattice ABM that includes heterogeneous

tumor cells and CTLs as agents. Throughout, we use “immune

cells”, “CTLs”, and “CD8+ T cells” interchangeably. Tumor cells

have three dimensions along which they can differ from one

another: antigenicity, FGFR3 mutation, and FGFR3 dimer

concentration. Parent tumor cells pass all three characteristics

onto their daughter cells. Tumor antigenicity and FGFR3

mutation are binaries divided into low vs. high and wild type vs.
frontiersin.org
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mutant, respectively. FGFR3 dimer concentration is a continuous

state variable governed by kinetic equations (Section S1.6. Tumor

cells secrete immune stimulatory factor (ISF) into the local

neighborhood of the tumor microenvironment (TME) depending

on their antigenicity with high antigen (HA) tumor cells

contributing more than low antigen (LA) tumor cells. Tumor

cells possessing the FGFR3 mutation will be able to undergo

ligand-independent dimerization of their FGFR3 monomers,

leading to changes in their proliferation and apoptosis rates. In

addition, this FGFR3 signaling limits the CTL infiltration rate into

the TME (Section 2.3) Moreover, our hybrid, continuous-discrete

ABM includes two diffusible therapeutic agents: an anti-FGFR3

small molecule inhibitor and an anti-PD-1 monoclonal antibody.

Each agent has its own pharmacokinetic (PK) model. Further

details of these PK models and the effects of these agents can be

found in Section S1.6) and Section S1.8), respectively.

Figure 1 is a schematic diagram of the algorithm for simulating

the ABM. The TME is initialized with 100 tumor cells near the

center of the TME. No immune cells are present initially. The

simulation is discretized into uniform time steps. For each iteration

of the modeling loop, FGFR3 state variables are updated first,

followed by tumor events. Each tumor cell can either attempt to

proliferate or undergo apoptosis. Next, PD-1/PD-L1 state variables

are updated, followed by immune events. Each immune cell can
Frontiers in Immunology 03
perform one of six actions: proliferation, death, migration,

conjugation with a tumor cell, deactivation, and activation-

induced cell death (AICD). After immune events are completed,

apoptotic tumor cells are removed from the ABM. If it is time to

administer the next round of therapy, it is added into the central

compartment of the corresponding PK model. Otherwise, the

model goes into the next iteration. Below is a selection of details

about the how tumor and immune cell events are decided for each

cell, and how FGFR3 and PD-1/PD-L1 related concentrations are

calculated at each update. Full models details can be found in the

Supplement. Model parameters are chosen from literature when

available. Otherwise, they are estimated to be biologically

reasonable values. See the Supplement for model parameters.

Because of the stochasticity of the model, we run ten simulations

per parameter set to understand the behavior and outcomes of the

ABM more comprehensively.
2.1 Tumor cell events

During each tumor time step Dt = 15min, for each tumor cell, a

random tumor event is chosen based on the probabilities of

proliferation and apoptosis. The probability of each event

occurring during this time step follows an exponential
FIGURE 1

A flowchart describing the simulation algorithm.
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distribution with a given rate of event. Tumor cells proliferate at a

cell-dependent rate, which is the sum of a base rate aT and an

FGFR3-induced rate increase. This increase is directly proportional to

the active FGFR3 dimer fractional occupancy fD, defined as the ratio

of the concentration of active dimers on this tumor cell to the average

concentration of total FGFR3 on tumor cells harboring the FGFR3

mutation. Proliferation of tumor cells is density-dependent, i.e. when

the number of neighbors exceed a certain threshold, the tumor cell

cannot proliferate. Moreover, tumor cells undergo apoptosis at a base

rate dT. FGFR3 signaling decreases the rate of apoptosis and this

decrease is dependent on fD of each tumor cell.

Tumor cells with low antigenicity have a fitness advantage

compared to HA tumor cells in that LA tumor cells produce less

ISF and are eliminated by CTLs at a slower rate. See Section 2.2 and

Section S1 for further details.
2.2 Immune cell events

A static vasculature model is included to model the influx of

therapeutic agents and immune cells (Section S1.3). Blood vessels

are located on the border of the ABM lattice and lattice sites here are

referred to as “perivascular”. Immune cells are recruited into the

TME after each tumor update based on the size of the tumor at the

start of the iteration. We assume that the rate of immune cells

arriving in the TME is directly proportional to the tumor size. These

new immune cells are placed randomly at empty perivascular lattice

sites, from which they enter the TME.

To account for the faster timescale of immune cell migration,

immune time steps are set to Dtimm = 7.5min. At each time step, an

immune event is randomly chosen from proliferation, apoptosis,

movement, conjugation with a tumor cell, exhaustion and AICD,

based on the probability of each event. The probability is calculated

from the rate of each event in a similar way as tumor events.

Immune cells proliferate at a base rate of aI unless the immune

cell is either currently conjugated with a tumor cell or has already

become exhausted. The proliferation rate is increased based on the

local ISF concentration. As with tumor cells, immune cells must

have sufficient space to proliferate. Immune cells undergo apoptosis

at a base rate of dI at all times. If the CTL is engaged with a tumor

cell when it is undergoing apoptosis, the CTL stops attacking the

tumor cell. Non-exhausted immune cell move in the TME at a

constant rate of movement,m. To allow for persistent movement in

a single direction, and to improve simulation efficiency, immune

cells move nmove steps at a time, with each step moving to a

neighboring lattice site. The direction of movement is chosen

randomly, but movement tends towards the direction with higher

concentrations of ISF, accounting for the distance between lattice

sites in the Moore neighborhood. Detailed calculations of

movement gradient is found in Section S1.5.3. Unengaged, active

immune cells attempt to conjugate with a non-apoptotic,

neighboring tumor cell at a constant rate, b. If the immune cell

successfully engages the tumor cell, then the immune cell is labeled

as engaged and starts to eliminate the tumor cell. We assume that

immune cells employ the perforin/granzyme pathway to clear the
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HA cells, eliminating them in 30min (33). By contrast, immune cells

use the Fas/FasL pathway to clear LA tumor cells, taking 2h to

successfully induce apoptosis in the target cell. This difference in

targeting mechanism follows from observations that in the absence

of antigen, T cells preferentially employ FasL to target tumor

cells (33).

Conjugation ends when either the tumor cell becomes apoptotic

or the immune cell becomes exhausted. All immune cells in the

model are assumed active upon reaching the TME and thus express

PD-1 and are thus subject to PD-1 signaling, which can trigger

exhaustion (34). The rate at which immune cells become exhausted

is affected by the concentration of the PD-1-PD-L1 complex,

following a Hill function. Exhausted immune cells wait to die and

otherwise affect the system only by taking up space. Furthermore,

immune cells can undergo AICD at a constant rate of da when they

go long periods without conjugating with a tumor cell (35, 36).
2.3 FGFR3 effects

To compute the amount of FGFR3 signaling and the effects of an

FGFR3 inhibitor on tumor cells, we employ a global method

developed in (37). Rather than using local concentrations of

receptors, inhibitor, and complexes as state variables in an ordinary

differential equation (ODE) for every tumor cell, we divide the TME

into regions and update state variables averaged within these regions.

To account for intra-region heterogeneity, we further divide each

region into three subregions: non-mutantoccupied, mutant-occupied,

and tumor-free. Section S1.6 contains full details of the system of

ODEs describing FGFR3 dimerization, reactions between monomers,

dimers and the FGFR3 inhibitor, diffusion of the inhibitor, as well

as pharmacokinetics.

As discussed in Section 2.1, FGFR3 signaling alters tumor cell

fate decisions by increasing the proliferation rate and decreasing the

apoptosis rate. We also assume that FGFR3 signaling has

downstream effects on the immune system. In accordance with

observations that harboring an FGFR3 mutation correlates with

lower CD8+ T cell infiltration (7), we assume that FGFR3 signaling

decreases the immune recruitment rate by a factor dependent on the

average fD value across all FGFR3 mutant tumor cells.
2.4 PD-1/PD-L1/aPD-1 effects

To determine the amount of PD-1 signaling on each immune

cell, we make use of another implementation of a global method

(37) similar to that used for FGFR3 inhibitor and a quasi-

equilibrium assumption. We first solve reaction-diffusion

equations for PD-1 inhibitor reacting with PD-1 on immune cells

to obtain the average free PD-1 across all regions in the TME. This

quantity is used as an initial condition for solving the PD-1-PD-L1

reaction to obtain the concentration of PD-1-PD-L1 complex,

which determines the rate of exhaustion of immune cells as

described in Section 2.2. Details of the equations are found in

Section S1.8.
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3 Results

3.1 ICI response depends on
tumor composition

We first analyze the effect of ICI on tumor growth and its

efficacy’s dependence on the initial composition of the tumor. The

initial FGFR3 mutant cell proportions are varied between 0% (wild

type, WT), 50%, and 100% (mutant, Mut). The initial tumor

antigenicity proportions are similarly varied between 100% low

antigen (LA) cells, 100% high antigen (HA) cells, and a 50-50 split.

At initialization, these features are assigned independently so that all

included pairings are equally represented at the start of a simulation.

We first observe that the 100% HAWT tumors (Figure 2A, bottom-

left) regress spontaneously even without treatment, indicating that at

least one of these fitness advantages (loss of antigenicity or gain of

FGFR3 mutation) must be acquired for progression. If only one is

acquired, tumors grew, but ICI alone is successful (Figure 2A, bottom

row and left column). Importantly, this indicates that HA tumors

retain sensitivity to ICI despite an FGFR3mutation.We also note that

in the LAWT case, ICI does eventually result in elimination, but only

after the tumor nearly reaches carrying capacity. Finally, the

remaining four panels represent tumors with a subpopulation of

LA Mut cells, and none of these respond to ICI.

To understand the role of the immune response in effecting

these outcomes, we looked at the CTL infiltrate throughout the

TME at a time point prior to any of the observed peaks in tumor

burden. We measure CTL infiltrate here as the percentage of all cells

in the TME that are CTLs. In other words, before the tumor began

to shrink. Thus, we selected Day 20 for the control arm and Day 12

for the ICI arm. In the control arm, only HA WT tumors regressed

and contained more than 12% CTLs on Day 20 (Figure 2B, top
Frontiers in Immunology 05
row). The dashed line indicates the 12% mark. In the ICI arm,

however, the total CTL infiltrate was not an effective predictor of

tumor response as no threshold could be drawn to divide

responders and non-responders agnostic to initial tumor

composition (Figure 2B, bottom row). Response under ICI was

more driven by antigen burden and absence of FGFR3 activation.

We next quantified the change in tumor composition under

control and ICI. In both of these arms, the more fit cells (LA and

Mut) gradually take over the tumor (Figures 2C, D). Under ICI, this

shift accelerates so that the fitter, more immune-evasive cells

compose more of the tumor at endpoint (Figure 2D). That is, the

failure of ICI produces a tumor population with faster growth

dynamics and more resistant to immune clearance.
3.2 Infiltration of immune cells depends on
tumor composition

To further understand the role of tumor composition on the

efficacy of the immune response, we measured the spatial

colocalization of CTLs within the tumor. Analogous to tissue

sections, we first considered the density of CTLs within the

middle z-slice of the tumor (Supplementary Figure 1). We found

that significant shifts in the CTL density occurred between the WT

and the mixed mutant tumors (Figure 3A). Specifically, within a

given antigenic status (columns of A), the comparison between blue

(WT) and red (mixed mutant) always produces a significant

difference in CTL density in both the control and ICI arms. Note

we only show comparisons of single-step changes in the

composition and within therapy arms. More specifically, we only

show significant differences between neighboring colors of the same

column or neighboring columns of the same color. We observe that
A B

DC

FIGURE 2

Response to ICI depends on tumor composition. (A) Mean tumor size (solid lines) and ±1 standard deviation across each simulated initial tumor
composition and under control (black) and ICI (blue). (B) Box plots of CTL infiltrate as percentage of all cells at Day 20 (control, top row) or Day 12
(ICI, bottom row). Green (pink) panels indicate the condition does (not) result in tumor elimination. Dashed line in top row indicates a threshold
separating these two outcomes. (C, D) Time series of tumor composition under control (C) and ICI (D). In (D), some are cutoff due to the tumor
being completely eliminated across all replicates.
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this mutation-dependent pattern persists over time (Figure 3B) by

computing the active CTL density in this convex hull throughout

the simulation and grouping by therapy (rows) and antigen status

(columns). The active CTL density in the absence of mutant tumor

cells is consistently higher than that in the presence of mutant

tumor cells, with the exception of the time period of tumor

elimination observed in the rightmost column of Figure 3B.

To see if the immune activity was uniform throughout the

tumor mass, we looked at the density of active and exhausted CTLs

as a distance from the tumor center. By computing the probability

density function (PDF) normalized by the volume of the spherical

shell of each bin, we can identify the radii at which these immune

cell phenotypes are enriched (Figures 3C, D). Note that as these are

PDFs, their integral is 1, meaning these curves do not contain

information about the total number of cells in each compartment.

This allows a comparison between the relative enrichment on the

same set of axes. The red curves in each panel show the tumor

density, giving a baseline to compare against that is nearly uniform

up to the leading edge of the tumor where this curve rapidly drops

to 0. In the control case, both the active (blue) and exhausted (black)

CTLs peak just inside the leading edge of the tumor and decrease

towards the tumor center in most conditions. Under ICI, these

peaks occur deeper in the tumor and the decrease in density

towards the tumor center is less pronounced. This increased

depth of penetration on ICI occurs despite the measurement

occurring 8 days earlier than the control case, indicating that the

CTLs are benefiting from ICI even far from the vasculature.
Frontiers in Immunology 06
3.3 Anti-FGFR3 targeted therapy synergizes
with ICI

We next introduced a small molecule inhibitor of FGFR3 into the

simulations to characterize potential synergies with ICI. To focus on

the outcome of these simulations and make comparisons to mouse

model experiments, we report the model metrics on Day 25, a typical

endpoint for the mouse model experiments. Indeed, the in silico

growth curves in Figure 2A show similar trends as our previously

published mouse model experiments (18) (Supplementary Figure 2).

Using a Gaussian kernel to smooth the outcomes at Day 25, we see

that anti-FGFR3 monotherapy does decrease Day 25 tumor burden

for tumors with mutants present, as illustrated by the red peaks of the

PDFs lying to the left of the black peaks in the middle and right

column of Figure 4A. Nonetheless, the relative efficacy of anti-FGFR3

monotherapy compared with ICI depends on the antigenicity of the

tumor, as seen by the different relative positions of blue and red peaks

in the middle and right column of Figure 4A. Specifically, targeted

therapy is most effective with LA tumors (top row) and least with HA

tumors (bottom row). Measuring the efficacy of these therapies by

their reduction in tumor cell count compared to control (Figure 4B),

they exhibit synergistic effects, i.e., more than the sum of the

individual effects, in tumors with LA mutants, i.e., the tumors that

did not respond to ICI alone.

We then looked at the composition of the TME at the Day 25

endpoint. We first looked at the relative abundances of tumor

subtypes and observed only modest shifts in composition across
A B

DC

FIGURE 3

CTL infiltration is sensitive to tumor composition and ICI. (A) Density of active CTLs within convex hull of tumor in the middle z-slice on Day 20
(control, top row) and Day 12 (ICI, bottom row). Significant differences at the 0.05 (*), 0.01 (**), and 0.001 (***) levels are shown for “neighboring”
initial conditions. “Neighboring” meaning one change in either the initial antigenicity or the initial mutant proportion. (B) Time series of active CTL
density in convex hull in control (top row) and ICI (bottom row). Mean (solid line) ±1 standard deviation (shaded area) shown. C-D. PDF density of
tumor (red), active CTL (blue), and exhausted CTL (black) compartments at Day 20 (C, control) and Day 12 (D, ICI). These are computed with respect
to the lattice-based volume of the spherical shell at each radius.
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therapies conditioned on the initial composition (Figure 4C).

Notably, there is a slight increase in the proportion of non-

mutants (LA/blue and HA/yellow) under targeted therapy in the

mixed mutant tumors (middle column). Regarding CTL infiltration

into the tumor, the targeted therapy does increase the CTL

colocalization with tumor cells, but only by a modest amount

(Figure 4D). This helps explain the synergy between these two

therapies: the anti-FGFR3 therapy neutralizes the proliferation and

apoptosis advantages with little change in immune activity, while

ICI increases the immune activity.
3.4 FGFR3 signal strength modulates
optimal therapy

Having identified the synergy between these two drugs, we next

test the sensitivity of this synergy to the FGFR3-mediated fitness

advantages. We focus on the two cases in which we could achieve

upwards of 30% reduction in tumor burden by Day 25: HA mixed

mutants and HA mutants. We test the following four therapy

schedules to compare against the control: FGFR3 monotherapy,

ICI monotherapy, FGFR3 followed by ICI (FGFR3 1st), and ICI

followed by FGFR3 (ICI 1st) (Supplementary Figure 3). In the two

combination therapies, the first therapeutic option is given in weeks

2-3 and the second is given in 3-4 (Supplementary Figure 3). For

each of these schedules, we test 50 parameter combinations of the

FGFR3-related proliferation and apoptosis parameters. In Figure 5,

we display these on the x- and y-axes, respectively, by computing

the proliferation rate and expected time to apoptosis assuming the
Frontiers in Immunology 07
FGFR3 dimerization reaction is at equilibrium without targeted

therapy. For each of these 50 parameter combinations, we identify

the minimal therapy that leads to the maximal response, which we

define using a decision diagram (Supplementary Figure 6). Briefly,

we focus on a 30% reduction, i.e., some response, and a 90%

reduction, i.e., a near complete response.

With a heterogeneous population with regards to the FGFR3

mutation, low proliferation rates of FGFR3 mutants results in a

situation in which ICI monotherapy results in at least 90% reduction

in tumor burden on Day 25 relative to control (Figure 5A). At higher

proliferation rates, ICI monotherapy cannot produce even a 30%

reduction (Supplementary Figure 7A). Instead, at a proliferation rate

of 1.75d−1, combination therapy sequenced so that ICI is given first

can result in 30% or 90% tumor reduction when apoptosis occurs on

the time scale of years or weeks, respectively. At proliferation rates

above 1.75d−1, these therapies are ineffective with one exception.

With HA mutants, the pattern is similar but with one notable

difference. At lower proliferation rates, ICI monotherapy does produce

a 30% reduction in tumor burden (Supplementary Figure 7B), but

combination therapy is necessary to elicit a 90% reduction by Day 25

(Figure 5B). This is due to the longer timescale for ICI to reduce the

tumor burden (Supplementary Figure 2.1). Indeed, anti-FGFR3

monotherapy produces a stronger response initially due to its direct

effect on tumor fitness and its faster pharmacokinetics (Supplementary

Figures 4, 5). One consequence of this slower response to ICI is that the

maximal tumor burden peaks at a high value. Even in the parameter

regions in which ICI monotherapy results in 90% tumor reduction, this

peak can be more than double the peak with ICI followed by targeted

therapy (Supplementary Figure 2.1).
A B

DC

FIGURE 4

FGFR3-targeted therapy has a modest effect on both tumor burden and composition. (A) Gaussian kernel-smoothed histograms of tumor burden at
Day 25. (B) Percent reduction of tumor burden on Day 25 for each therapy relative to control. (C) Tumor composition on Day 25 for each therapy
and initial composition. Missing bars indicate all replicates experienced tumor elimination by Day 25. (D) Active CTL density in the convex hull of the
middle z-slice of tumor on Day 25. Same color scheme as A.
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4 Discussion

We present here the first ABM of bladder cancer growth with

FGFR3 mutation and an adaptive immune response under

combination ICI and targeted therapy. The model predicts that

highly antigenic tumors that elicit a perforin-based response from

CTLs respond to ICI (Figure 2A) unless constitutively active FGFR3

signaling greatly accelerates tumor cells cycling (Figure 5). This

response is driven by deeper penetration of CTLs towards the

tumor center, resulting in an accumulation of these cells in both

active and exhausted states (Figures 3C, D). When a highly antigenic

tumor is entirely composed of cells harboring an activating FGFR3

mutation, anti-FGFR3 therapy may be necessary to minimize tumor

burden as ICI shifts the balance in the tumor-CTL interactions

towards tumor cell lysis and away from CTL exhaustion

(Supplementary Figure 2.1).

When a tumor contains even a small population of lowly antigenic

tumor cells, for which CTLs rely on Fas/FasL to induce tumor cell

apoptosis, the tumor becomes resistant to both therapies whether alone

or in combination. Though these two drugs can exhibit synergy in

these conditions, the reduction in tumor burden does not exceed 27%

in our model. Across all therapies, the LA mutant compartment

dominates the tumor (Figure 4C, red bars). This occurs even as these

therapies successfully bring CTLs within the tumor boundary

(Figure 4D). This raises a concern that these two therapies may

reduce tumor burden in the short term but at the cost of creating a

more resistant tumor phenotype. These findings are consistent with

emerging clinical data which indicate that combination therapy has

relatively high response rates but low duration of response (11). With

additional therapies that can successfully control this resistant

population, adaptive therapeutic strategies may prove most

efficacious, providing at least a control on tumor growth, while

foreclosing on the possibility of complete tumor regression (38).

Recent data from the EV-302 study has shifted front line therapy

to combination of the anti-PD-1 antibody pembrolizumab given with

enfortumab vedotin, an antibody-drug conjugate (39).With this shift,

understanding the optimal strategy for anti-FGFR therapy becomes

even more salient as there is no current standard of care in the second

line. Our analysis suggests that FGFR3 status coupled with

antigenicity will likely provide key indicators to guide clinicians in
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the event that this front line therapy fails. While work remains to

validate our model and translate the results to human patients, our

algorithmic decision tree (Supplementary Figure 6) and the resulting

outcome landscapes (Figure 5) portend the potential for clinicians to

make use of these model-derived results to achieve desired patient

outcomes. This highlights a strength of mechanistic and dynamic

modeling, namely the ability to identify key correlates and explain

their contribution to biological outcomes.

This study operated under the assumption that aberrant FGFR3

signaling directly decreased CTL infiltration into the TME. A

mechanistic link has not been firmly established, but emerging

evidence supports this assumption (7, 40). Further research into the

mechanisms bywhich FGFR3 signaling alters the immune landscape will

be critical to fully elucidate why FGFR3mutant bearing tumors suppress

immune infiltration and how this can be overcome therapeutically.

This is also the first ABM to consider multiple mechanisms of

lytic activity carried out by CD8+ T cells. The assumption that the

fast perforin/granzyme pathway is used to eliminate HA tumor cells

but the slow FasL pathway is used for LA tumor cells contributes to

the different outcomes predicted by the model. While there is

evidence that antigenicity plays a role in how a T cell attacks a

target tumor cell, it remains unclear how specific this action is and

how it may vary by antigen affinity or phenotypic changes in the

lifespan of a T cell. Information-theoretic approaches have recently

been used to predict the maximal number of distinct antigen

concentrations a CAR T cell can theoretically recognize given the

constraints of the downstream signaling pathways (41). Studies

building on this approach will quantify what T cells are capable of

distinguishing in terms of antigen and what other factors may

modulate this capability. This will in turn allow for more accurate

modeling of tumor-immune interactions as mediated by antigen.

This study is not without limitations. Model parameters are largely

selected from the literature and not constrained by the particular

disease model we are considering. Furthermore, while these results do

qualitatively agree with past research, a more rigorous and quantitative

approach with direct experimental evidence would strengthen the

claims and make them more readily applicable. Finally, with a model

of this size and modularity, it is difficult to assess the sensitivity of our

results to modeling assumptions and parameters as we would expect

this space to be highly nonlinear.
A B

FIGURE 5

Strength of FGFR3 signaling pathway affects therapy selection. FGFR3-mediated maximum proliferation rate for mutants shown on x-axis. FGFR3-
mediated expected time to apoptosis for mutants shown on y-axis. FGFR3 mutant fitness increases towards top-right. Color of tile at each
parameter pair indicates the minimal therapy required to get the maximum observed response. We binned responses to not effective (reduction<
30%), effective (30% ≤ reduction < 90%), and highly effective (reduction ≥ 90%). If both monotherapies (or both staggered combination therapies) are
equally effective, both are indicated here. (A) For HA tumors with a mix of WT and mutants. (B) For HA tumors with only mutants.
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By resolving the above questions and concerns using an

interdisciplinary approach involving in vitro and in vivo model

systems as well as other computational approaches such as

bioinformatics, we can iterate on this process to create a more

robust in silico model of bladder cancer. Such a model will feed

forward into these very pipelines with new mathematically-based

hypotheses that can accelerate our discovery of rationally designed

treatment plans to improve clinical outcomes.
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