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Neutrophils are innate immune cells that have a vital role in host defense systems.

Neutrophil extracellular traps (NETs) are one of neutrophils’ defense mechanisms

against pathogens. NETs comprise an ejected lattice of chromatin associated

with histones, granular proteins, and cytosolic proteins. They are thought to be

an efficient strategy to capture and/or kill bacteria and received intensive

research interest in the recent years. However, soon after NETs were identified,

it was observed that certain bacteria were able to evade NET entrapment through

many different mechanisms. Here, we outline the recent progress of NETs in

bacterial infections and the strategies employed by bacteria to evade or

withstand NETs. Identifying the molecules and mechanisms that modulate NET

release will improve our understanding of the functions of NETs in infections and

provide new avenues for the prevention and treatment of bacterial diseases.
KEYWORDS
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1 Introduction

Neutrophils are the most prevalent type of leukocytes circulating in the blood and are

crucial for maintaining health. They differentiate from hematopoietic stem cells and are

discharged from the bone marrow when terminally mature. They are the first cells to leave

circulation and migrate to the infection site during an immunological challenge. There,

they eliminate bacteria, communicate damage status to other immune cells, and are

involved in the healing process (1). Much is known about the antimicrobial response of

neutrophils. They are highly skilled in phagocytosis, which is their first vital mechanism for

the eradication of disease-causing pathogens and elimination of dead cells and tissue debris
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(2, 3). The second mechanism for eliminating pathogens is

degranulation, which involves regulation of the immune system

response via the release of various granules (4–6).

Approximately 20 years ago, a new mechanism by which

neutrophils fight infections was termed neutrophil extracellular

traps (NETs) (7). This involves the loosening of chromatin in the

neutrophil nucleus and forming complexes with granular and

cytoplasmic proteins, which are then released into the

extracellular environment. There, NETs encapsulate and kill

microorganisms, and block their dissemination (7, 8).
2 NETs

NETs are a special form of programmed cell death, which is

distinct from other cell death forms (apoptosis, necroptosis, and

pyroptosis). In general, the complex process of NET formation

begins with the recognition of microorganism, triggering the

activation of the NETs pathway. This, in turn, leads to the

breakdown of the nuclear membrane and the release of

decondensed nuclear DNA into the cytoplasm. As this DNA

mingles with cellular components including the histones, granules

and cytoplasmic proteins, the process culminates in the rupture of

the plasma membrane and the ultimate release of the NET structure

into the extracellular space. Simultaneously, these traps are capable

of degrading virulent bacterial factors (9–11).
2.1 NETs stimulation and
signaling receptors

NET release is triggered by various stimuli. A range of bacterial

species induce NET release. For Gram-positive bacteria, such as

Staphylococcus aureus (7, 12, 13), Streptococcus pyogenes (14, 15),

Streptococcus pneumoniae (16), Streptococcus agalactiae (17),

Streptococcus sanguinis (18), Streptococcus suis (19). For Gram-

negative bacteria, such as Escherichia coli (20–22), Salmonella

typhimurium (7), Shigella flexneri (7), Haemophilus influenzae (23),

Pseudomonas aeruginosa (24, 25), Yersinia pseudotuberculosis (26),

Photorhabdus luminescens (27). In addition, other bacterial species,

including Mycobacterium tuberculosis (28, 29), Mycobacterium

canettii (28), Mycobacterium avium (30), and Mycoplasma bovis

(31). Furthermore, bacterial components like lipopolysaccharide

(LPS) (7), flagella (25), bacterial toxin nigericin (17), and calcium

ionophore A2318 (17) are also involved in NETs stimulation.

Additionally, diverse inflammatory mediators including interferon

(IFN)-a (32), IFN-g (32), interleukin (IL)-8 (7), IL-1b (33, 34), IL-2

(35), IL-6 (36), IL-10 (36), tumor necrosis factor (TNF)-a (33, 37),

granulocyte-macrophage colony-stimulating factor (GM-CSF) (38),

transforming growth factor (TGF)-b (34), and complement factor 5a

(C5a) (32, 38) have been shown to stimulate NET release.

Moreover, Neutrophil receptors play a crucial role in activation

of neutrophil and formation of NETs. The specific engagement of

cell receptors by extracellular signaling molecules activates diverse

intracellular signaling cascades and regulate NETs functions. In

response to different bacterial triggers, NETs can release by the
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activation of different receptors including toll-like receptors (TLRs)

(39–44), nucleotide-binding oligomerization domain-like receptors

(NLRs) (45), C-type lectin receptors (CLRs) (46), complement

receptors (CRs) (47), Fc receptors (47–50) and other neutrophil

receptors like protease activated receptor-2 (PAR-2) (51).
2.2 NET components

The composition of NETs varies depending on the stimuli, and

is primarily made up of DNA and histone proteins (H1, H2A, H2B,

H3, and H4), which are originated from the nucleus followed by

granular proteins that are normally stored in distinctive neutrophil

granules in the cytoplasm of neutrophil such as neutrophil elastase

(NE), myeloperoxidase (MPO), defensins, and cathepsin G from

primary granules, lactoferrin, cathelicidins, and lysozyme C from

secondary granules, and gelatinase from tertiary granules, as well as

other proteins such as calprotectin and proteinase 3 are located in

the cytoplasm of neutrophils (7, 52–54) (Supplementary Table S1).
2.3 Mechanisms of NETs formation

NETs were first reported in 2004 and were primarily described

as a cell death process in activated neutrophil (7). When DNA leaks

extracellularly, not all NET developments result in cell death, and

not every neutrophil death necessarily results in NET formation.

“NETosis” is often employed throughout research for referring to

NET formation, which can be categorized to as “lytic” and “non-

lytic” forms.

2.3.1 Lytic mechanism
The “lytic” mechanism of NET formation is the interaction

between stimuli and cell receptors, which triggers Raf-MEK-ERK

signaling and activates the NADPH oxidase complex (55). This

complex produces peroxide ions in neutrophils, increasing levels of

cytosolic reactive oxygen species (ROS). MPO detects this rise and

is often paired with other proteases to form the azurosome. MPO

trigger the activation and translocation of NE from azurophilic

granules to the nucleus, where elastase proteolytically processes

histones to disrupt chromatin packaging (56, 57). MPO then binds

to chromatin and synergizes with NE to decondense chromatin

independently of its enzymatic activity (57). The nucleus expands

along with its chromatin, and cell lysis occurs because of gasdermin

D, which can be activated by serine proteases in neutrophil inducing

pore formation in the cell membrane (58). NETs are extruded into

the extracellular space after membrane rupture and cell death

within 3–8 h of neutrophil activation (9, 59).

2.3.2 Non-lytic mechanism
The “non-lytic” or vital mechanism, involves increasing the

concentration of cytosolic calcium through calcium ionophores,

which activate the protein arginine deiminase 4 (PAD4) that leads to

citrullates arginine histone residues, and reduces their positive charge.

Histones then begin to lose their electrostatic attraction to DNA, and

the chromatin expands along with the nucleus (37, 60). This oxidase-
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independent mechanism occurs within minutes of gram-positive skin

infections; the cells release NETs during crawling without lysis, which

prevents systemic bacterial dissemination (13, 61). However, vital NET

formation might be more closely associated with infection than

previously thought because soon after releasing NETs, neutrophils

are still viable and can carry out additional host response processes,

such as phagocytosis, chemotaxis, and microbial killing (62). In

addition to non-lytic NETs with nuclear DNA release, NETs

composed of mitochondrial DNA, NE, and are first described in

GM-CSF-primed neutrophils stimulated in vitro with LPS or C5a

(38, 63) since this process would not require neutrophil lysis, which

would enable phagocytosis to continue (10).

2.3.3 Other forms of NETs
However, divergent views have persisted in this field. NETs can

form in the absence of PAD4 and citrullinated histone 3 (64, 65). It

can also occur during leukotoxic hypercitrullination (LTH), defective

mitophagy, and organ injury (66). Other types of NETs have also

been described, including cloudy NETs, spiky NETs, aggregated

NETs, and bicarbonate-induced aggregated NETs (67). Therefore,

we cautiously take opinions about these studies into consideration
3 Effects of NETs in
bacterial infections

3.1 Morphological effects

NETs have various effects on the morphology of bacteria,

including physically trapping and immobilizing them, leading to

changes in their morphology as they become entangled in the web-

like structure of the NETs (7). Additionally, they can release DNA,

enzymes, and antimicrobial proteins that can damage the cell walls of

bacteria and/or membranes, leading to changes in their morphology

as they become structurally compromised (68–70). Furthermore,

NETs are involved in the disruption of bacterial biofilms, which

can also lead to changes in the morphology of the bacteria (71).
3.2 Functional effects

Along with the impact of NETs on the shape of bacteria, they can

kill and limit the growth of bacteria and prevent their spread in the

environment. They possess antimicrobial properties with

components such as DNA, histones, granules, and cytoplasmic

proteins that have bactericidal effects (7, 68, 72–75). Interestingly,

NETs play an important role in the defense against bacteria, even in

the absence of microbicidal activity. These infections are ensnared but

not eliminated by NETs (28, 76–79), indicating that NET-mediated

microbial trapping alone plays a substantial role in immune defense.

As mentioned above, the formation of NETs and their effect on

bacterial infection are mostly reported in vitro conditions. However,

there is limited research describing the stimulation of NETs in

response to bacterial infection in vivo. It is difficult to verify NETs in

vivo because it calls for specialized technical knowledge. Besides, it
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is hard to assess the kind of stimulus, its dosage, and its exposure

duration in vivo. Researchers may use genetically modified animal

models to study the role of specific proteins or signaling pathways in

the regulation of NET formation during bacterial infection (80).

Furthermore, the composition of NETs determines their efficiency.

Mice exposed to low concentrations of cathepsin G are more

susceptible to infection with the Gram-positive bacterium S. aureus

(81), whereas those exposed to low concentrations of NE are more

susceptible to Gram-negative bacteria such as E. coli, K. pneumoniae,

and other Enterobacteriaceae (70, 81). Additionally, the antimicrobial

response of NETs is influenced by the environment in which they are

developed; NETs under static conditions show limited bacterial killing,

whereas those under dynamic conditions show enhanced bacterial

trapping and reduced killing (78).

Although NETs protect the host against microbes, there are

diseases and conditions that can interfere with the release of NETs.

Some examples of diseases that can affect NET release or neutrophil

function are autoimmune diseases, chronic inflammatory conditions

and sepsis, which can alter the function of neutrophils and their

ability to release NETs. In these conditions, the dysregulation of

neutrophil function and NET release can contribute to the pathology

of the disease and affect the body’s ability to fight infections and

maintain immune homeostasis (82, 83).
4 Modulation of NET release
in bacteria

As mentioned before, the release of NETs is essential for defense

against pathogens; the evasion of NETs appears to be a widespread

strategy to allow pathogen proliferation and dissemination and is

currently a topic of intense research interest. Here, we review the

current knowledge of evasion strategies used by bacteria to

dysregulate NET formation and functions.
4.1 NET formation inhibition

Specific molecules and pathways that inhibit NET release. Thus,

NET inhibition mechanisms in bacterial infections are summarized

in this section of the review (Table 1).

4.1.1 Downregulation of NET-
stimulating phenotypes

Suppression of phenotypes that trigger NET release is a way to

prevent their formation. Flagellum is the main bacterial component

required to trigger maximal NET release, and flagellum-deficient

bacteria remain seriously impaired in triggering NET formation

(25). In addition, LasR-deficient P. aeruginosa strains harbor a

limited capability to trigger neutrophil DNA release due to reduce

the expression of elastase LasB and proteases LasA. The neutrophil

NADPH oxidase pathway is required to decrease NET release

caused by LasR-deficient strains, but it is not dependent on

downstream quorum sensing pathways, LPS synthesis, or

bacterial motility (84).
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4.1.2 Inhibition of NET-triggered molecules
IL-8 is a prominent neutrophil chemoattractant and activator

that induce NET formation (7). However, group A Streptococcus

(GAS) protease SpyCEP (also called ScpC) cleaves IL-8 and reduces

neutrophil production of extracellular traps (86). In addition,

streptolysin O toxin (SLO) prevents the release of IL-8 and

elastase from neutrophils, blocks NET formation, and inhibits

NETs by dissolving cell membranes and fibrous extracellular

DNA strands (87).

4.1.3 Suppression of NET-mediated receptors
on neutrophil

Neutrophil surface receptors have been linked to suppression of

NET formation. GAS expresses a high-molecular-weight hyaluronic

acid capsule (HMW-HA). hSiglec-9 specifically binds to HMW-HA

through a region of its terminal Ig-like V-set domain distinct from

the Sia-binding site. HMW-HA recognition by hSiglec-9 blocks the

oxidative burst and limits NET formation, thereby promoting

bacterial survival (88). Moreover, the sialylated capsular

polysaccharide of Group B Streptococcus (GBS) interacts with
Frontiers in Immunology 04
neutrophil Siglec-9, dampening neutrophil responses in a Sia-and

Siglec-9-dependent manner, causing a reduction in the neutrophil

oxidative burst, diminished formation of NETs, and increased

bacterial survival (91). In addition, b protein from GBS inhibits

human leukocyte phagocytosis, oxidative burst, and extracellular trap

formation by binding to hSiglec-5 in a Sia-independent manner (92).

However, engagement of Siglec−14 by b−protein antagonizes the

repressive effects of Siglec−5 by activating mitogen-activated protein

kinase (MAPK) signaling (99). Moraxella catarrhalis limits ROS

production by possibly binding to immunosuppressive Siglecs

receptors (Siglec-5 and Siglec-9) and consequently suppressing

NET generation (89). Furthermore, soluble Siglec-9 exhibited

strong binding with a2-3-linked sialoglycoproteins adsorbed by P.

aeruginosa. The interaction between P. aeruginosa (+Sias) and siglec-

9 on neutrophils decreases the amount of ROS and the release of

elastase, which in turn decreases the formation of NETs (85).

Moreover, Acinetobacter baumannii inhibits the formation of NETs

by suppressing the surface expression of CD11a in neutrophils,

thereby escaping host immune responses and contributing to the

development of A. baumannii infections (97).
TABLE 1 Factors associated with the inhibition of NET release in bacterial infections.

Evasion
strategy

Molecule (s) Microorganism Modulatory effect on NETs formation References

Inhibition

Flagella

P. aeruginosa

Flagellum-deficient bacteria are severely impaired in triggering NET formation (25)

LasR
P. aeruginosa lacking LasR have a restricted ability to cause the release of
neutrophil DNA.

(84)

Sialoglycoproteins
Display binding to Siglec-9, reduce ROS level and elastase release, and lower the
development of NETs

(85)

SpyCEP

GAS

Cleaves IL-8, and reduces neutrophil production of extracellular traps (86)

SLO
Blocking IL-8 secretion and responsiveness & Dissolve cell membranes and
fibrous extracellular DNA strands

(87)

HMW-HA Engage hSiglec-9, block oxidative burst and NET formation (88)

? M. catarrhalis Suppresses the ROS production, and thus inhibiting the production of NETs (89)

TcpC E. coli Promoting the degradation of PAD4, and reduce NET formation (90)

Sialylated
polysaccharide GBS

Binding to Siglec-9, suppressing ROS and reduce formation of NETs (91)

CPS Binding to Siglec-5, inhibits oxidative burst, and impair NETs formation (92)

ACT B. pertussis
Inhibit the oxidative burst by generating cAMP and consequently inhibit
formation of NETs

(93)

CyaA B. parapertussis Mediated inhibition of ROS and reduces NET activation (94)

LPS K. pneumoniae Involve in ROS inhibition and diminish the formation of NETs (95)

T3SS and CPS-I B. pseudomallei Inhibition of NADPH oxidase pathway and reduce NET release (96)

? A. baumanii Suppression of the surface expression of CD11a in neutrophils (97)

WiP1 S. aureus Display suppression of NET release (98)
P. aeruginosa, Pseudomonas aeruginosa; M. catarrhalis, Moraxella catarrhalis; E. coli, Escherichia coli; B. pertussis, Bordetella pertussis; B. parapertussis, Bordetella parapertussis; K. pneumoniae,
Klebsiella pneumoniae; B. pseudomallei, Burkholderia pseudomallei; A. baumanii, Acinetobacter baumannii; S. aureus, Staphylococcus aureus; ROS, reactive oxygen species; IL-8, interleukin-8;
SLO, streptolysin O; GAS, group A Streptococcus; HMW-HA, high molecular weight-hyaluronic acid; PAD4, protein arginine deiminase 4; GBS, group B Streptococcus; HMW-HA, high
molecular weight-hyaluronic acid; PAD4, protein arginine deiminase 4; GBS, group B Streptococcus; Siglec-9, Sialic acid-binding Ig-like lectin-9; Siglec-5, Sialic acid-binding Ig-like lectin-5; CPS,
capsular polysaccharide; ACT, adenylate cyclase toxin; cAMP, cyclic adenosine monophosphate; CyaA, adenylate cyclase; LPS, lipopolysaccharide; T3SS, type 3 secretion system; CPS-I, capsular
polysaccharide-I; NADPH, nicotinamide adenine dinucleotide phosphate; WiP1, wild-type p53-induced phosphatase 1; ?, unknown.
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4.1.4 Interfering of NADPH signaling and
ROS formation

NET formation is related to the production of ROS, both

cytosolic and mitochondrial (55, 100). The adenylate cyclase toxin

(ACT) of Bordetella pertussis inhibits formation of NETs by

generating cyclic adenosine monophosphate (cAMP), consequently

inhibiting oxidative burst (93). Bordetella parapertussis also expresses

CyaA in a Bvg-regulated manner. This toxin is released into the

extracellular space, which mediates the inhibition of ROS and reduces

NET activation in human-derived neutrophils (94).

K. pneumoniae ST258 is a poor inducer of ROS generation, and

consequently inhibits NET formation, suggesting that the

polysaccharide part of LPS is responsible for this inhibition and

results in increased bacterial survival (95). Burkholderia

pseudomallei modifies the magnitude of NET formation via the

action of its type 3 protein secretion system (T3SS), encoded by the

bsa locus, and capsular polysaccharide I (CPS-I) encoded by the wcb

operon, which attenuates NET release by inhibiting the NADPH

oxidase pathway. B. pseudomallei mutants defective in the

virulence-associated T3SS or CPS-I induced elevated levels of

NETs. NET induction by these mutants is associated with

increased bacterial killing (96).

4.1.5 Others
Wild-type p53-induced phosphatase 1 (Wip1) suppresses NET

release in S. aureus in mice model. Inhibition of Wip1 significantly

suppresses the activity of S. aureus and accelerates abscess healing

in S. aureus-induced abscess model mice by enhancing NET

formation (98). Moreover, uropathogenic E. coli secretes a

multifunctional virulence factor called TcpC, which primarily

inhibits NETs by serving as an E3 ligase, promoting the

degradation of PAD4. TcpC not only inhibits the citrullination of

chromatin histones, but also affects the transcription of related

genes in the nucleus and represents an additional NET evasion

function of this bacterial derived virulence factor (90).
4.2 Degradation of NET components

Studies investigating the production of NET-degrading

molecules by bacteria have focused largely but not exclusively on

the nucleases (Table 2; Figure 1).

4.2.1 Nuclease expression
DNA forms a NET framework that holds multiple enzymes in

close proximity, sometimes allowing for synergistic interactions

among them (68). DNA is hydrolyzed by nucleases that belong to

a group of hydrolases, which are further classified as endonucleases

and exonucleases. These enzymes are involve in replication or repair

of genetic material to maintain chromosome (136). However,

extracellular nucleases have been reported in some bacterial

species for the degradation of NET scaffold DNA, enabling

bacteria to evade the NET antimicrobial mechanism, promoting

pathogenicity, and dissemination to other sites in the host. For

example, nuclease (Nuc) (101, 102) and extracellular adherence

protein (Eap) (103, 104) are produced by S. aureus and interfere
Frontiers in Immunology 05
with the antimicrobial activity of NETs. These proteins help S.

aureus to escape from NET-mediated killing, impede its removal,

and increase infection-related mortality. Moreover, S. aureus escapes

this defense by converting NETs to deoxyadenosine (dAdo) via the

action of Nuc and adenosine synthase A (AdsA), which triggers

caspase-3-mediated death of macrophages (105, 106). Moreover, S.

aureus synchronizes gene expression during skin infection through

the ArlRS-MgrA regulatory system, which regulates nuclease

expression. This cascade is required for both the appropriate

structuring of the abscess and evasion of the host innate immune

system, both of which are necessary for S. aureus virulence. In

contrast, mutants lacking MgrA and ArlRS have reduced capacity to

avoid NET function (107). In addition, S. aureus expresses the

competence regulator (ComK) when exposed to ROS. ComK

upregulates the expression of genes encoding the transport

machinery for glucose and DNA uptake, providing extra nutrients

to increase the fermentation possibility of bacteria that are unable to

respire and a source of nucleotides to repair DNA damage from

ROS. Bacteria may use competence-related genes to better withstand

NETs, because NETs are a source of both nucleotides and

ROS (108).

P. aeruginosa encodes an operon of two secreted enzymes, a

DNase and a predicted alkaline phosphatase. DNase (eddB)

contributes to the degradation of NET to defend P. aeruginosa

against NET-mediated killing, whereas eddA has both alkaline

phosphatase and phosphodiesterase (PDase) activities that do not

cause DNA degradation similar to that of DNase, but its protective

function is likely a result of removing cation-chelating phosphates

from the extracellular DNA phosphodiester backbone (110).

GAS is a leading cause of severe invasive disease in humans, and

has evolved numerous virulence factors that aid in blocking NET

function through the expression and secretion of the extracellular

nuclease Sda1, which is advantageous for promoting bacterial

dissemination throughout the host organism and evasion of the

host innate immune response (77, 112). Similarly, S. pyogenes

nuclease A (SpnA), a cell wall-anchored DNase, shows a unique

protein architecture and promotes survival in human blood and in

neutrophil killing assays, enable for the destruction of NETs and is

believed to be an important immune evasion mechanism (113). A

pneumococcal nuclease (EndA) acts as a virulence determinant,

counteracting host-mediated trapping by NETs, thereby promoting

bacterial spread from local sites to the lungs and then to the blood

stream (76). Furthermore, the competence-independent activity of

EndA is important for the virulence of Streptococcus pneumoniae,

which mediates the rapid degradation of extracellular DNA and

NETs (114). In addition, the secretion of nucleotide sequence-

independent endodeoxyribonuclease TatD from S. pneumoniae is a

novel potential extracellular DNase that plays a key role in evading

NET-mediated bactericidal activity (115).

Streptococcus suis induces NET formation in porcine

neutrophils and is entrapped, but not killed by NETs. The

amount of NETs reduces over time due to the expression of

nuclease A (SsnA), indicating that SsnA is a specific NET evasion

factor in S. suis (116). In this sense, NET degradation is mediated

not only by the known secreted SsnA but also by a putative

endonuclease A of S. suis that is homologous to pneumococcal
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TABLE 2 Lists the molecules for degradation of NET release in bacterial infections.

Evasion
strategy

Molecule
(s)

Microorganism
Modulatory effect on NETs formation

References

Degradation

Nuc

S. aureus

Escaping from NET-mediated killing and facilitates increased survival of S. aureus (101, 102)

Eap Aggregate extracellular DNA and protecting the bacteria from NETs (103, 104)

Ads
Conversion of NETs to deoxyadenosine, which triggers-mediated death of
immune cells

(105, 106)

ArlRS-MgrA
Control NET-evasion mechanisms and regulate nuclease expression that involved
in degradation of NETs

(107)

ComK Upregulate glucose and DNA-uptake and downregulate ROS production (108)

FnBPB Bind to histone H3 and plasminogen, and cleave the bound histone (109)

EddB

P. aeruginosa

Degrade extracellular DNA to defend against NETs (110)

EddA
Removing the cation-chelating phosphates from the extracellular DNA
phosphodiester backbone

(110)

PAD4 Citrullination of extracellular histone H3.1 (111)

Sda1
GAS

Enables bacteria to evade the host immune response by degrading the DNA
backbone of NETs

(77, 112)

SpnA (113)

endA
S. pneumoniae Allows pneumococci to degrade the DNA scaffold of NETs

(76, 114)

TatD (115)

SsnA

S. suis

They favor for the degradation of NETs
(116)

endA (117)

ApdS
Cleave cathelicidin LL-37, impairs its ability to promote NETs formation and
ROS production

(118)

SWAN S. sanguinis Contributes to escape and degradation of NETs (119)

Thermonuclease N. gonorrhoeae Enables bacterium to escape from NET-mediated trapping and killing (120)

Nuc Y. enterocolitica Acts as Ca2+/Mg2+-dependent NET-degrading enzyme (121)

Dns and Xds V. cholera
Degrade the DNA of NETs via the combined activity of the two
extracellular nucleases

(122)

Nuc

Leptospira spp.

Enable to degrade the NET structure (123)

LAV Involved in modulation of NET defense through their nuclease activity (124)

Surface-
lipoproteins

Assess in innate immune modulation and showed their nuclease activity (125)

NucA
and NucD

P. intermedia Able to degrade the DNA matrix comprising NETs (126)

Nuc A. hydrophila Use their nuclease to degrade NETs (127)

Nuc MAP3916c
M. avium

subsp. paratuberculosis
Relevant to NETs degradation (128)

MnuA

M. bovis

A major membrane nuclease is rapidly degrade NETs, and play a significant role
in virulence

(129)

MbovNase
Secretory and membrane protein with ability to degrade NETs and
induce apoptosis

(130)

Mpn491 M. pneumoniae Play a critical role in degradation of NETs (131)

Mhp597 M. hypopneumoniae Involve in cytotoxicity, inflammation and degradation of NETs (132)

Nuc M. hominis Promoting degradation of NETs (133)

PAD4 P. gingivalis Citrullinate the histone H3, and promoting the bacterial escape from NETs (134)

(Continued)
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EndA (117). Actinobacillus pleuropneumoniae does not produce its

own NET-degrading nucleases, but is hijacking other nucleases

from host or from other co-infecting bacteria such as S. suis as a

source for nicotinamide adenine dinucleotide (NAD) needed for

efficient growth in the presence of NETs (137).

Moreover, Streptococcus sanguinis utilizes cell surface nuclease

with a cell-wall anchor domain, termed streptococcal wall-anchored

nuclease (SWAN), and contributes to bacterial resistance against

the bactericidal activity of NETs (119). Neisseria gonorrhoeae

encodes a putatively secreted thermonuclease that is implicated in

biofilm remodeling and degrades the NET matrix to help

N. gonorrhoeae from killing by neutrophils (120).
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Yersinia enterocoliticaO:3, O:8 and O:9 are able to induce NETs

in human blood-derived neutrophils, but the amount of NETs is

reduced at a later time, suggesting that the degradation of NETs has

occurred and postulates that Y. enterocolitica produces Ca2+/Mg2

+-dependent NET-degrading nuclease (121). Vibrio cholera induces

the formation of NETs upon contact with neutrophils, while V.

cholerae in return to expresses two extracellular nucleases, Dns and

Xds, in the presence of NETs, and rapidly degrades the DNA

component of the NETs by the combined activity of the two

nucleases (122). Leptospira spp. is able to induce NETs using

human ex vivo and murine in vivo models, resulting in the release

of NETs. However, Leptospira spp. exerts nuclease activity and
TABLE 2 Continued

Evasion
strategy

Molecule
(s)

Microorganism
Modulatory effect on NETs formation

References

Gingipains
Cleavage of protease activated receptor on the neutrophil surface and prevent P.
gingivalis from NETs entrapment

(51)

? K. pneumoniae
Affecting the mobilization of the primary granules that necessary for
NETs formation

(135)
S. aureus, Staphylococcus aureus; P. aeruginosa, Pseudomonas aeruginosa; GAS, group A Streptococcus; S. pneumoniae; Streptococcus pneumoniae; S. suis, Streptococcus suis; S. sanguinis,
Streptococcus sanguinis; N. gonorrhoeae, Neisseria gonorrhoeae; Y. enterocolitica; Yersinia enterocolitica; V. cholera, Vibrio cholera; P. intermedia; Prevotella intermedia; M. bovis, Mycoplasma
bovis;M. pneumoniae,Mycoplasma pneumoniae;M. hypopneumoniae,Mycoplasma hypopneumoniae;M. hominis,Mycoplasma hominis; P. gingivalis, Porphyromonas gingivalis; K. pneumoniae,
Klebsiella pneumoniae; Nuc, nuclease; Eap, extracellular adhesion protein; Ads, adenosine synthase; FnBPB, fibronectin-binding protein B; EddB, extracellular DNA degradation protein B; EddA;
extracellular DNA degradation protein A; PAD4; protein arginine deiminase 4; SpnA, Streptococcus pyogenes nuclease A; EndA, endonuclease A; SsnA, Streptococcus suis nuclease A; SWAN,
streptococcal wall-anchored nuclease; LAV, variable region of Leptospira immunoglobulin-like protein A; MnuA, membrane nuclease A; MbovNase, Mycoplasma bovis nuclease; Mpn491,
Mycoplasma pneumoniae nuclease 491; Mhp597, Mycoplasma hypopneumoniae 597; ?, unknown.
FIGURE 1

Bacterial factors associated with the degradation of NET components. (1) DNAses cleave NET-associated DNA, and Eap bind to the termini of
linearized DNA and expresses an intrinsic DNA aggregation activity. (2) Adenosine synthase act together with the nuclease for generating
deoxyadenosine fragments that are apoptotic for macrophages. (3) Phosphatase remove phosphate group from DNA, showing a cation chelating
effect. (4) Apds cleave N-terminal amino acid from cathelicidin LL-37 and lose its helical structure. (5) ComK increase glucose and DNA uptake and
downregulate ROS production. (6) FnBPB, in preference to FBG, H3 binds to the tunnel between the N2 and N3 of FnBPB, and then causes a
conformational shift that allow the complex to stabilize by insertion of the terminal residues of the N3 extension (red arrow). Next, PLG binds to a N3
site, activated by t-PA to PLM, and cleaves FnBPB-bound H3. (7) PAD4 change histone arginines into histone citrullines, and losing its interactions
with bacterial membranes. (8) Gingipains, cysteine protease, cleave protease-activated receptor-2 on the neutrophil surface. dAdo, deoxyadenosine;
ROS, reactive oxygen species; HGT, horizontal gene transfer; PAD4, protein arginine deiminases 4; MPO, myeloperoxidase; FnBPB, fibronectin
binding protein B; FBG, fibrinogen; H3, histones 3; PLG, plasminogen; t-PA, tissue plasminogen activator; PLM, plasmin; Eap, extracellular adhesion
protein; Cit, citrullin. S. aureus, Staphylococcus aureus. Created with BioRender.com.
frontiersin.org

https://BioRender.com
https://doi.org/10.3389/fimmu.2024.1357967
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Baz et al. 10.3389/fimmu.2024.1357967
degrades DNA, resulting in a significantly reduced amount of NETs

(123). In addition, the domain of the variable region of Leptospira

immunoglobulin-like protein A (LAV) is involved in immune

modulation; LAV has a nuclease activity and is demonstrated in

the evasion of Leptospira from NETs (124). Additionally, surface-

exposed lipoproteins in Leptospira are important for modulating

host immune responses, and most of Len family surface proteins

exhibit nuclease activity and are linked to NETs degradation (125).

Oral periodontopathogenic Prevotella intermedia produces two

nucleases, NucA and NucD, which require Mg2+ and Ca2+ for their

nuclease activity and contribute to NETs degradation (126). The

fish pathogen Aeromonas hydrophila combats NETs using nuclease

activity, while treatment of cells with b-glucan significantly protects

NETs against bacterial degradation (127). Mycobacterium avium

subsp. paratuberculosis encodes an extracellular nonspecific DNase

that can destroy the NETs and promotes bacterial survival in vitro

and in vivo (128).

Mycoplasma are the smallest bacteria that can infect and cause

serious disorders in humans and various animal species (138, 139).

Nucleases are a crucial component of Mycoplasma pathogenesis,

facilitating bacterial growth and persistence in the host by digesting

host nucleic acids and producing free nucleotide precursors (140–

142). Membrane-associated or secreted nucleases have been found

in many Mycoplasma species (129, 132, 143–146), and are

homologous to staphylococcal nuclease (101). Mycoplasma

lipoproteins are a major determinants of NET release during the

innate immune response (39). Interestingly, most of the described

Mycoplasma nucleases are able to escape from NET entrapment and

killing by digesting NET’s DNA backbone, reducing structure

stability, and enhancing NET elimination (129–131, 133).

4.2.2 PAD4 secretion
Although DNA has been thoroughly examined, it is not the only

NET component that is susceptible to degradation. PAD4 capable

of deaminating arginine to citrulline and has been linked to NET

formation in various context (147). PAD4 is involved in NET-

mediated bacterial trapping and killing. Histones with cationic

residues interact with negatively charged bacterial membranes

and disrupt them (148). Thus, the loss of the positive charge of

histones can lower their antibacterial function due to PAD4 activity.

For example, Porphyromonas gingivalis produces its own PAD,

Porphyromonas peptidylarginine deiminase (PPAD), which

citrullinates histone H3, thereby facilitating bacterial escape from

NETs, whereas PAD-mutant P. gingivalis is more prone to NET-

mediated killing than its wild-type counterpart (134). Moreover,

histone 3.1 displays bactericidal activity against P. aeruginosa. This

bactericidal effect is reduced following citrullination by PAD4 or

proteolysis by NE (111).

4.2.3 Degradation of NET-bound proteins
As previously mentioned, host defense peptides are key

components of the innate immune system and act as the

principal first line of defense against invading pathogens (149).

The cysteine protease ApdS from S. suis cleaves cathelicidin LL-37

and impairs its ability to promote NETs formation and ROS
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production (118). K. pneumoniae affects the mobilization of

primary granules and their components, which harbor proteins

with more potent bactericidal properties and those related to NETs

(135). Gingipain is a cysteine protease responsible for the virulence

of P. gingivalis and is dependent on proteolytic activation of

protease-activated receptor-2 (PAR-2). Intriguingly, P. gingivalis

and purified Arg-specific gingipains (Rgp) induce NETs that not

only lack bactericidal activity, but also stimulate the growth of

bacterial species otherwise susceptible to killing in NETs. Taken

together, gingipains play a dual role in NETs; they are potent direct

inducers of NETs formation; however, their activity prevents P.

gingivalis entrapment and subsequent killing (51). S. aureus

produces a cell-wall-anchored protein known as fibronectin-

binding protein B (FnBPB) that is the main histone receptor and

bind to all types of histones. FnBPB provides a dual immune-

evasion function that captures histones, and prevents them from

reaching the bacterial membrane, and simultaneously binds

plasminogen, thereby promoting its conversion to plasmin to

destroy the bound histone (109).
4.3 NET resistance mechanisms

In addition to inhibition of NET release and the degradation of

NETs components, certain bacteria are resistant to the

antimicrobial activity of NETs (Table 3).

4.3.1 Capsule
Capsule is a surface structure of the organism and plays a

critical role in virulence, principally by interfering with host

clearance mechanisms. The thickness of the pneumococcal

capsule plays a crucial role in determining the extent of NET

formation and may contribute to pneumonia severity (161, 162).

Interestingly, the electrostatic charge of the capsule helps evade

NET-mediated killing by repelling interactions with antimicrobial

proteins in the DNA framework. In this context, S. pneumoniae

contains a dlt operon that mediates the incorporation of d-alanine

residues into lipoteichoic acid (LTA), thereby introducing a positive

charge that reduces trapping by NETs in vitro (150). Kingella kingae

polysaccharide capsule and exopolysaccharide function distinctly to

promote neutrophil evasion. The K. kingae polysaccharide capsule

prevents ROS production and neutrophil association, whereas the

K. kingae exopolysaccharide reduces neutrophil phagocytosis and

sensitivity to antimicrobial peptides (152). In addition, the

hyaluronic acid capsule and M protein of the GAS serotype

M1T1 promote resistance to human cathelicidin LL-37, which

may be an important contributor to the NET-resistance

phenotype (155).

4.3.2 Biofilm formation
Microbial biofilm communities are microbes embedded in a

matrix of self-produced polysaccharides and other molecules, such

as lipids, proteins, and nucleic acids that can bind to various

surfaces, which complicates the immunological and therapeutic

response (163). Biofilm formation by P. aeruginosa is a major
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cause of bacterial keratitis and is facilitated by bacterial Psl

exopolysaccharide and T3SS. NETs are stimulated by high

expression of T3SS and form a barrier, known as dead-zone,

confining bacteria to the external corneal environment,

preventing them from spreading to the brain. Once formed,

ocular biofilms advance eye pathology because they are resistant

to neutrophil killing and antibiotics (71). Furthermore, P.

aeruginosa acquires resistance to NET-mediated killing in cystic

fibrosis airways. This resistance correlates with the development of

excess exopolysaccharide production (which characterizes the

mucoid phenotype) (74). In addition, studies conducted in vitro

have demonstrated that P. aeruginosa can profit from the released

DNA of NETs and incorporate it into the extracellular matrix,

potentially strengthening the matrix’s resistance to antibiotics and

host antimicrobial peptides (164–167).

Clinical isolates of H. influenzae share a common tendency to

produce biofilms, and the factors that facilitate biofilm formation
Frontiers in Immunology 09
include the expression of certain lipooligosaccharide (LOS)

glycoforms (168–170), type IV pili (171), and double-stranded

DNA release (172). Nontypeable Haemophilus influenzae (NTHi)

promotes resistance to killing within NETs structures through LOS

moieties that promote biofilm formation (23, 157). Methicillin-

resistant S. aureus (MRSA) biofilms rapidly skew neutrophils

toward NETs formation through the combined activity of the

Panton-Valentine leukocidin (PVL) and g-hemolysin AB, which

are important for biofilm-mediated neutrophil killing. Through this

response, S. aureus can persist because the antimicrobial activity of

the released NETs is ineffective in eradicating bacterial biofilm (12).

S. aureus nuclease-mediated NET degradation promotes the

persistence of biofilm bacteria entrapped in NETs (173). S. suis

serotype 2 induces NETs release and can be captured by the NETs,

whereas biofilm formation inhibit NETs release through the biofilm

extracellular matrix and enables survival by allowing the pathogen

to persist and resist the host immune system (160). In addition,
TABLE 3 Molecules involved in the resistance of NET components in bacterial infections.

Evasion
strategy

Molecule (s) Microorganism Modulatory effect on NETs formation References

Resistance

D-alanylated LTA
S. pneumoniae

Mediates the incorporation of d-alanine residues into LTA, introducing
positive charge, and reduces NETs trapping

(150)

Biofilm Provide resistance to NET-mediated killing (151)

Lipid A of LPS

N. meningitidis

Phosphoethanolamine modification of LPS interfere with the action of
NET-bound cathepsin G

(75)

ZnuD
Essential for absorbing Zn2+ and reduces the effects of nutritional
immunity mediated by NETs

(75)

OMVs Suppressing adherence to NETs (75)

CPS K. kingae Protecting from ROS-mediated killing and antimicrobial peptides (152)

M1 GAS

Provides resistance to NETs-derived cathelicidin LL-37 by sequestering the
cationic peptides

(15, 153)

Provide resistance against NETs-mediated histones (14)

T4 pili GAS M4
Sequester haptoglobin to confer M4 GAS resistance to antibacterial of LL-
37 and CRAMP

(154)

Hyaluronic acid capsule

GAS M1T1

Promote resistance to human cathelicidin LL-37 resistance and survival
within NETs

(155)
M protein

Collagen-like protein-1
Inhibit NET-released MPO and protects GAS from antimicrobial peptides
within the NETs

(156)

PVL and g-hemolysin AB S. aureus Necessary for biofilm-mediated neutrophil killing (12)

LOS

NTHI

Initiate in the development of biofilm and mediate resistance to
NET killing

(23, 157)

Peroxiredoxin-
glutaredoxin and catalase

Inhibit the oxidative burst in NETs (158)

Exopolysaccharide,T3SS

P. aeruginosa

Formation of biofilm and dead zone and display resistant to
neutrophil killing

(71)

Exopolysaccharide Acquire resistance to NET-mediated killing in the CF airway (74)

OMVs Inhibition adherence to NETs (159)

Biofilm S. suis Inhibit the formation of NETs (160)
S. pneumoniae, Streptococcus pneumoniae; N. meningitides, Neisseria meningitidis; K. kingae, Kingella kingae; GAS, group A Streptococcus; NTHI, nontypeableHaemophilus influenzae; S. aureus,
Staphylococcus aureus; Pseudomonas aeruginosa, P. aeruginosa; S. suis, Streptococcus suis; LTA, lipoteichoic acid; LPS, lipopolysaccharide; OMVs, outer membrane vesicles; CPS, capsular
polysaccharide; PVL, Panton Valentine leucocidin; CRAMP, cathelicidin-related antimicrobial peptide; LOS, lipooligosaccharide; MPO, myeloperoxidase; T3SS, type 3 protein secretion system.
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pneumococci produce biofilms in vivo and observe web-or net-like

structures surrounded by dense matrix material, which is

intertwined with the formation of NETs (151).

4.3.3 Outer membrane vesicles
OMVs are nanostructures released by pathogenic and non-

pathogenic bacteria in vivo and in vitro and can act as decoys for

NET capture (174). Ocular keratitis is often associated with P.

aeruginosa infection. Neutrophils release NETs in response to both

cytotoxic and invasive clinical isolates of P. aeruginosa. Cytotoxic

strains are less prone to NET capture than invasive strains because

they release OMVs that inhibit NET adherence (159). Furthermore,

Neisseria meningitidis releases OMVs as potent NET inducers.

NETs are unable to kill NET- bound meningococci, but they slow

down their proliferation rate. The bacteriostatic effect of NETs is

counteracted by spontaneously released OMVs from N.

meningitidis, which reduces their adherence to NETs (75).

4.3.4 Charge surface alteration
NET-releasing proteins attach to negatively charged

phospholipids in pathogen membranes with electrostatic affinity,

which promotes death (175). Nonetheless, certain bacteria modify

their cell surfaces, which reduces their affinity for attachment to NET-

releasing peptides. For example, the surface-associated protein M1

protein contributes to GAS virulence by interfering with NET-

mediated killing, which sequester and neutralize cathelicidin LL-37

through the N-terminal hypervariable (HV) region and A repeat

region that encode the type-specific immunologic epitopes of the M1

serotype (15, 153). In addition, the N-terminal portion of the M1

protein binds and inactivates histones before they reach their cell wall

target of action and mediate resistance against released extracellular

histones in NETs, allowing the pathogen to tolerate high

concentrations of histones and promote survival in NETs (14).

Streptococcal collagen-like protein 1 (Scl-1) in GAS serotype M1T1

confers resistance to NET-mediated killing, which may be in large

part due to the antimicrobial peptides present within the NETs; Scl-1

has an additional role in suppressing the release of MPO, which

ultimately limits the production of NETs (156). Haptoglobin is an

abundant acute-phase protein produced upon infection, which binds

to human neutrophils and monocytes and inhibits their functions

(176, 177). The T4 antigen, the pilus backbone protein of GAS M4,

sequester the host haptoglobin. Coating M4 GAS with haptoglobin

causes a reduction in susceptibility to cathelicidin LL-37 and murine

cathelicidin-related antimicrobial peptide (CRAMP) and promotes

resistance to NET-mediated killing (154).

Modification of lipid A of meningococcal LPS with

phosphoethanolamine shields N. meningitidis from the action of

NET-bound cathepsin G (75). In a process known as nutritional

immunity, host organisms restrict the availability of trace nutrients

in the blood or secretions to prevent the growth of invading

microorganisms (178). The outer membrane receptor ZnuD of N.

meningitidis is crucial for Zn2+ uptake at very low concentrations

(179). N. meningitidis utilizes high affinity absorption systems for

critical ions on mucosal surfaces, producing ZnuD, which absorbs

Zn2+; contribute to survival within NETs (75).
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4.3.5 Antioxidant enzymes secretion
Finally, the initiation of the oxidative burst is important for the

induction of NETs, and oxidants contribute to microbicidal activity

within the NETs (9, 180). Noticeable H. influenzae expresses the

bifunctional peroxiredoxin-glutaredoxin (encoded by pdgX) and

catalase (encoded by hktE), which confer resistance of NTHI to

oxidative killing and thus promote the survival of NTHI within

NET structures and persistence in vivo in the lung and middle ear.

In addition, exogenous catalase partially rescued NTHI from NET-

mediated killing in vitro. The expression of both peroxiredoxin-

glutaredoxin and catalase is a mechanism by which NTHI combats

the effects of NETs (158).
5 Concluding remarks

Neutrophils are type of white blood cell that play a crucial role

in the immune system’s defense against infections. There are

different subsets of neutrophils that have different functions and

responses to various stimuli. NET release is a form of neutrophil

immune response that, depending on the context in which it is

examined, can have both pathogenic and physiological effects. They

can entangle and immobilize bacteria, preventing their spread, and

facilitating their destruction by other immune cells. Additionally,

dysregulation of NET release has several implications for the

immune system and overall health. On the other hand, impaired

NET formation may lead to reduced ability to fight off infections.

Therefore, maintaining a balanced and controlled NET release is

essential for the proper functioning of the defense system and

overall health. In recent years, there has been a significant increase

in research focused on the role NETs in response to pathogens and

the mechanisms involved in the modulation of their release.

Bacteria have developed various mechanisms to evade or resist

NET release, allowing them to escape the immune system’s defenses

and several key findings and advancements have emerged from

these studies. In this review, we have discussed the strategies used by

various bacteria to counteract NET-mediated antimicrobial effects

as such inhibiting NET release, deactivating their components,

degrading their net-like framework, or blocking their contact,

resulting in infection dissemination and immune system

inactivation. Bacteria possess a vast array of mechanism for

modulating NET activity, and ongoing investigations are expected

to uncover new molecules and pathways involved in controlling

NET release. Current understanding of different inflammatory

mediators in modulate NET release is quite limited and need be

further elucidated. Overall, the recent focus on NETs and their

modulation has provided a deeper understanding of the complex

interplay between neutrophils, pathogens, and the immune system.

This knowledge has the potential to identify pharmacological

targets and drive the development of therapeutic and diagnostic

approaches to counteract bacterial evasion strategies and combat

the role of NETs in inflammatory and autoimmune diseases. It is

crucial to understand that various factors affect whether NETs are

advantageous or harmful, with the dose and the timing of NET

release and clearance being critical factors. A better understanding
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of the roles of NETs and their effects on hosts will make it possible

to inhibit the adverse attributes without affecting the beneficial ones,

which will ultimately enable strategies related to NETs to be used in

disease treatment.
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Glossary

ACT Adenylate cyclase toxin

AdsA Adenosine synthase A

C5a Complement factor 5a

cAMP Cyclic adenosine monophosphate

CLRs C-type lectin receptors

ComK Competence regulator

CPS-I Capsular polysaccharide I

CRAMP Cathelicidin-related antimicrobial peptide

CRs Complement receptors

dAdo Deoxyadenosine

Eap Extracellular adherence protein

FnBPB Fibronectin-binding protein B

GAS Group A Streptococcus

GBS Group B Streptococcus

GM-CSF Granulocyte-macrophage colony-stimulating factor

HMW-HA High-molecular-weight hyaluronic acid

IFN Interferon

IL Interleukin

LOS Lipooligosaccharide

LPS Lipopolysaccharide

LTA Lipoteichoic acid

LTH Leukotoxic hypercitrullination

MAPK Mitogen-activated protein kinase

MPO Myeloperoxidase

MRSA Methicillin-resistant S. aureus

NE Neutrophil elastase

NETs Neutrophil extracellular traps

NLRs Nucleotide-binding oligomerization domain-like receptors

NTHi Nontypeable Haemophilus influenzae

Nuc Nuclease

OMVs Outer membrane vesicles

PAD4 Protein arginine deiminase 4

PAR-2 Protease activated receptor-2

PVL Panton-Valentine leukocidin

ROS Reactive oxygen species

Scl-1 Streptococcal collagen-like protein 1

Siglec-5 Sialic acid-binding Ig-like lectin-5

Siglec-9 Sialic acid-binding Ig-like lectin-9
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SLO Streptolysin O toxin

SWAN Streptococcal wall-anchored nuclease

T3SS Type 3 protein secretion system

TGF Transforming growth factor

TLRs Toll-like receptors

TNF Tumor necrosis factor

Wip1 Wild-type p53-induced phosphatase 1
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