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Coordinated inflammation and
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Breast cancer, characterized by its complexity and diversity, presents significant

challenges in understanding its underlying biology. In this study, we employed

gene co-expression network analysis to investigate the gene composition and

functional patterns in breast cancer subtypes and normal breast tissue. Our

objective was to elucidate the detailed immunological features distinguishing

these tumors at the transcriptional level and to explore their implications for

diagnosis and treatment. The analysis identified nine distinct gene module

clusters, each representing unique transcriptional signatures within breast

cancer subtypes and normal tissue. Interestingly, while some clusters exhibited

high similarity in gene composition between normal tissue and certain subtypes,

others showed lower similarity and shared traits. These clusters provided insights

into the immune responses within breast cancer subtypes, revealing diverse

immunological functions, including innate and adaptive immune responses. Our

findings contribute to a deeper understanding of the molecular mechanisms

underlying breast cancer subtypes and highlight their unique characteristics. The

immunological signatures identified in this study hold potential implications for

diagnostic and therapeutic strategies. Additionally, the network-based approach

introduced herein presents a valuable framework for understanding the

complexities of other diseases and elucidating their underlying biology.
KEYWORDS

breast cancer, inflammation, immunity, network modularity, coexpression networks
1 Introduction

The relationship between immune responses and breast cancer is a dynamic and

multifaceted one, with profound implications for both tumor development and therapeutic

strategies (1, 2). Breast cancer, one of the most prevalent malignancies worldwide, is

characterized not only by the genetic alterations within cancer cells but also by the host’s
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immune system’s response to these abnormal cells (3–5). Immune

responses play a pivotal role in shaping the tumormicroenvironment,

influencing disease progression, and determining treatment

outcomes. While the immune system has the potential to recognize

and eliminate cancer cells through surveillance mechanisms, breast

tumors often employ sophisticated strategies to evade immune

detection and suppression (6–8). Understanding the intricate

connections between immune responses and breast cancer is vital

for unraveling the complexities of this disease and developing

innovative immunotherapeutic approaches that hold promise in

improving patient outcomes.

Breast cancer tumors are composed of numerous interacting cell

types. Among those cells, immune cells are often present to a varying

degree in all tissues and participate in the many physiological and

histological changes produced during inflammation. The role of the

immune system in the development of tumors is not thoroughly

understood. In some cases, the inflammatory microenvironment

appears to provide the conditions for tumor growth and immune

cell infiltrates are recognizable, whereas an active immune response is

necessary to eliminate cancerous cells and limit tumor growth (9–12).

Breast cancers present inherent variability, which impacts their

behavior, evolution, and response to therapeutic interventions.

Among the most widely used criteria in the decision-making process

for treatment of breast cancer patients, tumors are sampled and

classified based on a series of histological tests for the presence of

molecular markers including steroid (progesterone and estrogen)

hormone receptors, Her2 receptor, and the KI67 proliferation score,

all of which are based on the identification of expressed proteins. Other

classification schemes rely on the quantification of mRNA expression

of panels of multiple genes such as the PAM50 classifier (13–15).

There is significant overlap between alternative tumor

classification strategies that may be rooted on the underlying tumor

biology. Classification reflects the similarities in behavior, gene

expression, and most likely gene regulation. Gene regulation is the

result of cell’s integration of internal (i.e., metabolic state and cell

cycle state progression) and environmental signals (i.e., hormones,

cytokines, and membrane contact receptors) according to their

regulatory programs. Co-expression patterns are thus the resulting

output of signaling events inside the cell (16, 17). The regulation of

gene expression is a way in which the cell controls the availability of

components of the cellular machinery that interact to assemble the

mechanisms that drive cellular processes (18–20).

Here, we explore the co-regulation landscape of genes

associated to the immune response in breast cancer molecular

subtypes. By inspecting gene co-expression groups, we may get a

hint of which mechanisms are likely to be used by each phenotype

and possibly discern any major differences between the phenotypes

that can help us understand their biological differences. We are

doing this with an emphasis distinct from a single gene approach

and with the assumption that we are looking at a tissue

microenvironment level. We modeled the gene co-expression

landscape as a network of interconnected genes. The network is a

large-scale view of the phenomenon that allows us to review the

global context of gene co-expression (21–23).

The intricate interplay between inflammation and immune

responses in the context of breast cancer has emerged as a critical
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avenue of research, with the potential to shed light on the underlying

molecular mechanisms driving this complex disease. In this study, we

delve into the gene expression profiles within distinct molecular

subtypes of breast cancer to elucidate the subtle yet pivotal variations

in the coordination of inflammation and immune responses. By

dissecting these intricate interactions at the gene expression level, we

aim to uncover novel insights that may pave the way for more

tailored therapeutic strategies and a deeper understanding of the

disease’s heterogeneity. This investigation aims to contribute towards

refining our comprehension of breast cancer biology and ultimately

enhancing patient care.
2 Materials and methods

2.1 Data acquisition

Our dataset comes from a collection of Illumina HiSeq RNAseq

datasets, consisting of 780 breast cancer tumor samples and 101 normal

breast tissue samples obtained from The Cancer Genome Atlas

(TCGA) project database Tomczak et al. (24). Datasets were

downloaded and processed as described in Espinal-Enriquez et al.

(25). The dataset contains information for a total of 15,267 expressed

genes. Corresponding tumor samples were further classified into one of

the four breast cancer intrinsic molecular subtypes: Luminal type A,

Luminal type B, Her2-enriched, or Basal-like (referred to here as

LumA, LumB, Her2, and Basal). In order to be able to dissect

subtype specificities that may be veiled by marginally subtyped

samples, we used a PAM50 classifier that is more stringent than the

standard one (26). The rationale behind this is that the PAM50

classifier is employed to categorize patients into the breast cancer

subtype with the highest correlation, regardless of the specific value

obtained. However, to construct the risk of recurrence (ROR) score,

which plays a crucial role in therapeutic decision-making, correlations

with all subtypes are essential. Current estimations of subtype

uncertainty lack accuracy, are infrequently taken into account, or

demand a population-based approach within this context. After

sample classification, tumor and normal mammary tissue samples

were rejoined and batch effect was corrected as described in Garcıá-

Cortés et al. (22). After classification, 415 samples were reliably

assigned using the pbcmc R package (https://rdrr.io/bioc/pbcmc/)

(26) to one of the breast cancer intrinsic molecular subtypes (Table 1).
2.2 Network construction

A network is a mathematical object that can be used to describe

the interactions (referred as edges) within a collection of objects

(nodes). In the context of gene expression, genes can be associated

by the degree to which their expression levels are statistically

dependent on the expression levels of other genes. If given a set

of criteria, the expression levels between two genes are determined

to be statistically dependent; this can be represented as an edge or

interaction and included in the network’s structure (22, 23).

Consequently, the network serves as a representation of the co-

expression patterns found within the tissue from which the data
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originate. One notable structural feature is the presence of highly

interconnected groups of co-expressed genes or communities.

In these groups, if two genes are linked to a third gene within the

same community, it is likely that they are also connected to each

other. At the same time, communities tend to have sparser

connections with the rest of the network. These communities can

offer valuable insights into the potential co-occurrence of proteins

within cells, hinting at possible interactions and contributions to

biological processes.

To obtain the networks, we divided samples of each phenotype

into five expression matrices, one for each of the four breast cancer

subtypes and the healthy adjacent tissue. We used Shannon’s

Mutual Information (MI) as a measure of statistical dependency

of the expression level between pairs of genes. MI is a general,

model-independent and non-parametric measure that can be

reliably estimated from the empirical probability distributions of

experimental data given large enough sample sizes (27). We

obtained the MI values of all possible gene pairs from the 15,267

genes in the expression matrix, which means a total of 116,533,011

potential links (edges) between genes. MI values were calculated

with the methodology implemented in the ARACNe algorithm (28),

although DPI was not applied. The use of DPI was implemented in

the ARACNe approach, in order to provide a way to disambiguate

direct from indirect co-expression relationships in the context of a

network inferred from two different gene sets, one of Transcription

Factor genes and another one with the whole transcriptome (a so-

called Regulon set network). This is so since it was aimed to provide

not just co-expression networks but indeed an (undirected)

approximation to gene regulatory networks. In the present case,
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gene co-expression networks are analyzed in the search of patterns

leading to functional signatures: i.e., genes are co-expressed driven

by a functional constraint or necessity, e.g., to activate/repress

biological processes. In this regard, under this guilt-by-association

approach, the distinction between direct and indirect associations is

not that relevant. For those reasons, we did not use the data

processing inequality (Markov information decay) in our

networks. Gene pair interactions were sorted by descending MI

value and a cutoff was established at the top 100,000 valued pairs,

which corresponds to the top 0.08% links (22, 25).

Also relevant to mention is how MI thresholding (i.e.,

establishing a minimum MI value to consider that a statistical

dependency relationship is significant, also called network pruning)

was carried out. Full transcriptome statistical dependency matrices

in humans have approximately 200 million independent entries

(these are symmetric matrices). By means of statistical analyses,

heuristic bootstrap studies, and network topology calculations, our

research group has observed in the past (supported by extensive

bootstrapping calculations, simulations, and statistical tests) (25,

29) that, depending on the specificities of the background noise of

the underlying experiments and the intrinsic variability of the

samples, between 0.01% and 0.1% of these dependencies are

strong enough to represent biologically relevant co-expression

relations in cancer, thus forming the basis for co-expression

networks. That was the rationale used here to retain the top

100,000 higher MI links in the different networks.
2.3 Community identification and statistical
overrepresentation analysis

Modularity analysis was performed in the co-expression

networks (30). The Infomap algorithm was used to this end (31,

32). For each phenotype, we obtained a sub-network from the top

100,000 MI interaction values. Each sub-network consists of many

independent (there is no link path between them) groups of genes,

called components, which vary in the number of associated genes.

Within each component of the network, genes (the nodes in the

network) are not uniformly connected. We can distinguish groups

of genes that are densely interconnected, but less connected to the

rest of the network. These groups are called communities (for a

comparative view of the different networks and their modules see

Table 2). To assess the community structure in our networks,
TABLE 1 Number of samples corresponding to each breast cancer
molecular intrinsic subtype.

Classification Number of samples

Normal breast 101

Luminal A 143

Luminal B 58

Her2 72

Basal 142
After classification, 415 tumor samples were reliably assigned to one of the subtypes.
communities can offer valuable insights into the potential co-occurrence of proteins within
cells, hinting at possible interactions and contributions to biological processes.
TABLE 2 General comparison between the top 100k interactions networks.

Metric Normal breast LumA LumB Her2 Basal

Number of genes 12,930 12,844 12,599 13,739 12,301

Modularity 0.47 0.88 0.89 0.84 0.89

Total communities 976 956 956 993 944

Communities with 10 or more genes 321 187 170 222 176

Number of enriched communities 48 48 39 49 44

Communities with immune
system enrichments

11 14 11 12 13
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weused the community detection algorithm infomap (31). We

further considered communities with at least 10 genes as likely

representative of possible biological functions. We labeled

communities by combining the (automatically assigned) number

of the community in the network and the phenotype to which this

network corresponds. To give us an idea of the possible biological

functions that may be regulated at the gene expression level with a

relatively fine level of granularity, the gene lists of each valid

community were tested with a statistical overrepresentation

analysis (ORA) for the categories of the Biological Process

Ontology defined by the Gene Ontology consortium (33).

Enrichment values were assessed for statistical significance by

means of hypergeometric permutation tests with FDR-corrected

p-values less than 0.05. In what follows, we will use the term

enriched communities as a short-hand for Community (or

module) with statistically significant categories on a gene set

enrichment analysis.
2.4 Community comparisons

We compared communities at three complementary levels. First,

we looked at functional enrichment to see functional patterns within

the same network and between networks. Second, we compared the

gene composition of the communities between networks to see if the

similarities at the functional level were a reflection of similar gene

composition. Finally, we compared the structure of the communities

looking at the gene-to-gene associations (also called interactions or

edges). Community similarity was determined using the Jaccard

similarity index, which is the size of their intersection divided by

the size of their union.
2.5 Differential expression analysis

Differential expression analysis was performed with the Limma

package (34) from Bioconductor Ver. 3.8.0, using R Ver. 3.5.1. The

statistical method used was empirical Bayes and the criteria for

differential expression was −1≤log fold change ≥1 and B statistic ≥6.
3 Results

As our group have previously observed, the networks inferred

from each one of the subtypes and the normal breast tissue show

differences in gene composition and have distinct overall structure,

although our dataset considers the same gene lists as a starting point

(35). These differences arise from subtle distinctions in the

association of genes into co-expression groups as well at the

internal structure of groups that share a portion of genes (22, 25).

The comparison of community enrichment profiles within a

network shows distinct biological processes characteristic of each

community. This is consistent with our previous observations from

breast cancer expression datasets (36). The number of enriched

processes in each community varies from one to a few tens, although

the modules contain only a few genes for each category. The functional
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separation of the communities is made apparent when we visually

compare the enriched categories in each network (Figures 1, 2).

An overview of the enriched categories on each network

provides a general idea of the complexity of underlying functions

driving a phenotype. Each one of the enrichment sets includes a

wide array of processes.

Processes enriched in the normal phenotype are biased towards

cellular metabolism, energy production, lipid biosynthesis, tissue

structure, and immune surveillance and response. In general, these

functions are congruent with tissue maintenance and metabolism. In

contrast, tumor phenotypes show a number of processes associated to

an active immune response, active tissue remodeling, morphogenesis,

angiogenesis, and wound healing. We found also a number of

processes associated to immune cell migration, activation,

proliferation, and effector function. This pattern is shared although

with differences between each tumor subtype.

In all phenotypes, a recurring theme is the presence of multiple

instances of regulation of gene expression where multiple

communities show one or more GO terms associated with it. These

communities contain genes for transcription factors. An interesting

difference in tumor phenotypes is the presence to a higher degree of

multiple process enrichments for mRNA processing, mRNA

expression regulation by miRNAs, translation regulation, and post-

translational regulation by protein degradation.

After getting a general context of the enriched functional

categories in each network, we narrowed our focus to immune

system- and inflammation-related communities. We manually

selected those communities based on the criteria that they must

contain at least one process related to inflammation or immune

response (Supplementary File 1). The comparison of the

enrichment profiles of communities between different networks

show groups of communities with shared enrichment classes. Some

of the observed functions are shared between all networks,

including the normal tissue network. These groups can be

identified as clusters of similar enrichment patterns in the

heatmap (Figures 3, 4; Supplementary Figure 2).

Given the numerous coincidences in enriched categories between

phenotypes, we wanted to know whether similar enrichment patterns

between distinct networks were the product of them having

equivalent communities formed by similar sets of genes connected

in a similar way. We constructed a meta-network with nodes from

immune-enriched communities in all networks and defined

connections between them based on their structural similarity.

The comparison by gene composition shows a pattern similar to

enriched categories. Communities from distinct phenotypes form

interconnected groups, some of which have more than 50% of

shared genes and correspond to the core of the functional groups In

all cases, similarity is smaller than one, which means no module has

an identical module in any other network.

The community structure similarity, in which we compare the

degree in which genes in similar communities are connected in the

same way, confirms the observed patterns, but with overall smaller

Jaccard index values, compared to those of gene composition. In

this comparison, some of the communities that share genes do not

have any equivalent connections, which reflects differences in gene

associations between networks at a finer structural level (30).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1357726
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Velazquez-Caldelas et al. 10.3389/fimmu.2024.1357726
Here on, we refer to these groups of communities with similar

gene composition, connectivity structure, and functional

enrichment as similarity clusters.
3.1 Similarity clusters

Gene compositions and enrichment patterns of each similarity

cluster refer to a variety of immunological functions for innate and

adaptive immunity responses. Enrichment patterns are also

reasonably congruent with the regulation at the gene expression

level of an integrated immune response where complementary

immune system processes appear, associated to distinct modules

(37, 38). These functions include the following: the recruitment of

immune system cells represented by genes for chemokines,

extracellular matrix components, cell adhesion molecules, and

receptors; the capture, processing, and presentation of antigens

represented by genes for membrane receptors, immunoproteasome

components, and MHC class I and II antigen-presenting molecules

(39–41); and immune system effector functions at the cellular and

humoral level including genes for cytotoxic enzymes and proteins of
Frontiers in Immunology 05
the complement system (42–44). Here, we present a summary for

each similarity cluster.

Similarity cluster 1 consists of communities: Normal 97 (18

genes), LumA 98 (32 genes), LumB 111 (26 genes), Her2 107 (30

genes), and Basal 102 (28 genes). This cluster contains communities

from the four subtypes and normal tissue. The communities in this

cluster have a high gene composition similarity between breast

cancer subtypes, with Jaccard similarity values between 0.7 and

0.82, and comparatively lower similarity between the normal tissue

and the cancer subtypes with values between 0.34 and 0.41. The

structural similarity of the communities shows a similar pattern

with the highest similarity values between the four breast cancer

subtypes and the lowest values between normal tissue and

the subtypes.

At the differential expression level, 24 genes are shared by all

subtypes, 15 of which are over-expressed in all of them, 4 have no

differential expression to normal, and 5 are over-expressed in three

out of four of the subtypes (Supplementary Figure 3). This cluster

contains genes coding for proteins of the histone family (45, 46).

The enrichment classes are for chromatin organization and

regulation, as well as innate immunity (47). This community is
FIGURE 1

Significantly enriched categories in GO Biological Process for the communities in the Luminal A breast cancer subtype network. Although only one
breast cancer subtype is presented, it is representative of the pattern of enrichment classes in which each community presents characteristic, non-
shared enrichment categories, which suggests functional specialization of the communities (see Supplementary Figures 1–3). Processes that are
shared by multiple modules are few and defined in a very general manner. A line spanning one of the lower rows through many communities
labeled with genes for the ZNF family of proteins. Such communities contain multiple genes annotated as transcription factors and contribute to the
significance in the enrichment of the rather general process GO:0006357 Regulation of transcription by RNA polymerase II.
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associated with immune response because of the role of histones in

antimicrobial responses, like in neutrophil DNA nets (48, 49). All

the enrichment categories for this cluster are in association with

histone function. None of the communities in this cluster have

exclusive enrichment classes.

Similarity cluster 2 is composed of communities: Normal 26 (46

genes), LumA 83 (40 genes), LumB 93 (43 genes), Her2 88 (37

genes), and Basal 104 (25 genes). This cluster contains communities

from the four breast cancer subtypes and normal tissue. Gene

composition similarity between its communities ranges from 0.52

to 0.33 and structural similarity goes from 0.42 to 0.19. The largest

similarity values are found between the communities of the breast

cancer subtypes, whereas the lowest values are between the normal

tissue module and the breast cancer subtype communities. This

cluster contains genes for proteins associated with antiviral

response (50) including intracellular pattern recognition receptors

(51), interferon receptors, and molecules induced by interferon

signaling (52, 53). Enrichment classes include processes associated

to antiviral response mediated by interferons.

Similarity cluster 3 includes the following communities: LumA

111 (24 genes), LumB 130 (17 genes), Her2 127 (15 genes) and Basal

137 (11 genes). Gene composition similarity ranges from 0.64 to

0.44 and is reduced in the structural similarity to a range between
Frontiers in Immunology 06
0.48 and 0.2. A few genes and enriched categories are shared with

Community Normal 392, but it does not share any interactions with

LumA 111 and Her2 127 communities. This cluster presents genes

for MHC class I molecules (54), as well as TAP1 and TAP2

molecules (55), together with PSMB8 and PSMB9 members of the

immunoproteasome, which help in the process of antigen cross-

presentation (56, 57). Enrichment classes shared by this cluster

share the theme of antigen processing and presentation and the

antigen-presenting side of cytotoxic T-cell action (54).

In turn, similarity cluster 4 includes the following communities:

Normal 86 (16 genes), LumA 114 (21 genes), LumB 116 (20 genes),

Her2 93 (35 genes), and Basal 110 (21 genes). In this cluster, the

lowest similarity values by gene composition in the range of 0.27 to

0.33 are from community Her2 93, which is the largest of the group,

and the largest values in the range of 0.68 to 0.71 are from the Normal

86 community, which is the smallest. This cluster contains genes for

MHC class II molecules, the CIITA gene that controls the MHC class

II expression (58), and the CD74 gene involved in MHC class II

maturation (59, 60). Enriched processes include inflammation,

antigen presentation, and T-cell activation. This cluster appears to

represent the antigen-presenting side of the adaptive immune

response. Community Her2 93 shares genes and functions in the

fourth and seventh similarity clusters (10).
FIGURE 2

Significantly enriched categories in GO Biological Process for the communities in the Normal (healthy) tissue network. Statistically significant
categories differ from the Cancer networks (see Supplementary data for further details).
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Interestingly, similarity cluster 5, which includes communities

Normal 58, LumA 75, LumB 69, Her2 77, and Basal 78, comprises

genes for cytokine receptors, components of the T-cell receptor, and

the T-cell signaling pathway (61, 62). It also contains genes for the

CD8 co-receptor and enzymes of the cytotoxic effector function

(Granzymes A, B, H and PRF1) (63, 64). IFNG gene is also part of

the communities in the cluster, except for the Normal tissue network.

Similarity cluster 6 includes the following communities: Normal

56 and LumA 122. It includes mostly genes for extracellular matrix

components, many of them members of the collagen family.

Enrichment categories refer mostly to extracellular matrix

organization and the process Regulation of immune response

(GO:0050776) appears, perhaps as an artifact of the annotation

due to the interaction between immune cells and the extracellular

matrix necessary for recruitment.

We can notice also that similarity cluster 7 is less defined with

multiple correspondences between networks and an overall lower

similitude as shown by Jaccard index calculations. We included the

following communities: Normal 21, LumA 80, LumA 125, LumB

70, Her2 93, Her2 111, and Basal 49. Genes in this cluster include

numerous cytokines and cytokine receptors (61). Complement

system components, like C1QA, C1QB, C1QC, and C4, occur as

well as complement receptors C3AR1 and C5AR1. Also present are
Frontiers in Immunology 07
immunoglobulin receptors FCER1G and FCGR2B and co-receptor

CD4. Of these genes, only C1QA, C1QB, C1QC, and C3AR1 are in

communities from all five networks (65). Because of the

heterogeneity in gene composition, this cluster presents numerous

enrichment classes that are not shared between communities or

shared by only two or three of them.

Similarity cluster 8 includes the following communities: Normal

10, LumA 84, LumB 120, and Basal 156. This cluster has low levels

of similitude between communities and the enrichment categories

and genes are not shared across all communities. Enrichment

classes in this group include cell signaling molecules, particularly

chemokines like CCL2, CCL3, and CCL4, and components of the

MAPK pathway including DUSP1, FOSB, JUN, and JUNB (66–68).

Finally, similarity cluster 9 includes the following communities:

Normal 61, LumA 112, LumB 119, Her2 104, and Basal 96.

Enrichment classes for this cluster share CD79A, SLAMF7, and

TNFRSF17 genes in the process Adaptive immune response

(GO:0002250). These molecules play a role in cell signaling in

lymphocytes (10).

In summary, it is notable that Cluster 4 exhibits the highest

degree of gene composition similarity between normal and its

subtypes. On the other hand, Her2 shows lower similarity and

shares genes with cluster 7 as well. Cluster 1 displays less similarity
FIGURE 3

Comparison of the communities with inflammation and immune system enrichment categories from all networks. Clusters of communities with
similar enrichment patterns can be observed; some of the enriched categories appear in all networks.
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with tumors, but it exhibits similar immunologic functions within

itself. In contrast, Cluster 3 does not exhibit enriched immunologic

functions in normal tissue.
3.2 Non-shared enrichment classes

Through the comparison of statistically enriched GO processes

between networks, we can identify a number of GO terms that are

statistically significant in one network, but not significant in any of

the other networks.

Basal subtype GO exclusive categories include processes related

to immune cell recruitment and activation, mostly through

cytokines in the CCL family: CCL2, CCL3, CCL4, CCL19, and

CCL21. Other exclusive processes suggest functions of lymphocytes

through molecules like FOXP3 and EOMES, which are associated

with lymphocyte homeostasis, or BTK, which is part of the B-cell

receptor signaling pathway (69, 70). Other processes not directly
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associated to the immune response but with chromatin structure are

represented in module 102, which contains predominantly

histone genes.

Her2 subtype GO exclusive categories include processes related

to immune cell recruitment and activation, including antigen

processing by immunoproteasome, leukocyte migration signals by

S100 family genes, and transcriptional control and antiviral

response by TRIM family members (71, 72).

Luminal A subtype GO exclusive categories are predominantly

related to tissue remodeling and wound healing, angiogenesis, and

cell migration. Molecules represented include many components of

the extracellular matrix like members of the collagen family

COL3A1 and COL1A2 and other ECM components like DCN

and VCAN (73). Here, we also find significant enrichment of

processes related to DNA modification represented by molecules

of the APOBEC family (74, 75).

Luminal B subtype GO exclusive categories include processes

related to T-cell response through molecules like the CD4 co-
FIGURE 4

Visualization of the Jaccard Similarity index between communities with immune system enrichment categories from all networks. Groups of
communities with high similarity can be observed and such groups correspond to the clusters in the left panel. Nodes represent communities, which
are color coded and named based on the network of origin. Node size is proportional to the number of genes it contains. Edges represent the
degree of similarity and edge thickness is proportional to the similarity between modules. If two communities do not share genes, they are not
connected by an edge.
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receptor and signal transduction components like FOS, JUN, and

JAK3 (76, 77). Other processes associated with immune system

signaling or hematopoiesis are represented by HSPA family

members HSPA1A and HSPA1B. There are also a number of

molecules associated with protein folding and cellular response to

heat represented by members of the HSP family (78).

Normal tissue GO exclusive processes are predominantly

associated with cell cycle control. These include molecules

involved with DNA replication as well as components of the

mitotic control and mitotic effector machinery.
3.3 Differential expression in immune
process-enriched communities

We compared average gene expression levels in the four breast

cancer subtypes against the normal phenotype and mapped them to

each one of the selected communities in the breast cancer subtypes.

The modules show various patterns of differential expression,

although many genes show expression levels not significantly

different than normal tissue and are the majority in some of

the communities.

Differential expression patterns are not completely uniform

within each community. Modules show distinct differential

expression patterns. In some communities, we can even find

examples of over-expressed, under-expressed, and non-differentially

expressed genes (Figures 5–8).

Differential expression patterns tend to be roughly similar

between communities belonging to the same similarity cluster. The

most evident of which is similarity cluster 1. Modules in this cluster

contain mostly over-expressed genes of the histone family. This is the

only cluster with both consistent differential expression level and high

gene composition similarity across all four breast cancer subtypes.
3.4 Differences and commonalities
between similarity clusters

The gene compositions of the similarity clusters display some

distinctive patterns. We can see in Figure 9 that most of the clusters

are different, sharing none or just a few genes (see also Supplementary

Tables 2, 3). However, a few clusters (yellow and orange pixels) may

have significantly large intersections, with Jaccard indices up to

0.8125 in the case of the Basal 102 and Her2 107 clusters.

Other clusters showing significant overlap are among the Basal

ones: Basal 102 with Lum A 98 (Jaccard index ≃ 0.743), Basal 110

with Normal 96 (Jaccard index ≃ 0.682), and Basal 137 with Lum B

130 (Jaccard index ≃ 0.647). For Her 2 107, the aforementioned

similarities were with Basal 102, also with Lum A 98, and Her 2 127

with Basal 137 (Jaccard index ≃ 0.625). For Lum A clusters: Lum A

111 significantly overlaps with Lum B 130 (Jaccard index ≃ 0.519)

and Lum A 114 significantly overlaps with Lum B 116 (Jaccard

index ≃ 0.577). For Lum B, Lum B 11 significantly overlaps with

Her 2 107 (Jaccard index = 0.75).

We can notice (even by a glimpse at Figure 9) that in the case of

the normal tissue, most clusters have a very small overlap with those
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of the cancer subtypes, with the notable exception of the

intersection of cluster Normal 86 with Basal 110 and Lum A 114

(both with Jaccard index ≃ 0.682) and with Lum B 116 (Jaccard

index ≃ 0.714).
4 Discussion

This study delves into the complex world of transcriptional

regulation within breast cancer molecular subtypes and normal

breast tissue, shedding light on how the gene networks differ

between these categories. One of the significant findings is the

variation in gene composition and structural characteristics of the

networks across different subtypes and normal breast tissue. Despite

starting with the same gene lists, subtle differences in how genes are

associated into co-expression groups referred to here as

communities, and the internal structure of these communities,

contribute to these variations.

To understand the functional significance of these differences, we

have narrowed our focus to communities with significant enrichment

categories within each network. It was found that each community

exhibits distinct biological processes, consistent with previous

research. Interestingly, these communities contain a relatively small

number of genes, but the number of enriched processes within them

can vary significantly. The comprehensive comparison of enriched

categories in different networks effectively highlights the functional

separation between these communities (35, 79, 80).

It is relevant to highlight that the present study, which is based on

Bulk RNASeq experiments, represents a coarse-grained view that

although quite useful is expected to be complemented and in many

cases superseded by analysis of single-cell and spatial transcriptomic

experiments. At the moment, such experiments are becoming more

common, but since higher costs and logistic and experimental

complexities continue to prevent them from being applied to large

sample sets (many individuals and not just many cells), we believe

that the broad view presented here is still quite valuable. Along these

lines, we did not just consider genes present in immune cells. This is

so since we are convinced that the underlying information that we

can gather from analyzing the different cell types in the tumor

environment would further illuminate our understanding on these

matters. For the present study, hence we did not focus only on gene

expressed in immune cells since it is very likely that those genes will

have associated with other genes and pathways, and by being

restricted to this information without considering differences in cell

populations, we may be biasing our analysis.
4.1 Co-expression modules reveal
functional clues about inflammation
and immunity

Gene co-expression modules are groups of genes that exhibit

coordinated expression patterns across multiple samples or

conditions. These modules are identified through probabilistic or

functional techniques, where the strength of co-expression

relationships between genes is considered. In cancer, these modules
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can provide valuable insights into the underlying biological processes,

pathways, and regulatory networks involved in tumorigenesis and

progression. For instance, in He et al. (81), they devised a novel

framework to identify distinct patterns of gene co-expression

networks and inflammation-related modules from genome-scale

microarray data following viral infection. Subsequently, these

modules were categorized into oncogenic and dysfunctional types.

The core of the framework involves the comparative examination of

viral infection modules across various disease stages and types.
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Module preservation during disease progression is assessed based

on alterations in network connectivity across different stages. The

evaluation of similarities and differences in HBV and HCV involved

comparing the overlap of gene compositions and functional

annotations in their respective modules.

The identification of co-expression modules allows researchers

to uncover key genes that may act in concert to drive cancer

development. These modules often comprise genes with related

functions, participating in common biological pathways or cellular
FIGURE 5

Differential gene expression with respect to normal breast tissue in the communities enriched in inflammation and immune response GO processes
from the Luminal A subtype network. Differential expression is similar along genes in the same community, although most communities have genes
with many distinct differential expression patterns with respect to normal tissue.
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processes. Dissecting gene co-expression networks in cancer can

reveal potential biomarkers, therapeutic targets, and insights into

the heterogeneity of tumors.

Additionally, studying the dynamics of gene co-expression

modules across different cancer types or stages can contribute to

a better understanding of the molecular diversity within the disease.

It aids in the classification of tumors into subtypes based on their

gene expression profiles, enabling more personalized and targeted

treatment strategies. Overall, the exploration of gene co-expression

modules plays a crucial role in deciphering the molecular landscape

of cancer and holds promise for advancing our knowledge and
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improving clinical outcomes. Such is the case of the work described

in He et al. (81), which was able to provide novel insights into viral

hepatocarcinogenesis and disease progression, underscoring the

advantages of an integrative and comparative network analysis

over existing approaches reliant on differential expression and

virus–host interactome-based methodologies.

Regarding the identification of communities related to

inflammation and immune responses, the comparison of

community enrichment profiles uncovers shared enrichment

classes among different networks, even including the normal

tissue network (36, 82). These shared functions are organized into
FIGURE 6

Differential gene expression with respect to normal breast tissue in the communities enriched in inflammation and immune response GO processes
from the Luminal B subtype network. Differential expression is similar along genes in the same community, although most communities have genes
with many distinct differential expression patterns with respect to normal tissue.
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clusters that exhibit similar enrichment patterns. Our findings

reveal interconnected groups of communities across various

subtypes, some with more than 50% of shared genes, forming the

core of functional groups. However, it is crucial to note that no

community is identical to another in any network.

Taking this exploration a step further, we assessed the structural

similarities between communities by comparing how genes in

similar modules are connected (29). This analysis confirms the

observed patterns but with overall smaller Jaccard index values. In

some instances, communities that share genes do not exhibit

equivalent connections, indicating differences in gene associations
Frontiers in Immunology 12
at a finer structural level. These groups of communities,

characterized by shared gene composition, connectivity structure,

and functional enrichment (83), are termed similarity clusters. The

results of this analysis reveal fascinating insights into the

transcriptional regulation of genes within different breast cancer

molecular subtypes and normal breast tissue. Each similarity cluster

presents distinct characteristics, gene composition, and functional

enrichment patterns that are of great significance for our

understanding of breast cancer biology.

Similarity Cluster 1 encompasses modules from all breast

cancer subtypes and normal tissue. Notably, gene composition
FIGURE 7

Differential gene expression with respect to normal breast tissue in the communities enriched in inflammation and immune response GO processes
from the Her2-enriched subtype network. Differential expression is similar along genes in the same community, although most communities have
genes with many distinct differential expression patterns with respect to normal tissue.
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similarity is highest between breast cancer subtypes, while normal

tissue exhibits lower similarity with the cancer subtypes. The cluster

predominantly features genes coding for histone proteins and is

associated with immune response due to the role of histones in

antimicrobial responses.

In Similarity Cluster 2, communities from all breast cancer

subtypes and normal tissue are grouped together. Gene composition

similarity is more pronounced between the breast cancer subtype

communities, whereas lower similarity values exist between normal

tissue and cancer subtypes. This cluster is enriched with genes

associated with antiviral responses mediated by interferons.
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For Similarity Cluster 3, communities from LumA, LumB,

Her2, and Basal subtypes are part of this cluster. Gene

composition similarity varies within this cluster, with a few

shared genes and enriched categories from Normal 392. This

cluster predominantly contains genes related to MHC class I

molecules and antigen processing and presentation.

Communities from LumA, LumB, Her2, Basal, and Normal are

represented in Similarity Cluster 4. Gene composition similarity

varies, with the smallest community (Normal 86) displaying the

highest similarity values. This cluster features genes for MHC class

II molecules, the CIITA gene, and CD74, enriched in inflammation,
FIGURE 8

Differential gene expression with respect to normal breast tissue in the communities enriched in inflammation and immune response GO processes
from the Basal subtype network. Differential expression is similar along genes in the same community, although most communities have genes with
many distinct differential expression patterns with respect to normal tissue.
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antigen presentation, and T-cell activation processes. This result

(relatively high similarity between normal tissue and PAM50

subtypes in MHC II molecules) appears paradoxical given that it

is known that here is a low level of immune-related surveillance in

normal tissue. At the moment, we do not have a definite

explanation to this fact, but perhaps this will be better understood

in the future by examining, for instance, single-cell and spatial

transcriptomics data. One possible explanation is that some of the

molecules involved in cancer-related immune surveillance may play

additional roles in normal cells. Indeed, of the four main stages of

immune surveillance (antigen recognition, immune checkpoint

sensing, cytotoxic activity, and memory response), the first and

the last (antigen recognition and memory response) may be active

even in normal cells, for instance, for pathogen surveillance.

Similarity Cluster 5 comprises genes for cytokine receptors,

components of the T-cell receptor, and the T-cell signaling

pathway, along with genes related to cytotoxic effector functions

common to all subtypes. This cluster is notable for its association

with genes promoting immune response.

Similarity Cluster 6 includes communities from Normal and

LumA subtypes, primarily characterized by genes related to

extracellular matrix components. Enrichment categories focus on

extracellular matrix organization and potential immune responses,

likely due to interactions between immune cells and the

extracellular matrix.

In contrast, Similarity Cluster 7 exhibits comparatively lower

similarity values, with communities from Normal, LumA, LumB,

Her2, and Basal subtypes. It contains genes for cytokines, cytokine

receptors, complement system components, immunoglobulin
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receptors, and co-receptors. The variety in gene composition results

in numerous enrichment classes that may not be shared across

all communities.

A similar trend is seen in Similarity Cluster 8, which spans

communities from Normal, LumA, LumB, and Basal subtypes; this

cluster displays low similarity levels between modules. Enrichment

categories include cell signaling molecules and chemokines like CCL2,

CCL3, and CCL4, along with components of the MAPK pathway.

Communities from Normal, LumA, LumB, Her2, and Basal

subtypes make up Similarity Cluster 9. It features enrichment

classes shared by genes like CD79A, SLAMF7, and TNFRSF17 in

the context of adaptive immune response.

In summary, these findings highlight the unique gene

composition and enrichment patterns within each similarity

cluster, offering a comprehensive view of the complex

immunological functions associated with breast cancer molecular

subtypes and normal breast tissue. Notably, Cluster 4 exhibits the

highest gene composition similarity between normal tissue and its

subtypes, whereas Her2 displays lower similarity and shares features

with Cluster 7. Cluster 1, on the other hand, showcases dissimilarity

with tumors but retains shared immunologic functions within its

communities. In contrast, Cluster 3 does not exhibit enriched

immunologic functions in normal tissue. These results deepen our

understanding of the molecular mechanisms at play in breast cancer

subtypes, shedding light on their unique characteristics and

potential implications for diagnosis and treatment.

We can notice the subtle differences in gene composition and

network structure, as well as the importance of shared functional

enrichments, which can be interpreted as a global context of the
FIGURE 9

Heatmap matrix presenting Jaccard indices showing the relative intersection of the gene compositions for all similarity clusters discussed. It can be
seen that there are a few clusters with relatively high intersections, but most of these have characteristic gene compositions.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1357726
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Velazquez-Caldelas et al. 10.3389/fimmu.2024.1357726
phenotype and providing a foundation for further understanding

the regulation of inflammation and immune responses in

these phenotypes.

It is interesting to note that, contrary to what one would expect,

communities in the network do not correspond to groups of uniformly

differentially expressed genes. Complementary to this, genes with

similar differential expression tendencies are scattered across a

number of communities in the network. We believe this is evidence

for the notion that differential expression is not a characteristic that

uniquely determines the formation of co-expressed groups. This also

opens the question of what other factors may contribute in the

formation of such co-expression patterns, especially if we consider

the occurrence of distinct co-expressed but non differentially expressed

genes, a subtlety that is lost when screening only differentially expressed

genes. We can argue that differences in behavior may arise also from

differences in the co-expression context of genes, which, in turn, could

lead to changes in molecular dynamics and behavior contributing to

the expression of a particular phenotype.

This is a broad-level comparison and, as such, is not optimal in

the identification of individual genetic actors, but rather to discern

general differences in expression patterns between phenotypes.

Gene products often have pleiotropic effects, and it seems

reasonable they be regulated in many different contexts. This

could be one of the causes of the observed multiple connections

in our co-expression networks, including those between modules.

We would like to highlight a recurrent observation in genome-

wide co-expression enrichment patterns. This is the presence of

numerous, highly statistically significant instances of enrichment of

immune system categories. In the context of immune response, each

cell can be seen as the result of a particular gene-expression program

taking effect in the context of the organism. In cancer particularly, the

presence of mutations at various levels is recognized as a recurrent

and important cause that drives changes in gene expression patterns

and the phenotype. In the context of the organism, however, these

transformed cells interact with other non-transformed cells affecting

their behavior. This is frequently proposed in the form of cancer

hijacking normal biological mechanisms to favor its own

development. We believe that the recurrence of gene co-expression

patterns may be the result of this appropriation of mechanisms by

tumors from otherwise genetically normal immune and adjacent

normal cells. This may also be one factor causing the observed

similarity clusters where we find numerous genes whose expression

is restricted to specific cell lineages, specially immune cell lineages.
4.2 Further clues from multi-omics

The integration of multi-omics approaches, including DNA

methylation assays (84), copy number variants (CNVs) (85, 86),

miRNA expression profiling (87–89), transcription factor binding

site analysis (90), and proteomics (91), can further improve our

understanding of gene regulation in breast cancer tumors (84, 92).

These comprehensive techniques offer unprecedented insights into

the intricate molecular mechanisms underlying tumorigenesis and

progression. Specifically, they illuminate how alterations in DNA
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methylation patterns, exacerbated DNA copy number variations,

dysregulated miRNA expression, aberrant transcription factor

binding, and dysregulated protein expression contribute to the

development and behavior of breast cancer. Importantly, these

multi-omics approaches also shed light on the potential role of

gene regulation in modulating immune responses within the tumor

microenvironment. By uncovering key molecular players involved

in immune evasion or activation, multi-omics analyses provide

valuable insights for the development of novel immunotherapeutic

strategies aimed at harnessing the immune system to combat

breast cancer.

As previously noted, previous work form our group and others

has analyzed such multi-omic effects on gene regulation in breast

cancer subtypes at a large scale in several of these scenarios (92).

However, a multi-omic study centered around immune responses in

breast cancer subtypes has been missing. As an initial approach to the

problem, we harmonized and integrated multi-omic TCGA data for

the breast cancer subtypes studied in this project (see code and

further relevant information in the following online repository:

https://github.com/josemaz/omicsBRCA/) and applied a fairly

general statistical framework to analyze it on an integrated manner

(84), namely, a sparse generalized canonical correlation analysis

(SGCCA) (see associated code in https://github.com/CSB-IG/

SGCCA). Supplementary Table 4 presents some significant results.

Interestingly, and in contrast with analyses based purely on

gene composition, which show a relatively low number of

significant similarities between the similarity clusters, but more

closely in line with functional enrichment analyses, it was found

that a number of multi-omic regulatory interactions exists for these

clusters and there is a non-trivial overlap between those. Our

studies highlight the roles that multitargeted transcription factors,

miRNA regulators, and epigenomic phenomena (mostly in the

form of hypomethylated regions) play in consolidating biological

functions in the similarity clusters.

For brevity, we must only comment on some of these relationships;

however, the full set of SGCCA statistically significant multi-omic

calculated associations can be found in Supplementary Table 4. Note

that the microRNA hsa-mir-146a-5p is a highly significant common

multi-omic regulator of the Basal 104, Her2 88, LumA 83, Lum B 93,

and Normal 26 similarity clusters (technical note: p-values have been

capped in Supplementary Table 4, so that any p-value less than 1E−16

appears displayed as 0 [zero]). In addition, hsa-mir-152–3p is a

common regulator of the Her2 127 and Lum A 111 clusters.

Perhaps the most consistent finding (though not surprising at all)

is that transcription factors of the IRF family are master regulators of

many similarity clusters, most of them in cancer subtypes (with the

exception of the Normal 26 cluster). In terms of epigenomic

phenomena, we found that there is significant hypomethylation in

promoter regions of the MTF-1 gene associated with the expression

patterns in the Basal 102 and Lum B 116 clusters.

However, more comprehensive analyses need to be performed

in order to unveil the full potential of multi-omics to reveal the

extent of immune-related transcriptional regulatory processes in

breast tumor subtypes. It is very likely that these future studies may

involve single-cell multi-omic descriptions.
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4.3 On the role of copy number variants in
gene co-expression patterns

Since breast cancer molecular subtypes have been shown to be

enriched for specific cytobands and chromosome arm

amplifications or deletions, it is relevant to consider the effects

that CNVs may have in co-expression patterns. The role of CNVs

and other structural variations of the genome has been well-

documented for decades now (though methods—both

experimental and computational—to assess the extent and

boundaries of structural genome variation have been significantly

improved in recent times). It is expected that these will also affect

gene co-expression patterns. Our research group has been carefully

analyzing CNVs in the context of breast cancer from the same

sample sets considered in this study (the TCGA collaboration has

also DNA sequencing and CNV calling data for their breast cancer

projects) recently. We have observed for certain genomic regions

and/or breast cancer subtypes that the influence of CNVs on gene

co-expression is less significant than we have expected (85, 86, 93).

These studies are on themselves challenging long-term projects

before strong conclusions can be reached. However, we can argue

that the effect of CNVs in breast cancer co-expression may likely

explain just a fraction of the associated variance.
4.4 Potential strategies for
experimental validation

The objective of computational systems biology approaches,

such as the one outlined here, is often to propose a promising set of

hypotheses for subsequent testing and validation through targeted

experiments in more controlled environments. Our aim is to

generate plausible findings that highlight semi-mechanistic

processes, facilitating experimental validation to advance our

comprehension of the phenomena and assess the reliability of our

computational methods. In the past, through systems biology-

oriented analyses, some of these findings were found by our

group and others (84, 91, 94–98). However, the ultimate

benchmark in natural sciences remains experimental validation,

reproducibility, and, to some extent, generalizability. Several

potential experimental methodologies may include proteomic,

phospho-proteomic, and functional activity measurements.

While these finely targeted measurements are intricate to execute,

there are emerging studies. For instance, Debets et al. (99) have recently

used a deep coverage phosphoproteomic strategy to identify immune-

related signatures of treatment resistance in HER2+ breast cancer. A

similar approach was used (with lower depth coverage) to characterize

TBK regulation in innate immune signaling in triple-negative breast

cancer (100). Broader analyses have been performed to analyze

signaling -kinome activity in luminal breast tumors (101).

Phosphorylation and immune signaling were also studied to

characterize the effect of mutation profiles (102), immune

biomarkers (103), and potential for pharmacological therapy (104).
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Toll-like receptor activity patterns have been globally studied

considering immune biomarkers in breast tumors in a multicentric

proteome study (105) with a clear clinical goal, but comprehensive

basic studies have also been performed in relation to the activity of

cancer-associated fibroblasts’ presence and absence (106), immune

escape by GATA3 destabilization (107), and follicular helper cells as

promoters of effective adaptive immunity (108).
4.5 Limitations of this study

Breast cancer is a highly heterogeneous disease. Among the

sources of variability in phenotype presentation, therapeutic

response, and overall outcomes, some are related to ancestry

and the genetic makeup of the underlying populations. The

TCGA–Genomic Data Commons database is one of the largest,

most comprehensive and curated repositories of omic data for

cancer, including breast tumors. Although it includes diverse

populations, most samples belong to US residents and are thus

enriched in Caucasian ancestry. In spite of this and other design

considerations, it spans a lot of variability that can be indeed

stratified for its well-curated metadata, both clinically and

regarding other determinants of health. With this in mind, we

used TCGA as our primary dataset and indeed we were able to

adapt this to our own designs by further classifying and

prioritizing the particular samples we used in our study. That

was the reason to further reclassify samples with more stringent

algorithms. Although the issue of generalizability of results just

described is quite relevant, we believe that these analyses will

provide enough insight to serve as a starting point for deeper,

broader research.

We consider relevant to recognize the origin of the data and the

limitations of the variables measured. Our data come from fine

needle aspiration (FNA) samples taken from living tissue.

These samples contain a number of different cells that are

representative of the cells present within the tissue and processed

in bulk. Because of it, measured mRNA abundances reflect small

regions of the tissue of origin and not specific cell types. This is a

technical limitation we hope gets resolved with more recent single-

cell sequencing technologies.

Moreover, we have measured abundances of RNA species

assigned to known genes, which we assume as a proxy for

protein abundance. This, however, does not directly account for

mutations, splicing variants, and post-translational modifications,

although the active modulation of cell behavior through these

processes is hinted in the structure and gene composition of

the networks.
5 Conclusions

In summary, our study allowed us to shed some light to

further understand the complex and distinctive transcriptional
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networks within various breast cancer molecular subtypes and

normal breast tissue. By conducting an in-depth analysis, we have

identified nine similarity clusters of gene communities whose

transcriptional signatures (some of them similar among

themselves and even to normal healthy tumor-adjacent tissue, in

terms of co-expression patterns) may contribute to characterize

the immunological response patterns (as reflected in gene co-

expression activity) shared, as well as those inherent to

each subtype.

The presence of both innate and adaptive immune responses

may reflect a coordinated immunological defense mechanism

against the disease. These immunological signatures not only

may deepen our comprehension of the similarities and

differences among subtypes, but also are able to potentially

advance our understanding of the relevant functional features

towards the development of personalized diagnostic and

therapeutic strategies.

Furthermore, our network-based approach provides a valuable

framework for dissecting the complexities involved in breast

cancer-associated immune responses, paving the way to uncover

their underlying biology. As research continues, we hope that these

insights may be gradually translated into tangible clinical benefits,

ultimately improving patient outcomes and transforming the

current approach to cancer management.
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2. Jézéquel P, Loussouarn D, Guérin-Charbonnel C, Campion L, Vanier A, Gouraud
W, et al. Gene-expression molecular subtyping of triple-negative breast cancer
tumours: importance of immune response. Breast Cancer Res. (2015) 17:1–16.
doi: 10.1186/s13058-015-0550-y

3. Akimoto M, Ishii H, Nakajima Y, Iwasaki H, Tan M, Abe R, et al. Assessment of
host immune response in breast cancer patients. Cancer detection Prev. (1986) 9:311–7.

4. Luen S, Virassamy B, Savas P, Salgado R, Loi S. The genomic landscape of breast
cancer and its interaction with host immunity. Breast. (2016) 29:241–50. doi: 10.1016/
j.breast.2016.07.015

5. Savas P, Salgado R, Denkert C, Sotiriou C, Darcy PK, Smyth MJ, et al. Clinical
relevance of host immunity in breast cancer: from tils to the clinic. Nat Rev Clin Oncol.
(2016) 13:228–41. doi: 10.1038/nrclinonc.2015.215

6. WangM, Zhang C, Song Y, Wang Z, Wang Y, Luo F, et al. Mechanism of immune
evasion in breast cancer. OncoTargets Ther. (2017) 10:1561–73. doi: 10.2147/
OTT.S126424

7. Bates JP, Derakhshandeh R, Jones L, webb TJ. Mechanisms of immune evasion in
breast cancer. BMC Cancer. (2018) 18:1–14. doi: 10.1186/s12885-018-4441-3

8. Wu SZ, Roden DL, Wang C, Holliday H, Harvey K, Cazet AS, et al. Stromal cell
diversity associated with immune evasion in human triple-negative breast cancer.
EMBO J. (2020) 39:e104063. doi: 10.15252/embj.2019104063

9. Jiang X, Shapiro DJ. The immune system and inflammation in breast cancer.Mol
Cell Endocrinol. (2014) 382:673–82. doi: 10.1016/j.mce.2013.06.003

10. Gatti-Mays ME, Balko JM, Gameiro SR, Bear HD, Prabhakaran S, Fukui J, et al.
If we build it they will come: targeting the immune response to breast cancer. NPJ
Breast Cancer. (2019) 5:37. doi: 10.1038/s41523-019-0133-7

11. McDonald K-A, Kawaguchi T, Qi Q, Peng X, Asaoka M, Young J, et al. Tumor
heterogeneity correlates with less immune response and worse survival in breast cancer
patients. Ann Surg Oncol. (2019) 26:2191–9. doi: 10.1245/s10434-019-07338-3

12. Lan H-R, Du W-L, Liu Y, Mao C-S, Jin K-T, Yang X. Role of immune regulatory
cells in breast cancer: foe or friend? Int Immunopharmacol. (2021) 96:107627.
doi: 10.1016/j.intimp.2021.107627

13. Perou CM, Sørlie T, Eisen MB, Van De Rijn M, Jeffrey SS, Rees CA, et al.
Molecular portraits of human breast tumours. nature. (2000) 406:747–52. doi: 10.1038/
35021093

14. Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene
expression patterns of breast carcinomas distinguish tumor subclasses with clinical
implications. Proc Natl Acad Sci . (2001) 98:10869–74. doi : 10.1073/
pnas.191367098

15. Chia SK, Bramwell VH, Tu D, Shepherd LE, Jiang S, Vickery T, et al. A 50-
gene intrinsic subtype classifier for prognosis and prediction of benefit from
adjuvant tamoxifen. Clin Cancer Res. (2012) 18:4465–72. doi: 10.1158/1078-
0432.CCR-12-0286

16. Yang Y, Han L, Yuan Y, Li J, Hei N, Liang H. Gene co-expression network
analysis reveals common system-level properties of prognostic genes across cancer
types. Nat Commun. (2014) 5:3231. doi: 10.1038/ncomms4231

17. Tang J, Kong D, Cui Q, Wang K, Zhang D, Gong Y, et al. Prognostic genes of
breast cancer identified by gene co-expression network analysis. Front Oncol. (2018)
8:374. doi: 10.3389/fonc.2018.00374

18. Ben-Dor A, Bruhn L, Friedman N, Nachman I, Schummer M, Yakhini Z. (2000).
Tissue classification with gene expression profiles, in: Proceedings of the fourth annual
international conference on Computational molecular biology, RECOMB conferences,
New York, USA. pp. 54–64.

19. Namy O, Rousset J-P, Napthine S, Brierley I. Reprogrammed genetic decoding in
cellular gene expression. Mol Cell. (2004) 13:157–68. doi: 10.1016/s1097-2765(04)
00031-0

20. Niehrs C, Luke B. Regulatory r-loops as facilitators of gene expression and
genome stability. Nat Rev Mol Cell Biol. (2020) 21:167–78. doi: 10.1038/s41580-019-
0206-3

21. Hsu H-M, Chu C-M, Chang Y-J, Yu J-C, Chen C-T, Jian C-E, et al. Six novel
immunoglobulin genes as biomarkers for better prognosis in triple-negative breast
cancer by gene co-expression network analysis. Sci Rep. (2019) 9:4484. doi: 10.1038/
s41598-019-40826-w

22. Garcıá-Cortés D, de Anda-Jáuregui G, Fresno C, Hernandez-Lemus E, Espinal-
Enriquez J. Gene co-expression is distance-dependent in breast cancer. Front. Oncol.
(2020) 10:1232. doi: 10.3389/fonc.2020.01232
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