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Exosomes carry proteins, metabolites, nucleic acids and lipids from their parent cell

of origin. They are derived from cells through exocytosis, are ingested by target

cells, and can transfer biological signals between local or distant cells. Therefore,

exosomes are often modified in reaction to pathological processes, including

infection, cancer, cardiovascular diseases and in response to metabolic

perturbations such as obesity and diabetes, all of which involve a significant

inflammatory aspect. Here, we discuss how immune cell-derived exosomes

origin from neutrophils, T lymphocytes, macrophages impact on the immune

reprogramming of diabetes and the associated complications. Besides, exosomes

derived from stem cells and their immunomodulatory properties and anti-

inflammation effect in diabetes are also reviewed. Moreover, As an important

addition to previous reviews, we describes promising directions involving

engineered exosomes as well as current challenges of clinical applications in

diabetic therapy. Further research on exosomes will explore their potential in

translational medicine and provide new avenues for the development of effective

clinical diagnostics and therapeutic strategies for immunoregulation of diabetes.
KEYWORDS

exosomes, diabetes, anti-inflammation, immune cells, clinical application
1 Introduction

Diabetes mellitus, a group of metabolic disorders characterized by prolonged high

blood sugar levels, is a global health issue affecting over 400 million people worldwide (1).

This number is expected to surge to approximately 700 million by 2045 (2). The disease

occurs either due to insufficient insulin production by the pancreas or the body’s inability to

effectively utilize the produced insulin (3). The most common symptoms include weight
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1357378/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1357378/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1357378/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1357378/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1357378&domain=pdf&date_stamp=2024-04-24
mailto:13861870460@163.com
mailto:tangjiaqi75@163.com
mailto:52smrehab@163.com
https://doi.org/10.3389/fimmu.2024.1357378
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1357378
https://www.frontiersin.org/journals/immunology


Li et al. 10.3389/fimmu.2024.1357378
loss, polydipsia, polyuria, and constant hunger. If not properly

managed, diabetes mellitus can lead to severe complications such as

kidney failure, unhealed wounds, vision loss, heart attacks, nerve

damage, and even increase the risk of cancer (4). There are three

main types of diabetes: type 1 diabetes mellitus (T1DM), type 2

diabetes mellitus (T2DM), and gestational diabetes mellitus. T1DM

and T2DM account for 7-12% and 85-90% of global diabetes cases

respectively. The rapid increase in diabetes mellitus cases worldwide

underscores the disease’s significance as a public health concern.

Besides traditional treatment with insulin and oral anti-diabetic

drugs, clinicians are attempting to enhance patient care through the

use of cell therapies involving embryonic stem cells (ESC),

induced pluripotent stem cells (iPSC), and adult mesenchymal

stem cells (MSC) (5). However, there are unintended safety

concerns such as immune rejection, genetic or disease transfer,

and ectopic cell differentiation existing in whole-cell therapy.

Recently, exosomes have been reported to play a role in multiple

diseases and have been shown to be key mediators of various

pathogenetic mechanisms. Compared with cell-based therapy,

exosomes contain large amounts of bioactive molecules including

proteins and nucleic acids. They exhibit high biocompatibility and

low immunogenicity (6), and are able to circulate into distant sites

and freely pass across the blood-brain barrier duo to their nanoscale

size (7).

Recent studies have shown that exosomes play a role in the

occurrence, development, and treatment of diabetes and its

complications. However, there are few summaries from the

perspective of immunity and inflammation regarding the

treatment and mechanisms of exosomes from different cell

sources in diabetes and its complications. This review summarizes

the latest advances concerning the roles of exosomes and immune

regulation/inflammation in diabetes.
2 Description of exosomes

Exosomes are small membrane-bound vesicles secreted by cells,

usually between 30 and 200 nanometers in diameter. They play an

important role in transmitting information between cells, regulating

cell function, and participating in the occurrence and development

of diseases (8). The biogenesis of exosomes involves three processes:

generation, release, and uptake (9). Within the cells, membrane

proteins and lipid molecules responsible for membrane synthesis

are synthesized and packaged into endoplasmic reticulum vesicles.

Subsequently, these vesicles fuse into polyvesicles. Vesicles in

polyvesicles can further fuse to form exosomes (9). The release of

exosomes is mainly accomplished through the fusion of polyvesicles

with cell membranes. When the polyvesicles fuse with the cell

membrane, the inner vesicles are released outside the cell to form

exosomes (10). Exosomes are taken up by target cells by means of

membrane fusion and endocytosis, and then release their cargo into

the cytoplasm to exert their effects (11).Therefore, exosomes may

manipulate recipient cells and other organs over a long

distance (12).

Previous studies have demonstrated that exosomes, functioning

as intercellular junctions, transport proteins, lipids, and nucleic
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acids to target cells. They are involved in a variety of biological

processes including nucleic acid regulation, antigen presentation,

metabolite transportation, and inflammation management.

Furthermore, they hold potential as diagnostic and therapeutic

tools for various diseases (13). Significantly, small non-coding

RNAs (ncRNAs), which are approximately 19 to 24 nts in length

and are a subset of nucleic acids, have garnered considerable interest

within the scientific community due to their regulatory function

(14). In this review, we have summarized the involvement of

exosomes derived from immune cells and non-immune cells

(such as stem cells) in the occurrence and intervention

mechanisms of diabetes and its complications, many of which

involve ncRNAs (Table 1), based on recent reports. Thus, delivery

of multiple ncRNAs via exosomes may have promise over a wide

range of applications.
3 Immune cell-derived exosomes
and diabetes

In 1996, Raposo et al. reported that B lymphocytes secrete

antigen-presenting vesicles (36). Since then, more and more studies

have found that exosomes secreted by immune cells interact with

cells in the immune system to regulate immune responses (37).

Therefore, these membranous vesicles are being explored as

potential immunotherapeutic reagents. Immune cell-derived

exosomes can activate the immune system through various

mechanisms (38). Firstly, they can directly activate immune cells

such as dendritic cells and T cells through antigen presentation on

their surface. Secondly, they can indirectly activate immune cells by

releasing immune-stimulating molecules such as cytokines and

chemical mediators. In addition, immunogenic exosomes may

also regulate the function of immune cells by transferring

immune-related nucleic acid molecules such as miRNA and

mRNA. Previous studies have shown that immune-derived

exosomes played a role in the development and progression of

diabetes mellitus, making them a key regulator in the disease (39).
3.1 The roles of neutrophils-derived
exosomes in diabetes

Polymorphonuclear neutrophils (PMNs), which make up 40-

70% of all white blood cells in humans, are the most prevalent type

of granulocytes. Neutrophils act as the first line of defense against

invasive pathogens in the host and have a natural ability to

phagocytose pathogens (40). Thus, neutrophils serve as important

immune and secretory cells and play a crucial role in inflammation

and infection processes (41). The status of the parent cell is reflected

in the neutrophils-EXOs, which exhibit strong antibacterial ability

due to the presence of components like myeloperoxidase, elastase,

dermcidin, and lysozyme (42). In a recent research, investigators

loaded extracellular matrix (ECM) hydrogel with vascular

endothelial growth factor (VEGF)-encapsulated activated

neutrophil exosome mimetics (aPMNEM) to develop VEGF-

aPMNEM-ECM hybrid hydrogel for treating chronic diabetic
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1357378
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1357378
TABLE 1 Changes of exosomal ncRNAs in diabetes.

Source Models Contents Alteration Functions References

adipose
tissue macrophages

T2DM miR-210 increase promoted diabetes pathogenesis by regulating glucose uptake and
mitochondrial CIV activity

(15)

adipose
tissue macrophage

T2DM miR-29a increase induced insulin resistance (16)

M1 macrophage T2DM miR-212-5p increase restricted insulin secretion (17)

bone marrow-
derived
macrophages

T2DM miR-144-5p increase impaired bone regeneration (18)

macrophage Diabetic
vascular
disease

miR-150-5p decrease promoted resistin expression in macrophages (19)

M2 macrophages Diabetic
nephropathy

miR-93-5p increase attenuated LPS-induced podocyte apoptosis (20)

EPCs Diabetic
wounds

miRNA-221-3p increase downregulated the expression of p27 and p57 proteins in the cell
cycle signaling pathway

(21)

EPCs Diabetic
wounds

miR-126-3p increase promoted the recovery of tubulogenic function of high-glucose-
impaired HUVECs.

(22)

EPCs Diabetic
stroke

miR-126 increase attenuated acute injury and promoted neurological
function recovery

(23)

EPCs Diabetic
wounds

mmu_circ_0000250 increase enhanced the therapeutic effect of ADSC-exosomes to promote
wound healing

(24)

ADSC Diabetic
wounds

miR-132 increase reduced inflammation, promoting angiogenesis and stimulated
M2-macrophages polarization, promote wound healing

(25)

ADSC Diabetic
wounds

miR-21-5p increase induced M2 polarization of macrophages and augmented skin
wound healing

(26)

HypADSCs Diabetic
wounds

miR-21-3p/miR-
126-5p/miR-31-5p

increase promoted diabetic wounds healing and inhibited inflammation (27)

HypADSCs Diabetic
wounds

miR-99b/miR-
146-a

decrease promoted diabetic wounds healing and inhibited inflammation (27)

MSCs Diabetic
kidney
disease

miR-424-5p increase alleviated high glucose-induced cell apoptosis and EMT (28)

MSCs Diabetic
kidney
disease

miR-22-3p increase protected podocytes and reduced inflammation (29)

MSCs Diabetic
nephropathy

miR-146a-5p decrease restored renal function, facilitated M2 macrophage polarization (30)

MSCs Retinal
inflammation

miR-126 decrease reduced high glucose-induced HMGB1 expression and the activity
of the NLRP3 inflammasome

(31)

MSCs Diabetic
wounds

miR -155 increase NA (32)

MSCs Diabetic
foot ulcer

lncRNA H19 decrease prevented the apoptosis and inflammation of fibroblasts, leading to
the stimulated wound-healing process

(33)

MSCs Diabetic
wound

lncRNA KLF3-AS1 increase down-regulated miR-383, boosted expression of VEGFA (34)

MSCs Diabetic
stroke

miR-9 decrease promoted white matter remodeling and anti-
inflammatory responses

(35)
F
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EPCs, endothelial progenitor cells; ADSC, adipocyte-derived stem cell; HypADSCs, hypoxia adipose stem cell; MSCs, mesenchymal stem cells; T2DM, type 2 diabetes mellitus; CIV,continuous
intravenous infusion; LPS, lipopolysaccharide; HUVECs, human umbilical vein endothelial cells; EMT, epithelial-mesenchymal transition; HMGB1,high mobility group box 1 protein; NLRP3,
nod-like receptor thermal protein domain associated protein 3; VEGFA, vascular endothelial growth factor A; NA, not applicable.
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wounds (40). Compared to directly using exosomes or using

exosomes derived from other cells, this aPMNEM-ECM based

biomaterial has the following advantages (1): for wound infection

treatment, aPMNEM can play an antibacterial role via bactericidal-

associated proteins (2); as a carrier, aPMNEM can deliver cytokines,

and protect them from degradation (3); as a hermosensitive

material, ECM can function as an in situ gel in vivo and increase

the residence of aPMNEM. The study not only provided a

functional biomaterial for the regeneration of chronic diabetic

wounds but also created a promising platform for cytokine

therapy, which can potentially be used to treat different diseases

by loading various available cytokines in aPMNEM-ECM (40).
3.2 The roles of T lymphocytes-derived
exosomes in diabetes

Type 1 diabetes mellitus is an autoimmune disorder characterized

by infiltration of the islets of Langerhans by immune cells and by

selective elimination of the insulin-secreting b cells (43). Regazzi’s team
reported that miR-142-3p, miR-142-5p and miR-155 are particularly

enriched in T lymphocytes of 8 weeks NOD mice with respect to

mouse pancreatic islets (44). In type 1 diabetes, T lymphocytes-EXOs

carrying specific microRNAs that induce chemokine expression and

apoptosis in recipient pancreatic b cells. The inactivation of miR-142-

3p/-5p and miR-155 in b cells leads to increased insulin levels,

decreased insulitis scores, reduced inflammation, and provides

protection against diabetes development in NOD mice (44).
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3.3 The roles of macrophages-derived
exosomes in diabetes

Macrophage-derived exosomes have been shown to have

diverse functions in immune regulation, tissue repair, and

communication between cells (45). Based on the functional

profiles, macrophages are divided into two sub-populations: type

1 macrophages (M1, pro-inflammation) and type 2 macrophages

(M2, anti-inflammation) (46). M1 macrophages play a role in the

early phase of inflammation and are linked to tissue damage and

pro-inflammatory activities, whereas M2 macrophages release

cytokines that suppress inflammation and have anti-inflammatory

effects (47). Recent studies have shown that the macrophages-EXOs

contribute to the progression of diabetes (48) (Figure 1).

3.3.1 Exosomes derived from M1 macrophages
3.3.1.1 Impairing insulin sensitivity, secretion and glucose
uptake through miRNAs

Chronic tissue inflammation caused by accumulation of M1

macrophages is an important hallmark of insulin resistance.

According to prior research, the population of activated M1

macrophages residing within adipose tissue increased in obese

mice, resulting in an increased ratio of M1 to M2 macrophages

(49). The M1 macrophage is the predominant cell responsible for

secreting exosomes containing miR-29a in obese mice (16). MiR-

29a targets peroxisome proliferator-activated receptor-d, leading to
impairments of insulin sensitivity both in vitro and in vivo (16).

Moreover, M1 macrophage secreted exosomal miRNA may directly
FIGURE 1

How macrophage derived-exosomes contribute to the pathogenesis, complications, and therapy of diabetes. Diabetic environment induce
macrophage to M1 polarization, and the M1 macrophage secret exosomes which contains abnormal ncRNAs that promote diabetes and associated
complications. Converting the ratio of M1/M2 macrophage polarization is supposed to be a therapeutic application, which accelerates diabetes
recovery via various mechanisms. CIV, complex IV; MMP-9, matrix metalloproteinase-9; IL-6, interleukin-6; TNF-a, tumor necrosis factor-a; p-AKT,
phospho-Akt; PI3K, phosphoinositide 3-kinase; TLR4, toll-like receptor 4; MCP-1, monocyte chemotactic protein-1; interleukin-1b; NLRP3, NOD-like
receptor thermal protein domain associated protein 3; PPARg, peroxisome proliferator-activated receptor g; GLUT4, glucose transporter type 4;

UCP1, uncoupling protein 1; OXPHOX, oxidative phosphorylation :inhibit :promote.
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give rise to beta cell impairment. Qian et al. reported that the M1

macrophage-EXOs contained miR-212-5p, which regulated the

Protein Kinase B (Akt)/Glycogen synthase kinase3b (GSK-3b)/b-
catenin pathway in receptor beta cells by targeting the sirtuin 2 gene

to restrict insulin secretion (17). Thus, targeting miRNA or

inhibiting M1 macrophage-EXOs could be manipulated to inhibit

beta cell injury in T2DM.

3.3.1.2 Promoting autophagy deficiency and
resistin expression

It was found that high glucose stimulation promoted the

polarization of macrophages to the M1-phenotype and produced

more exosomes, thereby inducing activation of NOD-like receptor

thermal protein domain associated protein 3 (NLRP3)

inflammasome and autophagy defects in mesangial cells,

promoting development of diabetic nephropathy (50). Besides,

exosomal miR-7002-5p are highly expressed in high glucose

treated macrophages, which suppress autophagy activity through

targeting Atg9b in mouse tubular epithelial cell and C57 mouse

kidney (51). In addition to regulate functions of kidney,

macrophage-derived exosomes shows impact on diabetic vascular

diseases. For example, under high glucose conditions, macrophage-

derived exosomal metastasis associated lung adenocarcinoma

transcript 1 (MALAT1) is upregulated, inhibiting the expression

of miR-150-5p and counteracting its inhibitory effect on

macrophage resistance factor expression, and promoting vascular

diseases. Thus, macrophage-EXOs containing MALAT1 may serve

as a novel target for diabetic vascular diseases (19).

3.3.1.3 Impairing bone fracture healing

Patients with diabetes have an increased risk of nonunion and

delayed union of fractures. Exosomes derived from diabetic bone

marrow-derived macrophages (dBMDM-EXOs) transfer miR-144-

5p to bone marrow stromal cells, inhibiting the expression of Smad1,

thereby reducing bone repair and regeneration both in vivo and in

vitro (18). Suppression of miR-144-5p remarkably reversed the

adverse effects of dBMDM-EXOs on the osteogenic potential and

the ability of fracture repair (18). However, the author didn’t test the

ratio of M1/M2 or confirm the phenotype of the macrophages that

transferred specific miRNAs. Given the function of M1macrophages,

they may be the predominant cell responsible for secreting exosomes

containing miR-144-5p, which can lead to bone impairment.

3.3.2 Exosomes derived from M2 macrophages
(M2 macrophages-EXOs)

M2 macrophages release cytokines that play a role in anti-

inflammatory and tissue repair (47). Previous data validate the

association between treatment of diabetic-related diseases and the

exosomes secreted by M2 macrophages. For example, the M2

macrophages-EXOs reduced lipopolysaccharides-induced

podocyte apoptosis by regulating the miR-93-5p/TLR4 axis,

which provided a new perspective for the treatment of diabetic

nephropathy patients (20). Tuan et al. Demonstrated (52) that M2
Frontiers in Immunology 05
macrophage-EXOs could control chronic inflammatory diseases

caused by excessive energy storage. Interleukin 4 (IL-4)

stimulated THP-1 macrophage-derived extracellular vesicles can

improve the homeostasis of adipose factors, retargeting the energy

metabolism of macrophages and adipocytes, thereby controlling the

occurrence of cardiac metabolic tissue inflammation in obesity-

related diabetes.

In addition to diabetic nephropathy and cardiac diseases, M2

macrophage-EXOs are necessary for accelerating diabetic bone

fracture healing. A research has shown that M2 macrophage-

EXOs can activate the Hedgehog signaling pathway in BMSCs in

a high glucose and high insulin microenvironment, promoting

osteogenic differentiation. This suggests that they can serve as a

new approach for reshaping the immune homeostasis in diabetic

bone (53). Additionally, the research has demonstrated that M2

macrophage-EXOs induced the transformation of M1 macrophages

into M2 macrophages by stimulating the phosphoinositide 3-kinase

(PI3K)/AKT pathway, significantly reducing the proportion of M1

macrophages and regulating the bone immune microenvironment,

thereby accelerating diabetic bone fracture healing (54).
4 Exosomes derived from stem cell
and their effect on immune/
inflammation in diabetes

In recent years, exosomes-based therapy have gained increasing

attention for their comparatively high safety, biocompatibility and

low immunogenicity (6). This part reviewed the exosomes from

different kinds of stem cells and their main mechanisms underlying

regulatory effects on inflammation/immunity in diabetes (Figure 2).
4.1 Cord-blood-derived stem cells

Cord blood-derived stem cells are multipotent stem cells that

exhibit a distinct phenotype characterized by both embryonic and

hematopoietic markers, distinguishing them from other known

stem cell types (55, 56). Phenotypic characterization reveals that

CBSCs exhibit embryonic cell markers. Moreover, CBSCs exhibit

minimal immunogenicity, as evidenced by their low expression of

major histocompatibility complex (MHC) antigens and their

inability to stimulate the proliferation of allogeneic lymphocytes

(55, 57). Specifically, CBSCs adhere firmly to culture dishes,

displaying a large rounded morphology, and are resistant to

common detachment methods (trypsin/EDTA), facilitating the

collection of suspended lymphocytes after co-culture (55, 57).

Based on the unique properties of immune modulation

mentioned above and their ability to adhere tightly to the surface

of Petri dishes, a new technology called Stem Cell Educator (SCE)

therapy was designated for use in clinical trials (58, 59). Stem Cell

Educator therapy (Educator therapy) has been utilized with a

closed-loop system and open-loop system. During SCE therapy, a
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patient’s peripheral blood mononuclear cells (PBMCs) are collected

and circulated through a cell separator, where they are co-cultured

with adherent human CBSCs in vitro. The resulting “educated”

cells, known as CBSC-treated PBMCs, are then reintroduced into

the patient’s circulation (60). These “educated” immune cells can

educate other immune cells after infusion, thereby reverse the root

cause(s) of the autoimmune disease and resulting in the long-lasting

clinical efficacy of Educator therapy. Unlike traditional immune

therapies, SCE therapy does not destroy the cells responsible for

autoimmunity but modifies them (61). The clinical phase 1/2 trials

indicate that SCE therapy reverses autoimmunity, promotes

regeneration of islet b cells, and improves metabolic control for

the treatment of Type 1 diabetes (59, 62, 63) and T2DM (59, 63).

Mechanistic studies revealed that the secretion of CBSC-

derived exosomes (CBSC-EXOs) enabled polarization of human

blood monocytes/macrophages into M2 macrophages, thereby

fundamentally correcting self-immunity and inducing immune

tolerance through various molecular and cellular mechanisms (60).

CBSC-EXOs preferably and quickly bind to monocytes within 2-3 h.

During the coculture of CBSCs with patient’s immune cells for

clinical treatment during 8-9 h, the SCE-treated monocytes may

transport the CBSC-EXOs back into the body, potentially leading to

additional M2 differentiation and induction of tolerance (59, 62).

Therefore, Educator therapy is the leading immunotherapy to date to

safely and efficiently correct autoimmunity through CBSCs mediated

immune modulation and anti-inflammatory clinical effects, without

the safety and ethical concerns associated with conventional immune

and/or stem-cell based approaches.
4.2 Endothelial progenitor cells

Chronic diabetic foot ulceration (DFU) is among the most

debilitating long-standing diabetes complications and it is also one

of the main causes of physical disability. DFU is partially a result of

unregulated foot wound infection caused by neuropathy, hindered
Frontiers in Immunology 06
angiogenesis, chronic low-grade inflammation, and peripheral

vascular/arterial disease (64). Prolonged hyperglycemia intensifies

the expression of inflammatory cytokines and reactive oxygen

species (ROS), which severely impede angiogenesis (65–67). Thus,

wound healing in diabetes always heavily relies on the formation of

new blood vessels to restore reperfusion (68). EPCs are the

precursors of endothelial cells, which hold great potential in

treating chronic non-healing diabetic wounds because of their

abilities for vascular and neuronal protection, repair and regenesis

(69, 70). Nevertheless, the direct utilization of stem/progenitor cells

is constrained by concerns such as potential immunological

rejection, chromosomal variation, and emboli formation (71–73).

Therefore, it is crucial to devise a new approach that can maximize

the therapeutic benefits of stem/progenitor cells while mitigating

the risks associated with their direct application.

It has been reported that the exosomes derived from EPCs

(EPC-EXOs) can regulate vascular endothelial cells through

miRNA. For example (21), EPC-EXOs exhibited a high

expression of miRNA-221-3p. Treating skin wounds in diabetic

mice with EPC-EXOs demonstrated a similar effect to that seen with

miRNA-221-3p administration. MiRNA-221-3p potentially

downregulated critical proteins in the AGERAGE signaling

pathway, inhibiting reactive oxygen species generation and

inactivating nuclear factor-kappa B (NF-kB). This process may

reduce inflammatory responses, cell apoptosis, and microvascular

diseases. Except for miRNA-221-3p, recent results revealed that

treatment with miR-126-3 overexpressing EPC-EXOs accelerated

the healing of rat skin wounds and resulted in better tissue repair

with slower scar formation. In this process, the expression of

caspase-1, NRLP3, interleukin-1b, inteleukin-18, PIK3R2 and

SPRED1 was suppressed, promoting diabetic wound repair (22).

Exosomes derived from EPCs were reported to promote

angiogenesis and the homing ability of EPCs in diabetic wound

healing. Li et al. treated a diabetic rat wound model with EPC-EXOs

and found that exosomes enhanced the proliferation, migration and

tube formation of vascular endothelial cells in vitro. Furthermore,
FIGURE 2

Exosomes from different kinds of stem cells and their main mechanisms underlying regulatory effects on inflammation/immunity in diabetes. CBSCs,
cord-blood-derived stem cells; EPCs, endothelial progenitor cells; ADSCs, adipose stem cells; UCSCs, umbilical cord mesenchymal stem cells;
BMSCs, bone marrow-derived mesenchymal stem cells.
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endothelial cells stimulated with EPC-EXOs showed increase

expression of angiogenesis-related molecules such as fibroblast

growth factor-1 (FGF-1), VEGFA, VEGFR-2, angiotensin I, E-

selectin, Chemokine (C-X-C motif) ligand-16 (CXCR-16),

endothelial nitric oxide synthase and IL-8 (74). In addition to

promoting angiogenesis in wound healing, microvesicles derived

from EPCs were demonstrated to be capable of changing the

properties of adipose stem cells (ADSCs), thereby, improving

their homing ability to migrate to the wound site. Tu TC et al.

transfected exosomes derived from Alde-Low EPCs (EMVs) into

human ADSCs. After receiving EMVs, the ADSCs showed a

remarkable elevation in the expression of the CXCR4 chemokine

receptor in vitro, and CD45+ inflammatory cells were successfully

recruited to the wound sites in vivo, promoting ischemic skin

repair (75).

Diabetes mellitus not only increases the risk of ischemia-

reperfusion by 3-4 times compared to those without diabetes

mellitus, but also exacerbates cerebral damage due to impaired

endothelial function and reduced angiogenesis (23). EPCs were

demonstrated to hold great potential in the treatment of stoke due

to the cerebrovascular protection in the acute phase and promoting

neurological recovery in chronic phases (76, 77). Previously

experiment in mice indicated that enrichment of miR126

enhanced the therapeutic efficacy of EPC-EXOs on diabetic

ischemic stroke by attenuating acute injury and promoting

neurological function recovery (23).

Moreover, EPC-EXOs could potentially be a potential

therapeutic application for treating Aherosclerosis (AS) resulting

from diabetes. AS is a major macrovascular complication of

diabetes mellitus characterized by inflammation and endothelial

damage (78). The dysfunction of the endothelium is considered an

early marker of AS. EPCs are derived from bone marrow and can

differentiate into endothelium cells. In cases where ECs are

damaged, EPCs may replace them to assist in the recovery from

endothelial dysfunction (79). It was demonstrated that EPCs-EXOs

had a significant impact on reducing D-AS plaques, lowering the

levels of inflammatory factors such as intercellular cell adhesion

molecule-1, IL-8, and C-reactive protein, decreasing oxidative stress

factors like malondialdehyde and superoxide dismutase, and

improving the function of thoracic aorta vasodilation and

constriction in a mouse model of diabetic AS (80).
4.3 Mesenchymal stem cell

Mesenchymal stem cells possess various biological

characteristics, such as immunomodulation, anti-inflammatory

properties, and promotion of angiogenesis, making them widely

used in clinical treatment and regenerative medicine (81). MSC-

EXOs have been shown to be similar effective as MSCs in the

treatment of diabetes and related complications (82–84), but in

some contexts, they exert different biological properties (85).

4.3.1 Adipose stem cells
Adipocyte-derived stem cells have been attracting attention as

an effective therapeutic tool for tissue regeneration. Exosomes
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derived from ADSCs (ADSC-EXOs) can ameliorate inflammation

by regulating immune cells, thereby promoting the treatment of

diabetes and its related complications.

4.3.1.1 ADSC-EXOs modulate macrophage polarization
and immune cell activities in diabetes

Zhao et al. demonstrated that treatment with ADSC-EXOs

improved metabolic homeostasis in obese mice, including

enhanced insulin sensitivity (27.8% improvement), reduced

obesity, and alleviated hepatic steatosis. ADSC-EXOs induced M2

macrophage polarization, reduced inflammation, and promoted

Beiging in white adipose tissues (WAT) of diet-induced obese

mice. Such exosomes carried active signal transducer and

activator of transcription 3 (STAT3), which facilitated arginase-1

expression in macrophages, leading to the induction of anti-

inflammatory M2 phenotypes. Additionally, the M2 macrophages

induced by ADSC-EXOs stimulated ADSC proliferation and lactate

production, thereby promoting WAT beiging and maintaining

homeostasis in response to high-fat challenge (86). Luo et al.

reported that overexpression of hematopoietic prostaglandin D

synthase HPGDS in ADSCs accelerated chronic wound healing

by improving the anti-inflammatory state and promoting M2

macrophage polarization in type 2 diabetic mice (87). As for M1

macrophages, ADSCs-EXOs play an immunosuppressive role by

reducing IFN-a secretion, thus inhibiting activation of T cells,

leading to enhanced aggregation capacity of M1 macrophages (88,

89). Besides, ADSC-EXOs promoted T-regulatory cell activation

and facilitated wound healing by inhibiting interferon-g production

and M1 macrophage accumulation in an EFGR signal-dependent

manner (90).

Moreover, recent research found ADSC-EXOs to be a vital source

of non-coding RNA to enhance M2 macrophage polarization and

promote diabetic wound healing. For example, hypoxic treatment

significantly increased circ-Snhg11 contents in ADSC-EXOs and

promoted M2 polarization by inhibiting miR-144-3p expression

and the STAT3 signaling pathway in skin wounds (91, 92). In

another study, the in vivo experiment demonstrated that exosomes

derived from miR-132-overexpressing ADSC significantly improved

the survival of skin flaps and accelerated diabetic wound healing. This

was achieved by reducing local inflammation, promoting

angiogenesis, and stimulating M2 macrophage polarization through

the NF-kB signaling pathway (25). Li et al. found that treating

diabetic foot ulcer wounds with ADSC-EXOs increased miR-21-5p

levels in macrophages, promoted M2 polarization, and inhibited

Keuppel-like factor 6 KLF6, which has been reported to enhance

the inflammatory phenotype in macrophages (26).

These findings delineate novel exosome-mediated mechanisms

for ADSC-macrophage crosstalk that facilitates immune and

metabolic homeostasis, thus providing potential therapy for

obesity and diabetes.

4.3.1.2 ADSC-EXOs revers the inflammatory condition in
wound healing

Wound healing can be delayed by chronic and excessive

inflammation, therefore a well-regulated inflammation guarantees

wound healing (88). ADSCs-EXOs contain immunoregulatory
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proteins such as tumor necrosis factor-a (TNF-a), macrophage

colony-stimulating factor and retinol-binding protein 4 (93). In

addition to the local effects, ADSC-EXOs can reverse the systematic

inflammatory condition in diabetes models. Qiu et al. demonstrated

that high glucose treatment significantly increased inflammatory

factors IL-6, IL-1b, and TNF-a levels in EPCs from healthy

volunteers. Such elevated levels could be partially and completely

reversed by ADSC-EXOs and linc00511-overexpressing ADSCs (94).

They found Exosomes from linc00511-overexpressing ADSCs

promotes diabetic foot ulcers healing by accelerating angiogenesis

via suppressing PAQR3-induced Twist1 ubiquitin degradation as well

as suppressed inflammatory. Zhang et al. found that ADSC-EXOs

significantly reduced levels of inflammatory cytokines IL-6, TNF-a,

and monocyte chemotactic protein-1 (MCP-1) by decreasing ROS

production and protecting mitochondrial function via sirtuin-3 (95).

Wang et al. found that hypoxic ADSC-EXOs exhibited distinct

miRNA expression profiles compared to ADSC-EXOs. Specifically,

up-regulation of miR-21-3p, miR-126-5p, and miR-31-5p, and

down-regulation of miR-99b and miR-146-a in hypoxic ADSC-

EXOs promoted wound healing in diabetic mice and suppressed

inflammatory factors through the PI3K/AKT signaling pathway (27).

Shi reported that exosomes derived from mmu_circ_0000250-

modified ADSCs promoted wound healing in diabetic mice by

inducing miR-128-3p/SIRT1-mediated autophagy and improving

the hyperglycemic-induced inflammatory microenvironment and

recover the function of EPCs (24).

4.3.2 Umbilical cord mesenchymal stem cells
Human umbilical cord tissue (Wharton’s jelly) serves as a potent

and rich source of MSCs. UCSCs-derived exosomes (UCSC-EXOs)

have shown promising results in the treatment of diabetes and may

become a successful strategy for treating diabetes and its

complications. Injection of UCSC-EXOs significantly ameliorated

hyperglycemia in rats with T2DM (96). Besides, UCSC-EXOs also

contributes to the therapy of other diabetic complications, such as

diabetic nephropathy, retinopathy and wound ulcer.

4.3.2.1 UCSC-EXOs increase insulin sensitivity by suppress
inflammatory factors

Chronic inflammation in tissues is typically the primary cause

of insulin resistance, which results in the secretion of pro-

inflammatory cytokines such as tumor necrosis factor alpha

(TNF-a) or IL-6 by inflammatory cells. These cytokines then

inhibit the activation of the insulin signaling pathway (97, 98). It

is found that injection of human UCSC-EXOs significantly

ameliorated hyperglycemia in rats with T2DM. UCSC-EXOs

could increase insulin sensitivity by increasing the activation of

insulin/AKT signaling pathway and inhibiting the secretion of

proinflammatory cytokines like TNF-a, which could reverse

insulin resistance in T2DM (96).

4.3.2.2 The role of UCSC-EXOs in diabetic nephropathy

It is demonstrated that UCSC-EXOs could be a promising

treatment strategy for diabetic nephropathy rats. Xiang et al.

reported that UCSC-EXOs apparently reduced the levels of pro-

inflammatory cytokines (IL-6, IL-1b, and TNF-a) and pro-fibrotic
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factor transforming growth factor b (TGF-b) in the kidney and

blood of diabetic nephropathy rats. In vitro experiments showed

that umbilical cord MSC conditioned medium and UCSC-EXOs

decreased the production of these cytokines in high glucose injured

renal tubular epithelial cells, and renal glomerular endothelial cells

(99). Besides, UCSC-EXOs miR-424-5p can inhibit the activation of

yes associated protein 1 in HK2 cells, reduce cell apoptosis, and

epithelial-to-mesenchymal transition induced by high glucose,

thereby attenuating diabetic nephropathy (28). MiR-22-3p, highly

expressed in UCSC-EXOs, may play a protective role in podocytes

and diabetic mice by regulating the NLRP3 inflammasome. This

suggests that MSC-derived exosomes could be a promising cell-free

therapeutic strategy for diabetic kidney disease (29). Another study

showed that UCSC-EXOs miR-146a-5p enhanced M2 macrophage

polarization by inhibiting the TRAF6/STAT1 signaling pathway,

thereby protecting against diabetic nephropathy in rats (30).

4.3.2.3 The role of UCSC-EXOs in wound healing and
diabetic retinopathy

UCSC-EXOs serve as a novel therapeutic approach to enhance

wound healing in diabetes. Studies have shown that UCSC-EXOs

can induce anti-inflammatory macrophages (100), leading to a

reduction in the expression of inflammatory factors such as IL-

1b, IL-6, and TNF-a (101), as well as promoting angiogenesis and

collagen deposition. Furthermore, UCSC-EXOs have the potential

to inhibit oxidative stress injury, thereby facilitating macro-level

angiogenesis and ultimately expediting the healing of diabetic

wounds (101).

In addition to diabetic wounds, diabetic retinopathy is another

common complication of diabetes. Previous studies have shown the

therapeutic effect of UCSC-EXOs in diabetic retinopathy. For

example, the administration of miR-126-expressing UCSC-EXOs

significantly reduced high glucose-induced high-mobility group box

1 expression and the activity of the NLRP3 inflammasome in

human retinal endothelial cells, therefore suppressing suppressed

inflammation in diabetic rats (31).

At last, UCSC-EXOs treatment could be beneficial for diabetic

rats to recover from the anemia-like symptoms and increase

immunity by improving the erythrocytes and hemoglobin levels

as well as maintaining the number of white blood cells (102). 1 mg/

kg of UCSC-EXOs improved glucose tolerance in T2DM rats and

ameliorate insulin resistance. Moreover, there was no significant

difference in white blood cells, neutrophils, lymphocytes,

monocytes, eosinophils, and basophils between the diabetic rat

groups treated with both glibenclamide (one of the traditional

hypoglycemic drug) and 1 mg/kg of UCSC-EXOs and the non-

diabetic animal group. This finding suggests that the administration

of UCSC-EXOs at 1 mg/kg could improve the immune system of

diabetic rats, which is essential for reducing infections and

increasing survival rates (102).

4.3.3 Bone marrow-derived mesenchymal
stem cells

Bone marrow mesenchymal stem cells are multilineage

progenitors with self-renewal, multidirectional differentiation, and

pleiotropic paracrine functions (103). It is demonstrated that purified
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BMSC-derived exosomes (BMSC-EXOs) have more specific distinct

benefits in damaged tissue repair than BMSCs themselves, including

superior stability, tissue permeability, excellent biocompatibility, and

immunomodulatory properties (104).

4.3.3.1 The role of BMSC-EXOs in diabetic wound healing

Accumulative studies have shown that BMSC-EXOs contribute

to wound healing through non-coding RNAs. For example, Liu

et al. found that miR-155-inhibitor-loaded BMSC-EXOs enhanced

keratinocytes migration, FGF-7 recovery, and anti-inflammatory

effects in vitro. Additionally, they could also be utilized to treat a

diabetic wound model by promoting collagen deposition,

angiogenesis, and re-epithelization. The functional coordination

between miR-155-inhibitor and BMSC-EXOs played a crucial role

in enhancing diabetic wound healing (32). Li reported that the

injection of BMSC-EXOs overexpressing lncRNA H19 facilitated

wound healing in mice with diabetic foot ulcers. Results revealed

that BMSC-EXOs overexpressing lncRNA H19 led to higher level of

IL-10 and lower levels of IL-1b and TNF-a, and the mechanism by

which was associated with promoting fibroblast proliferation and

migration, inhibiting cell apoptosis and inflammation (33). In a

murine diabetic cutaneous wound model, exosomes from lncRNA

KLF3-AS1-expressing BMSCs demonstrated the best effects in

promoting cutaneous wound healing in diabetic mice, which were

associated with minimal weight loss, increased blood vessel

formation, reduced inflammation, decreased miR-383 expression,

and up-regulated VEGFA (34). Except for non-coding RNAs, the

anti-inflammation effect by BMSC-EXOs could induced by specific

pathways that may not directly related to non-coding RNAs. Wang

reported that the wounds treated with exosomes showed reduced

inflammation, with decreased levels of the inflammatory cytokines

TNF-a and IL-1b, and increased levels of the anti-inflammatory

cytokines IL-4 and IL-10 (105). Such regenerative and anti-

inflammatory effects were eliminated by Lenti-sh-Nrf2

administration, suggesting the participation of the activation of

Nrf2 anti-oxidant pathway in wound healing by exosomes. In

addition to miRNAs, Liu et al. reported that melatonin-pretreated

BMSC-EXOs could promote diabetic wound healing by suppressing

the inflammatory response, which was achieved by increasing the

ratio of M2 polarization to M1 polarization through activating the

phosphatase and tensin homolog/AKT signaling pathway (106).
4.3.3.2 The role of BMSC-EXOs in diabetic stroke

Diabetes increases the risk of stroke by 3-4 fold, and about 30%

of stroke patients suffer from diabetes (107). Treating patients with

diabetic stroke is challenging because it may cause extensive damage

to the cerebral vasculature, exacerbate neurological deficits, enhance

inflammatory responses, which are prone to recurrent strokes (108,

109). Therefore, it is crucial to devise therapeutic strategies

specifically aimed at enhancing neurological function after stroke

in individuals with diabetes. MSCs interact with and alter brain

parenchymal cells via the secretion of trophic and growth factors as

well as exosomes to exert therapeutic effects (110). Exosome therapy

offers several advantages compared to cell therapy, as exosomes do

not elicit immune rejection, do not cause vascular obstruction, and
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have a low risk of triggering tumors or malignant transformation

(111). Besides, exosomes are more suitable for clinical use since they

are relatively stable, can be obtained in large quantities from a small

number of cells, and can be stored until therapeutic needed (112).

Therefore, systemic administration of exosomes could be a method

of delivering the active components of cell therapy to the central

nervous system (113).

Studies (35, 114) have indicated that T2DM stroke was associated

with increased inflammatory responses and proinflammatory

microglial/macrophage phenotype. The inflammatory factor matrix

metalloproteinase-9 (MMP-9) was elevated after stroke and has been

implicated in aggravating blood-brain barrier disruption, neuronal

death, myelin degradation and white matter injury. In addition, the

inflammatory factor MCP-1 was elevated in the serum of both

diabetic and stroke patients, and it aids in the accumulation of

phagocytic M1 macrophages in the infarct border (115, 116).

However, T2DM-BMSC-EXOs treatment has been demonstrated to

significantly decrease activated microglia, M1 macrophage, and

inflammatory factors MMP-9 and MCP-1 expression in the

ischemic brain in T2DM stroke rats (35). Such therapeutic effects

in neurological functional recovery were only induced by injection of

exosomes derived from BMSCs of T2DM rats but not from BMSCs of

non-diabetic animals, which may be partially mediated by decreasing

miR-9 and upregulating ABCA1-IGFR1 pathway (35).

4.3.3.3 The role of BMSC-EXOs in diabetic retinopathy

BMSCs-Exos also possess other immunomodulatory properties

and can suppress the activation and function of various immune

cells involved in islet transplantation and diabetic retinopathy. It is

reported that co-delivery of siFas and anti-miR-375 by BMSCs and

derived exosomes suppressed early apoptosis of transplanted

human islets, while further immune activity could be suppressed

by intravenously injection of human BMSC and PBMC co-cultured

exosomes. Thus, BMSC and peripheral blood mononuclear cell co-

cultured exosomes performed a immunosuppressive effect for

improving islet transplantation (117). Besides, BMSC-EXOs

improve diabetes-induced retinal damage by inhibiting the Wnt/

b-catenin signaling pathway, subsequently reducing oxidative

stress, inflammation, and angiogenesis (118). BMSC-EXOs miR-

146a regulates the inflammatory response of diabetic retinopathy by

mediating the TLR4/MyD88/NF-kB pathway, reducing the levels of

TNF-a, IL-1b, and IL-6 (119).
5 Exosomes as an innovative
therapeutic tools for diabetes: current
status and promising directions

5.1 Promising directions

Exosomes exhibit high biocompatibility and low immunogenicity,

which makes them have great potential in delivering nucleic acid

sequences and chemotherapy drugs (6). However, studies have

shown that the natural half-life of most exosomes in vivo is

relatively short (<6 h) (120), and the contents of natural exosomes
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are limited by the secreting cells, resulting in limited therapeutic

effects when loaded with drug molecules. To date, increasing

researches demonstrated that under certain stress or modified

conditions, stem cells can produce more exosomes or exosomes

with different compositions compared to basal conditions.

Meanwhile, many studies demonstrated the beneficial effects of

modified or pretreated stem cell-derived exosomes on preventing

comorbidities or microvascular complications in diabetes. These
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benefits mainly stem from the following three perspectives

(Table 2): a. Exosomes from genetically modified stem cells display

enhanced effects on diabetic wound healing compared to wild-type

exosomes; b. By adding specific drugs to the culture medium, cells

may secrete exosomes that are more effective in targeting

angiogenesis, anti-inflammation, promoting proliferation and

migration, and inhibiting apoptosis; c. Under certain stress

conditions, such as hypoxia, cells may secrete exosomes that
TABLE 2 Pre-intervention to improve the function of exosomes in the treatment of diabetes.

Disease
and

animal

Cell type
releasing

Exo
Intervention Pathways Effect: in virto Effect: in vivo

Effect on
inflammation
/immune
system

ref

Diabetic
cutaneous
wound, Rat

hAMSCs
miR-21-
5p overexpressing

Wnt/b-catenin
pathways ↑

proliferation and migration of
keratinocyte cells ↑

vessel growth and
maturing ↑,
wound healing
process ↑

inflammatory
cell infiltration↓

(121)

Diabetic
wound,
Mice

hAMSCs hypoxia PI3K/Akt pathways ↑
fibroblast proliferation and
migration ↑

re-
epithelialization ↑

CD31↑, TGF-b ↑,
COLI ↑ and COLIII
↑, IL-6 ↓

(27)

Diabetic
full-
thickness
excisional
wound,
Mice

ADSCs
mmu_circ_0000250-
overexpressing

miR-128-3p/
SIRT1 pathway↑

HG-induced EPC apoptosis ↓,
autophagy of EPC ↑

wound closure ↑
SIRT1-mediated
anti-inflammatory ↑

(24)

Diabetic
foot
ulcer, Mice

ADSCs
mmu_circ_0001052
overexpressing

miR-106a-5p ↓,
FGF4/p38MAPK
pathway ↑

proliferation ↑, migration and
angiogenesis of high glucose-
induced HUVEC ↑

speed of healing ↑ NA (122)

Diabetic
foot
ulcer, Rat

ADSC Nrf2 overexpression
SMP30 ↑, VEGF ↑, p-
VEGFR2 ↑, ROS ↓

increased cell viability ↑, tube
formation of EPCs ↑

Ulcerated area ↓,
angiogenesis ↑,
inflammation ↓,
oxidative stress ↓

IL-1b ↓, IL-6 ↓,
TNF-a ↓

(123)

Diabetic
full-
thickness
wounds, Rat

BMSC
atorvastatin
pretreated

AKT/eNOS
pathway ↑

endothelial cell angiogenesis↑
Ascularization ↑ ,
the wound
healing ↑

NA (124)

Diabetic full
thickness
dermal
dorsal
defect, Rat

BMSC
pioglitazone-
pretreated

PI3K/AKT/eNOS
pathway ↑

migration and tube formation
↑, wound repair ↑, VEGF
expression of HUVEC ↑

diabetic wound
healing ↑,
angiogenesis ↑

NA (125)

Diabetic
full-
thickness
dermal
defect, Rat

BMSC
melatonin-
pretreated

PTEN/AKT
pathway ↑

ratio of M2 polarization to
M1 polarization in RAW264.7
cells ↑

angiogenesis and
collagen
synthesis ↑

ratio of M2 / M1
polarization ↑,IL-1b
↓, TNF-a ↓, IL-10
↑, Arg-1 ↑

(106)

Diabetic
punch
biopsy
excisional
wound,
Mice

BMSC
HOTAIR
overexpressing

NA
HOTAIR ↑,VEGF ↑ in
endothelial cells

angiogenesis ↑ and
wound healin ↑

NA (125)

Diabetic
foot
ulcer, mice

BMSC
lncRNA
H19 overexpression

miR-152-3p-mediated
PTEN inhibition ↓

apoptosis and inflammation
of fibroblasts ↓

flammatory cells ↓,
granulation tissues
thicker around
the wound

IL-10 ↑, IL-1b ↓,
TNF-a ↓

(33)

(Continued)
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perform better in promoting fibroblast proliferation and migration,

and enhancing reepithelialization in chronic wounds. All the above

demonstrated that preconditioning or pre-treatment of diabetic

MSCs with various agents/stress can be used to optimize/improve

cellular function prior to their use in cell therapy.

In addition to modify the donor cells that produce exosomes,

direct modification to purified natural exosomes may efficiently and

quickly obtain a large number of engineered exosomes, and reduce

the uncertainty in the cell culture process, which is of great

significance for the mass production of engineered exosomes. For

example, taking advantage of natural availability and biocompatibility

of exosomes as extracellular miRNA transporting particles (121), Lv

et al. reported a human hASC-exos-based miRNA delivery strategy

which loaded miRNA into hASC-exos by electroporation. Besides

electroporation, other physical methods such as ultrasonic

homogenization (128), freeze-thaw cycle (129), may also allow

drugs to enter the exosomes more easily, achieving the purpose of

engineering exosomes. However, such methods were usually used in
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treatment of cancers in vitro or in vivo in animal models, therefore,

future research will focus more on the application of these methods in

the treatment of diabetes and the associated complications.

Finally, in recent years, due to the high biocompatibility and

modifiability, composite hydrogels loaded with exosomes and other

nanoparticles have gained increasing attention in managing chronic

diabetic wounds. Compared to traditional stem cell therapy, which

has been shown to have short survival times, poor stability, and a

high risk of immune rejection in diabetic ulcers (130), exosomes-

loaded composite hydrogels have been demonstrated to possess

superior functions in angiogenesis, anti-inflammatory,

antibacterial, and antioxidant properties (Table 3). Since different

agents have varying applicability, advantages and disadvantages for

wound healing, various therapeutic agents can be incorporated

inside the multifunctional hydrogel to create an outstanding drug

delivery system (143). Thus, the exosomes-loaded, “all-in-one”

composite hydrogels may achieve a controlled drug delivery in

diabetic wound healing, prone to better drug applications.
TABLE 2 Continued

Disease
and

animal

Cell type
releasing

Exo
Intervention Pathways Effect: in virto Effect: in vivo

Effect on
inflammation
/immune
system

ref

diabetic
wounds rat

HEK293
miR-31-
5p overexpression

HIF1AN ↓, EMP-1↓

cell proliferation ↑ and
migration ↑ in ECs, HFF-1
cells and HaCaT cells;
capillary-like construction
activity ↑ in ECs

proangiogenesis ↑,
profi ↑, brogenesis
↑,
reepithelization↑

NA (126)

Diabetic
cutaneous
wound, Rat

UC-MSC
Lipopolysaccharide-
pretreated

M2 macrophage
polarization ↑
through let-7b via
TLR4/NF-kB/STAT3/
AKT pathway

converted inflammatory
THP-1 cells to
M2 polarization

inflammatory cell
infiltration ↓, new
small capillaries
and
woundhealing ↑

anti-inflammatory
cytokines ↑, M2
macrophage
activation ↑

(127)
frontier
hAMSCs, human adipose-derived mesenchymal stem cells; ADSCs, adipocyte-derived stem cells; ADSC, adipocyte-derived stem cell; BMSC, bone mesenchymal stem cells; HEK293, human
embryonic kidney 293T cells; UC-MSC, Umbilical cord-derived mesenchymal stem cells; PI3K, phosphatidyl-inositol 3-kinase; AKT, protein kinase b; SIRT1, silent information regulator 1;
FGF4, fibroblast growth factor 4; p38MAPK, P38 mitogen-activated protein kinase; SMP30, senescence marker protein 30; VEGF, vascular endothelial growth factor; VEGFR2 , vascular
endothelial growth factor receptor 2; ROS, reactive oxygen species; eNOS, endothelial nitric oxide synthase; NA, ot applicabl; HIF1AN, hypoxia inducible factor 1 subunit alpha inhibitor; EMP-1,
EPO mimetic peptide-1; TLR4, toll-like receptor 4; NF-kB,nuclear factor kappa-B; STAT3, Signal transducer and activator of transcription 3; EPC, endothelial progenitor cells; HUVEC, human
umbilical vein endothelial cells; VEGF, vascular endothelial growth factor; HOTAIR, HOX transcript antisense RNA; ECs, early career specialists; THP, human monocytic-leukemia cells; CD31,
platelet endothelial cell adhesion molecule-1; TGF-b, transforming growth factor b; COLI, Collagen I; IL-6, Interleukin 6; IL-1b, Interleukin-1b; TNF-a,Tumor Necrosis Factor-a; IL-10,
Interleukin-10; Arg-1, Arginase 1; IL-1b, Interleukin-1b.
TABLE 3 Functions of composite hydrogels in the treatment of diabetic wound healing (2020 to date).

Publication
year

Cell type
releasing
EXOs

Hydrogels Anti-
inflammatory

effect

Antibacterial
effect

Angiogenesis Antioxidant
effect ref

2020 CBSCs PF-127 hydrogel
inflammatory cell
infiltration ↓

unknown TGFb-1 ↑, VEGF ↑ unknown (130)

2022 M2F
HA-based hydrogels
composed of MnO2 and
FGF-2

unknow + angiogenic ability ↑
ameliorated
ROS damage

(127)

2022 ADSCs
ADSC-exo@MMP-
PEG smart

unknow unknown

CD31 and a-SMA
↑, re-
epithelialization and
collagen
deposition ↑

ROS level ↓ (131)
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TABLE 3 Continued

Publication
year

Cell type
releasing
EXOs

Hydrogels Anti-
inflammatory

effect

Antibacterial
effect

Angiogenesis Antioxidant
effect ref

2022 HUVECs
GelMA/PEGDA@T+exos
MNs patch

unknow unknown angiogenesis ↑ unknown (132)

2022 BMSCs
carboxyethyl chitosan
-dialdehyde carboxymethyl
cellulose hydrogel

skewing macrophage
M1 to
M2 phenotype

+

Angiogenesis ↑,
VEGF-mediated
signaling
pathways ↑

unknown (133)

2022 ESCs Gel-VH-EVs unknow unknown
angiogenesis ↑, HIF-
1a-mediated
pathway ↑

unknown (134)

2023 ADSCs

hydrogel loaded with 4-
Arm-PEG-Thiol, Ag+,
exosomes, CNTs, and
metformin hydrochloride

IL-6 ↓, TNF-a ↓,
ICAM and VCAM ↓

+
density and quantity
of blood vessels ↑

ROS and mtROS
production ↓

(135)

2023 M2F
hydrogel combined with
bioactive M2-Exos and
gold nanorods

proinflammatory
cytokines ↓

+
CD31+ ↑, vascular
network
formation ↑

SOD1 ↑,
PRDX2 ↑

(136)

2023 ADSCs extracellular matrix hydrogel TNF-a ↓, IL-6 ↓ unknow

collagen deposition
↑, skin regeneration
↑, blood vessel
numbers ↑

unknown (136)

2023 PMN
VEGF-aPMNEM-ECM
hybrid hydrogel

M1 macrophage
transform to M2
macrophage ↑

+
number of
blood vessels↑

unknown (40)

2023 ADSCs GelMA-Exo hydrogels unknow unknow
proliferation,
invasion, and tube
formation ↑

unknown (137)

2023 HUVECs
ADM Fe3+@PA-
Exos/GelMA

IL-1b ↓ +
proliferation and
migration
impairment ↓

SOD and GSH-
Px activity ↑

(138)

2023 HUVECs
hypoxic exosomes-loaded
HGM-QCS hydrogels

IL-6 ↓, TNF-a ↓,
ICAM-1↓, SELE ↓,
VCAM-1 ↓, M2
polarization ↑

+
collagen deposition
↑, angiogenesis ↑

ROS level ↓ (139)

2024
Umbilical
cord blood

UCB-Exos into an ABA-type
amphiphilic hydrogel

unknow unknow
proliferation and
tube formation ↑

unknown (140)

2024 Whole blood
P-Exos-loaded
CMC hydrogeL

unknow unknow

angiogenesis ↑,
VEGF mediated
signaling
pathways ↑

unknown (141)

2024 hUC-MSCs
hydrogel composed of
chitosan nanoparticles,
MSC- derived, BG, and TiO2

TGF-b and IL-10 ↑,
TNF-a ↓, IL-1b ↓,
IL-6 ↓

+

enhanced
angiogenesis of ECs
by targeting VEGFA
and VEGFR2

unknown (142)
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M2F, M2 macrophages; ADSCs, adipose-derived stem cells; HUVECs, human umbilical vein endothelial cells; BMSCs, bone marrow mesenchymal stromal cells; ESCs, embryonic stem cell;
PMN, polymorphonuclear neutrophils; hUC-MSCs, human umbilical cord mesenchymal stem cells; MnO2, manganese dioxide; FGF-2, fibroblast growth factor-2; MMP, matrix
metalloproteinases; PEG, polyethylene glycol; GelMA, gelatin methacryloyl; PEGDA, poly (ethylene glycol) diacrylate; IL-6, interleukin-6; TNF-a, tumor necrosis factor-a; ICAM,
intercellular cell adhesion molecule; VCAM, vascular cell adhesion molecule; IL-1b, interleukin—1b; ICAM-1, intercellular cell adhesion molecule-1; VCAM-1, vascular cell adhesion
molecule-1; TGF-b, transforming growth factor-b; IL-10, interleukin-10; VEGF, vascular endothelial growth factor; CD31, platelet endothelial cell adhesion molecule-1; a-SMA, a-smooth
muscle actin; VEGFA, vascular endothelial growth factor A; VEGFR2, vascular endothelial growth factor receptor 2; ROS, reactive oxygen species; mtROS, mitochondrial reactive oxygen species;
SOD1, recombinant superoxide dismutase 1; PRDX2, peroxiredoxin-2; GSH-Px, glutathione peroxidase; SOD, recombinant superoxide dismutase.
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5.2 Current challenges of
clinical applications

So far, there are mainly three challenges in the clinical

translations of exosomes. Firstly, minimize the therapeutic

efficacy differences caused by physiological and structural

variations between human and animals. Exosomes derived from

various stem cell sources have been used in wound healing

treatments across animal models including mice (144, 145), rats

(123), rabbits (146), consistently demonstrating positive effects

such as improved wound closure, reduced healing time, enhanced

angiogenesis, and diminished scar formation. However, the

outcomes of these preclinical studies do not necessarily translate

to human skin due to significant differences in skin structure and

physiology, with pig skin being the closest analogue to human

skin. Porcine models have emerged as promising models to

study wound healing, they possess similar anatomically and

physiologically characteristics to humans, including a relatively

thick epidermis, distinct rete pegs, dermal papillae, and dense

elastic fibers in the dermis (147), porcine collagen (148) et al. In

contrast to rodent, rabbit, and canine skin, which exhibits loos

adherence to the subcutaneous fascia, porcine skin closely adheres

to the underlying structures, resembling human skin (149). The

turnover time of pig epidermis is similar to the human epidermis

(150). Moreover, the immune cells in pig skin resemble those

found in human skin (151). According to research by Sullivan and

colleagues, pig models were 78% concordant with human studies.

This result exceeded other small-mammal and in vitro models,

which were only 53% and 57% concordant (152). Therefore, it is

crucial to validate the biological effects of exosomes on wound

healing using a pig model.

Secondly, the clinical translation of engineered extracellular

vesicles is urgently needed. So far, clinical applications of these

exosomes are limited to only a few clinical trials exploring the

therapeutic effects of stem cell-derived exosomes for diabetes and its

complications, such as wound healing. According to data from

ClinicalTrials.gov, to date, three completed clinical trials have

utilized exosomes derived from plasma (NCT02565264), adipose

t issue (NCT05475418) , and mesenchymal stem cel l s

(NCT05813379) for wound healing. Another (NCT04134676) has

explored the use of stem cell-conditioned medium for chronic ulcer

wounds. Apart from wound treatment, very few clinical trials have

investigated the use of exosomes for other diabetic conditions [only

one for Type 1 diabetes (NCT02138331)].

Thirdly, The scaling-up manufacture of “Good Manufacturing

Practice” (GMP)-grade exosomes is the most difficult component in

the clinical use of exosomes. Challenges in the further clinical

application of exosomes include quality control, such as the cell-

culture system, purification, characterization/physicochemical and

biological properties of exosomes, as well as the establishment of a

“gold standard” for potency assay. Thus, advances in scaling-up

technology for GMP-compliant exosomes manufacturing will

enhance the clinical applications of these entities for diabetes and

the related complications in the near future.
Frontiers in Immunology 13
6 Concluding remarks and
future perspectives

As a promising candidate for novel cell free therapy, exosomes

may be widely used as an alternative to stem cells in management of

a variety of immunity-related diseases or inflammation response for

maintenance of the microenvironment for tissue homeostasis and

tissue regeneration upon injury. In this review article, we describe

how immune cell-derived exosomes origin from neutrophils, T

lymphocytes and macrophages impact on diabetes and the

associated complications. We also discuss the stem cell-derived

exosomes and their role in immunomodulatory and inflammation

in the progress of diabetic complications. In addition, promising

directions involving engineered exosomes as well as current

challenges of clinical applications are reviewed. The enhanced

properties of engineered exosomes have been verified in lab,

which proves that they have great clinical application prospects.

However, there is still a long way to go before commercial exosome

products are ready for the market, due to the lack of clinical trials

and quality control for scaling-up manufacture.

In addition to the above challenges, some questions remain

unanswered, which needs more attention to be paid to in the future.

For example, how do exosomes transferred specific miRNAs target

the genes in recipient cells? Besides, studies about gestational

diabetes mellitus (GDM) are still limited. Although researchers

have found that some exosomal non-coding RNAs in peripheral

blood may be early diagnostic markers for GDM, it is unknown how

exosomes interact with the immune system and contribute to the

pathophysiology of GDM. Nevertheless, we remain confident that

the hurdles facing these innovative approaches will be surmounted

and that they will do influence the treatment of diabetes.
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