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Immunotherapy has ushered in a new era of cancer treatment, yet cancer

remains a leading cause of global mortality. Among various therapeutic

strategies, cancer vaccines have shown promise by activating the immune

system to specifically target cancer cells. While current cancer vaccines are

primarily prophylactic, advancements in targeting tumor-associated antigens

(TAAs) and neoantigens have paved the way for therapeutic vaccines. The

integration of artificial intelligence (AI) into cancer vaccine development is

revolutionizing the field by enhancing various aspect of design and delivery.

This review explores how AI facilitates precise epitope design, optimizes mRNA

and DNA vaccine instructions, and enables personalized vaccine strategies by

predicting patient responses. By utilizing AI technologies, researchers can

navigate complex biological datasets and uncover novel therapeutic targets,

thereby improving the precision and efficacy of cancer vaccines. Despite the

promise of AI-powered cancer vaccines, significant challenges remain, such as

tumor heterogeneity and genetic variability, which can limit the effectiveness of

neoantigen prediction. Moreover, ethical and regulatory concerns surrounding

data privacy and algorithmic bias must be addressed to ensure responsible AI

deployment. The future of cancer vaccine development lies in the seamless

integration of AI to create personalized immunotherapies that offer targeted and

effective cancer treatments. This review underscores the importance of

interdisciplinary collaboration and innovation in overcoming these challenges

and advancing cancer vaccine development.
KEYWORDS

cancer vaccine, artificial intelligence, epitope design, neoantigen prediction,
MHCpeptide binding prediction, nucleic acid cancer vaccines, peptide cancer
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1 Introduction

Cancer is a major global cause of death (1), responsible for

around 10 million deaths in 2020 (2). As one of the leading health

challenges worldwide, it remains a critical area of research and

innovation. Among the various treatment approaches,

immunotherapy has gained significant attention due to its ability

to harness the body's own immune system to fight cancer (2). One

promising immunotherapy strategy involves the development of

cancer vaccines, which are designed to stimulate the immune

system to recognize and attack tumor cells. These vaccines work

by targeting tumor antigens (TAs), which are unique proteins or

molecules expressed on cancer cells. By artificially inducing an

immune response against these antigens, cancer vaccines aim to

generate specific and long-lasting immunity against the tumor (3).

Unlike conventional therapies, cancer vaccines offer the potential

for a safer, more targeted, and better-tolerated approach (4).

However, their clinical translation has faced numerous challenges,

primarily due to the heterogeneous landscape of tumor antigens

and the inherent variability of individual immune responses (5, 6).

Although several cancer vaccines, such as Cervarix (7), Gardasil

(8), Gardasil-9 (9), and the Hepatitis B vaccine (HEPLISAV-B) (10),

have been approved primarily for preventive purposes, advanced

vaccines under research aim to specifically target markers like TAAs

or neoantigens on cancer cells to activate an immune response and

effectively attack these tumors (10). AI has emerged as a

transformative tool in this area, significantly accelerating the

development of innovative cancer vaccines (11, 12). The

availability of vast amounts of public data has further bolstered

these advancements, providing researchers with unprecedented

opportunities to identify and validate novel targets. This review

explores the dynamic interplay between AI and cancer vaccine

development, offering insights into how AI can revolutionize this

field by enhancing the speed and precision of vaccine discovery and

optimization. Recent strides in vaccine technology and coupled with

a deeper understanding of cancer immunology have paved the way

for innovative therapeutic avenues. AI’s intervention in the cancer

landscape has been profound and multifaceted, with significant

implications for treatment and research (13). Through data-driven

pattern recognition, AI has proven instrumental in detecting

mutations and unraveling intricate genomic signatures (14). The

integration of modern immunology and data science has introduced

innovative analytical methods for vaccine production. Deep

learning models, for instance, are capable of exploring a wide

range of possibilities in basic, translational, and clinical research,

accelerating the development of highly effective cancer vaccines.

Moreover, AI can classify patients as responders or non-responders

to cancer vaccines, enabling more personalized treatment strategies,

improving patient outcomes, and offering alternative therapies for

those who do not respond to conventional vaccines.

Pioneering platforms like IBM's Watson Oncology have

demonstrated AI's potential in personalized cancer treatment by

utilizing vast data repositories to provide tailored therapeutic

recommendations (15). Similarly, AI is making significant progress

in the field of immunology, particularly in epitope prediction—a

crucial step in vaccine development. One notable tool in this domain
Frontiers in Immunology 02
is DiscoTope-2.0 (12), which calculates the epitope propensity of each

residue by analyzing local geometry, including side chain orientation

and solvent accessibility. This tool has been instrumental in

predicting B-cell epitopes, which are critical for designing effective

vaccines. Building on this foundation, DiscoTope-3.0 (16) introduces

a more sophisticated approach by integrating a positive-unlabeled

learning technique and innovative inverse folding structure

representations. Unlike its predecessor, DiscoTope-3.0 is versatile,

applicable to both predicted and experimentally solved structures.

Most importantly, DiscoTope-3.0 (16) overcomes the limitations of

previous models by maintaining high predictive accuracy even for

relaxed and anticipated structures, thereby eliminating the

dependency on experimental structural data. This advancement not

only accelerates the epitope mapping process but also expands the

range of antigens that can be analyzed, making it a powerful tool for

vaccine research and development.

The road to effective cancer vaccine design is fraught with

challenges, from identifying optimal targets to overcoming

preexisting immunological tolerance. The complexity deepens

when considering mutated antigens, patient-specific variations,

and the dynamic evolution of tumor antigens. As AI continues its

ascendant trajectory, this review aims to demonstrate the synergy

between AI and cancer vaccine design processes. It takes complex

biological concepts and makes them easier to understand for both

biologists and computer experts. Ultimately, this review ushers in a

new era in cancer vaccine development, where AI and human

ingenuity coalesce to combat one of the most pressing health

challenges of our time. While AI and ML (Machine Learning)

technologies can expedite certain aspects of vaccine development,

they cannot replace the essential validation provided by animal

models and human trials in ensuring safety and efficacy (17).

However, this review does not cover all aspects of cancer vaccine

research. It specifically excludes topics such as regulatory

challenges, large-scale clinical trial design, and the detailed

immunological mechanisms involved in T-cell activation and

immune memory formation, which are beyond the scope of AI-

driven approaches. The ethical implications of AI use in healthcare

are discussed briefly, but they are not the primary focus of

this review.
2 Review methodology

This thoughtful arrangement facilitates exploration of this field

for both novice and experienced researchers. To our knowledge, no

previous research has thoroughly examined these techniques,

specifically the synergistic combination of AI-related technologies

with the latest advancements in vaccine technology. We have also

identified persisting challenges associated with AI-based tools and

proposed innovative research directions to address them. Such

combined efforts can facilitate the refinement and widespread

adoption of advanced AI technologies for developing effective

vaccine-based cancer therapies. The Appendix section includes

Table A1, which provides a glossary of abbreviations used

throughout the article.
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3.1 Search strategy and literature sources

The database queries made with particular keywords are shown

in Figure 1. This review, adhering to a rigorous literature review

approach, presents key findings from research and review papers

exploring the application of ML and DL techniques in cancer-based

vaccine therapy. Employing the PRISMA-ScR methodology, articles

were carefully selected from reputable online databases including

Google Scholar, Medline, PubMed Central, Cochrane Library, and

Scopus. The literature extensively documents the utilization of these

tools in diverse areas like epitope design, mutation prediction, and

AI integration in various nucleic acid vaccine designs. This growing

body of evidence highlights the expanding recognition of AI

technologies in healthcare, offering valuable insights and

significant advancements in crucial areas of practice and research.

This review further analyzes the contributions of other scholars and

proposes insightful directions for future research endeavors.
3.2 Inclusion criteria

The article selection process was restricted to English-language

publications, prioritizing the novelty and relevance of the review

topic. Specifically concentrating on vaccines, we meticulously

curated comprehensive articles utilizing ML and deep learning

(DL) methodologies in cancer therapy. Only peer-reviewed papers

were considered, with an additional requirement of providing

original data or analyses.
3.3 Elimination criteria

The exclusion process commenced with screening abstracts,

followed by data extraction and comprehensive analysis of full texts.

Articles were excluded based on multiple criteria, including subpar

writing quality, non-English language, or lack of relevance.

Duplicate publications and those unrelated to the research topic

were also eliminated from consideration. We also didn’t include

papers from those journals that are considered predatory.
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3.4 Results

785 publications were obtained from various literary sources,

Scopus, Medline, PubMed Central, Cochrane Library, and Google

Scholar. 226 Papers were eliminated after titles and abstracts were

screened. After thoroughly reviewing the full text of the remaining

358 publications, we further narrowed down the selection. This

resulted in a final set of 210 papers chosen for further analysis. The

outcomes of this selection process are illustrated in Figure 2.
4 Conventional vaccine
design process

Therapeutic cancer vaccines (TCVs) aim to control tumor

growth, eliminate residual disease, and induce regression of

established tumors. The traditional process of vaccine design, as

illustrated in Figure 3, highlights the critical steps involved in

creating an effective cancer vaccine. Central to this process is the

efficient delivery of antigens to dendritic cells (DCs), which leads to

their activation and subsequently triggers robust immune

responses, including CD4+ T-helper cells and cytotoxic T

lymphocytes (CTLs) (18).

Many vaccines are specifically formulated with pathogen-

associated molecular patterns (PAMPs), components of

pathogens that are recognized by pattern recognition receptors

(PRRs) on the surface of dendritic cells. This interaction is key to

initiating the immune response. The mechanism of action (MOA)

of TCVs is further illustrated in Figure 4, where the binding of

PAMPs to PRRs sparks an intracellular signaling cascade. This

cascade activates DCs by inducing cytokine release and elevating the

expression of co-stimulatory molecules on their surface (19).

Once activated, dendritic cells undergo a maturation process

that enhances their ability to present antigens to T-cells. This

maturation, detailed in Figure 4, involves changes in surface

molecules, notably the increased expression of MHC molecules

and co-stimulatory molecules like CD80 and CD86. The DCs then

process the antigens into peptide fragments, which are presented on

MHC molecules on their surface.
FIGURE 1

Queries made using specific keywords in databases.
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Following maturation, the DCs migrate from the site of antigen

encounter (such as the vaccination site) to nearby lymph nodes. In

these lymph nodes, the DCs interact with naive T-cells, presenting

antigen-MHC complexes along with co-stimulatory signals, which

leads to the activation of the T-cells. As depicted in Figure 4, CD4+

T-cells differentiate into helper T-cells, while CD8+ T-cells become

cytotoxic T-cells (20). Helper T-cells stimulate B cells to produce

antibodies, while cytotoxic T-cells directly attack and eliminate

infected or cancerous cells.

The method of vaccine administration plays a crucial role in its

effectiveness and safety. While intramuscular injection remains the

most commonly used route and is considered the gold standard for

inducing systemic immunity, it has limitations in providing

mucosal protection. Intradermal and intranasal methods are also
Frontiers in Immunology 04
preferred for certain vaccines, as they allow direct access to

dendritic cells (DCs) in the skin or mucosal tissues, enhancing

immune response at these critical sites. Intradermal injection,

though requiring a specialized technique, is efficient and allows

for the use of smaller doses of the vaccine. Intranasal delivery

directly targets mucosal surfaces, promoting both local and systemic

immune responses, but often requires the addition of adjuvants to

enhance efficacy. Subcutaneous injection offers ease of

administration, though it can be less efficient in stimulating a

strong immune response. Oral vaccines, while convenient, face

challenges such as degradation in the digestive system and

reduced immunogenicity. Understanding the advantages and

limitations of each administration route is crucial for optimizing

vaccine design and delivery strategies. Selecting the most
FIGURE 2

The PRISMA-ScR guidelines-based methodology for selecting studies to be included in the review.
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appropriate method can significantly impact the vaccine’s ability to

combat various pathogens effectively and ensure robust protection

for individuals (21).

Several strategies can be employed to enhance T-cell responses in

vaccines, as a more robust and durable immune response is essential

for effective cancer immunotherapy. One key approach involves the

use of adjuvants, substances that boost the immunogenicity of

antigens by stimulating antigen-presenting cells (APCs), such as

dendritic cells (DCs), and promoting cytokine production. In

addition to adjuvants, targeting specific dendritic cell receptors
Frontiers in Immunology 05
represents a promising novel strategy. This method focuses on the

localized delivery of antigens through antibodies specifically designed

to bind to endocytic receptors expressed on the surface of DCs (22).

Among the most promising targets for DC-based vaccination is DEC-

205, a DC-specific endocytic receptor that efficiently internalizes

antigens and directs them to the MHC class II pathway (23).

Preclinical models have demonstrated that targeting DEC-205 with

antigen-specific antibodies elicits both robust and long-lasting

humoral and cellular immune responses. Additionally, other DC-

specific receptors, such as Clec9A (24) and Clec12A (25), have shown
FIGURE 3

Traditional Vaccine Design Process. The journey of vaccine development commences with the identification and selection of target antigens, which
are then combined with suitable adjuvants. Preclinical testing is conducted before progressing to clinical trials. Following the assessment of the
vaccine’s efficacy and safety in clinical trials, regulatory approval is sought for large-scale manufacturing and distribution.
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potential as targets for enhancing DC-based vaccines. By selectively

targeting these receptors, vaccines can activate the immune system

more effectively, leading to stronger T-cell responses.

Moreover, tailoring the immune response by targeting specific DC

subsets can further refine the outcome, steering the immune system

towards a more desirable and effective response. An essential

consideration is the tumor microenvironment (TME), where sustained

infiltration of immune cells and long-term maintenance of the immune

response are critical for successful tumor control. One strategy involves

utilizing autologous DCs loaded with tumor antigens derived from dying

tumor cells within the TME (26, 27). However, these approaches are met

with several challenges, including tumor heterogeneity, where different

regions of the tumormay express different antigens, potentially leading to

an incomplete immune response. Furthermore, insufficient presentation

of complex antigens may result in suboptimal activation of T-cells,

limiting the overall therapeutic effect. There is also the risk that the

immune system might not mount a sufficiently robust attack against

tumor cells, as it could perceive tumor antigens as self-antigens, reducing

the immune response. Therefore, the design and development of cancer

vaccines are intricate and multi-step processes that require careful

consideration. This involves identifying specific cancer antigens,

evaluating their immunogenicity, formulating the vaccine with

appropriate adjuvants, and conducting thorough preclinical and

clinical testing. The process progresses through various phases of safety

and efficacy evaluation, ultimately leading to regulatory approval and

large-scale manufacturing.
5 AI in various steps of
vaccine development

AI can assist in feature extraction and model training to predict

patient-specific cancer antigens. Through sophisticated algorithms,

AI may optimize and refine these antigens, guide vaccine

formulation, and support clinical trial design, potentially enabling

more personalized vaccination strategies. Real-time monitoring and
Frontiers in Immunology 06
continuous learning could ensure adaptive treatment strategies, while

adherence to regulatory standards and experimental validation might

help assess safety and efficacy. As AI-driven cancer vaccine

development continues to advance, ensuring the safety, efficacy,

and ethical use of these technologies requires careful navigation of

a complex regulatory landscape. Key challenges may include

guaranteeing that AI algorithms do not introduce unintended risks

or biases, maintaining transparency throughout development, and

addressing potential biases in the training data. Robust data security

and privacy measures, along with well-designed clinical trials, will

likely be critical for achieving regulatory approval and maintaining

public trust. Furthermore, collaboration with regulators and

stakeholders globally could help establish harmonized standards,

ensuring that ethical considerations like informed consent are

properly addressed. This collaboration might ultimately pave the

way for the safe and responsible integration of AI-driven vaccines

into cancer treatment.

The development of AI models for cancer vaccine design relies

heavily on access to extensive and high-quality datasets. Table 1

consolidates various datasets and databases that could aid in the

creation of novel cancer vaccines. Many of the listed databases are

epitope databases, such as IEDB and SYFPEITHI, as well as

neoantigen peptide databases like dbPepNeo2, and MHC binders

like MHCBN. These resources can provide crucial information on

cancer vaccine target antigens and the MHC molecules capable of

binding to them, supporting researchers in identifying promising

vaccine candidates.
5.1 Epitope design and major
histocompatibility complex binding
prediction using AI

An epitope is a specific molecular structure or region on an

antigen that the immune system recognizes and requires to initiate an

immune reaction (36). The meticulous design of epitopes is a pivotal
FIGURE 4

Mechanism of action (MOA) of a vaccine. Cancer vaccines introduce tumor-associated antigens or tumor-specific antigens to the immune system.
Antigen-presenting cells (APCs), such as dendritic cells, process these antigens and present them in a Human Leukocyte Antigen (HLA)–restricted
manner to T cells. Activated T cells recognize and bind to tumor cells expressing the same antigens, leading to the activation of cytotoxic T cells
(CD8+ T cells) and helper T cells (CD4+ T cells). CD8+ T cells directly target and kill tumor cells, while CD4+ T cells assist other immune responses.
Activated B cells produce antibodies that neutralize tumor cells or their secreted factors, contributing to tumor cell death. Immune surveillance by T
cells and B cells monitors for and eliminates any remaining tumor cells that may have escaped initial treatment. The immune system retains the
memory of tumor antigens, allowing a rapid response if the tumor recurs. Additionally, cancer vaccines are often combined with other
immunotherapies or standard treatments to enhance efficacy.
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step in targeted therapies and crucial for minimizing potential harm

to healthy cells. AI algorithms play a significant role in this design

process. AI-powered approaches have significantly enhanced the

accuracy of forecasting epitopes for designing TCVs by considering

the relative affinities of adjacent amino acids (37). Over the past few

decades, researchers have developed numerous AI algorithms for

epitope design and the prediction of MHC peptide binding, as

depicted in Table 2. Since the indicators are diverse, they are

elaborated upon in the supplementary paper. It enumerates a

variety of studies at the intersection of AI and cancer vaccine

development. These studies employ various AI techniques, such as

neural networks (e.g., BepiPred and MHCflurry-2), support vector

machines (SVMs) (e.g., DeepImuno and Epitopia), and natural

language processing (e.g., MHCSeqNet), to predict and assess

critical aspects of cancer vaccines, including epitope binding,

immunogenicity, and antigen presentation. While each tool has its

unique strengths and limitations, collectively, they emphasize the
Frontiers in Immunology 07
transformative potential of AI in enhancing our understanding of

cancer immunology and the finding of effective neoantigens for

TCVs development.

One of the challenges in identifying neoantigens is forecasting the

peptides that can bind to MHC class I molecules and be presented on

the surface of melanoma cells. Various computational techniques

have been employed to address this problem, using ML algorithms

and mass spectrometry (MS) data. ML-based methods rely on large

training datasets of known MHC class I-bound peptides, which are

often limited and incomplete. Therefore, these methods may miss

some neoantigens that are not well-represented in the databases. To

overcome this limitation, Abelin et al. (38) used MS to profile the

MHC ligandomes of cells expressing single HLA-I alleles and

identified 24,000 peptides presented by these alleles. They also

examined the impact of protein cleavage and gene expression levels

on antigen presentation. MS-based methods can also be used to

create more accurate and comprehensive training datasets for ML-
TABLE 1 List of several cancer vaccine datasets.

Ref. Database
Name

Year Availability Details about
the dataset

Link Significance

Schuler MM
et al. (28)

SYFPEITHI 2007 (last
updated
- 2012)

Publicly
available

A collection of 7000 peptide
sequences capable of binding to
both class I and class II
MHC molecules

http://www.syfpeithi.de/ Therapeutic cancer vaccine
based on peptides

Schisler NJ
et al. (29)

IEDB 2000 (Last
Updated:
September
10, 2023)

Publicly
available

1,597,734 Peptidic Epitopes
and 3,187 Non-
Peptidic Epitopes.

https://www.iedb.org/ Therapeutic cancer vaccine
based on peptides

Lu M
et al. (30)

dbPepNeo2.0 2022 Publicly
available

801 high-confidence
neoantigens and 864,884 low-
confidence peptidomes,
validated neoantigen peptides,
TCRs, and HLA peptidomes

http://
www.biostatistics.online/
dbPepNeo2

Neoantigens, which may
serve as targets for
immunotherapy, can be
predicted and filtered
using it.

Lata S
et al. (31)

MHCBN 2009 Publicly
available

MHCBN contains information
on 20,717 MHC binders, 4022
MHC non-binders, 1053 TAP
binders and non-binders, and
6722 T cell epitopes.

https://webs.iiitd.edu.in/
raghava/mhcbn/

Utilizing this dataset enables
the prediction of MHC class
I binding peptides, a crucial
aspect in the development
of vaccines.

Kardani K
et al. (32)

CPPsite 2.0 2021 Publicly
available

Contains over 1000 new entries
and includes information on
diverse chemical modifications
of CPPs.

http://crdd.osdd.net/
raghava/cppsite/

CPPsite 2.0 represents an
enhanced iteration of the
manually curated database
dedicated to cell-penetrating
peptides (CPPs).

Almeida LG
et al. (33)

CTdatabase 2008 Publicly
available

Contains information about
family members, genomic
spots, splicing variations, and
gene names and aliases.

http://www.cta.lncc.br This has data about cancer-
testis antigens that can be
used as potential targets.

Fang LT
et al. (34)

Somaticseq 2015 Publicly
available

Contains tumor-normal pairs
that were produced using
BAMSurgeon with synthetic
but accurate genetic mutations.

https://dreamchallenges.org/ The dataset is excellent for
evaluating the effectiveness
of bioinformatics algorithms
in detecting somatic
mutations because it covers
many stages with increasing
difficulty, such as multiple
sub-clonal groups and
simulated contamination.

Bulik
et al. (35)

– 2018 Publicly
available

HLA–MS neoantigen peptides
and genomic data of
74 patients.

http://massive.ucsd.edu/ The provided dataset can be
used to locate new antigens
in various cancer types.
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TABLE 2 A Comprehensive Assessment of Studies for the Development of Cancer Vaccines Using AI Techniques.

Contribution Limitation

Both the potential for HLA-
peptide interaction and the model
for the immunogenicity of the
peptide-MHC (pMHC) complex
were considered when
predicting neoantigens.

The confined set of immune-
stimulating pMHC combinations
can challenge the accuracy of
immunogenicity models.

The methods performance
extended to a wider range of MHC
molecules.
It surpassed the relatively small
number of MHC molecules data
during the training.

It made use of training data that
favors peptides with lengths
shorter than nine.

An integrated prediction of MHC
class I presentation was created by
combining fresh models for
antigen processing and
MHC binding.

Training data for the predictor
model contain both antigen
processing-sensitive and insensitive
data. So, the ranking of strong
binders may not accurately reflect
antigen processing signals.

It can be utilized to evaluate the
patient’s prognosis and identify
neoantigen candidates with fewer
false positives.

This model’s drawback is that a
single value assigned to a discrete
aspect of the entire process is
insufficient to resolve the level
of complexity.

Based on the TCR sequence,
neoantigen sequence, and MHC
type, this model allowed for the
forecasting of the TCR-binding
specificity of class I pMHCs.

The drawback of pMTnet is that it
can only forecast using certain
types of epitopes, MHCs,
and TCRs.

They increased the predictability of
immunogenic CD8+ T-cell
epitopes by coupling antigen
presentation with peptide-intrinsic
TCR detection propensity.

Its performance is not as good
when integrated with other
predictors as it is when
utilized independently.

.92 This tool makes it possible to find
immunogenic epitopes in various
malignancies and
autoimmune conditions.

When employed as cancer
vaccines, numerous peptides with
high presentation scores failed to
elicit CD4+ responses.
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Reference Purpose Approach Dataset Used Performance
evaluation
metrics

(47) To forecast the likelihood of
peptides reaching the cell surface
and activating T cells.

Recurrent Neural Network (RNN) 32,785 peptides for the forecast of
immunogenicity and 437,077 peptide
sequences for the binding mechanism.

Accuracy = 0.9

(48) To determine T cell epitopes,
naturally occurring ligands, and
cancer neoantigens.

NN, Artificial Neural
Networks (ANNs).

Studies of affinity from IEDB & and
85,217 peptides

Specificity (98.5%

(49) To forecast Presented Peptides of
MHC Class I.

NN’s A total of 493,473 MS records and
219,596 affinity measures made up the
training set.

AUC= 0.90

(50) To find neoantigen candidates that
have fewer false positives, which
can be utilized to assess the
patient’s prognosis.

Gaussian naıve Bayes (GNB),
locally weighted naıve Bayes
(LNB), random forest (RF),
and SVM.

There are 311 neoepitopes eliciting a
T-cell response.

Accuracy = 0.981

(51) To predict the T cell receptor
(TCR) binding specificities of class
I pMHC complexes presenting
neoantigens and T cell antigens
in general.

Long short-term memory (LSTM) 243,747 human TCR CDR3 sequences,
172,422 affinity measurements, and
32,607 pMHC-TCR pairs.

AUC = 0.827

(52) To locate neo-epitopes in cancer
immunotherapy and pathogen
epitopes in infectious diseases.

Logistic Regression 4958 peptides Accuracy = 0.75

(53) To precisely forecast whether
HLA-II complexes will exhibit a
given peptide.

RNN, LSTM 33,909 peptides were used for the
binding model, 12,150 for the cleavage
model, and 8374 for the
presentation model.

Accuracy = 0.89-0
)
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TABLE 2 Continued
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Contribution Limitation

ccuracy = 0.92 It assisted in the selection of useful
neoepitopes for the creation of
cancer vaccines.

Because there isn’t enough training
data or for other reasons, they
might not support all MHC alleles.

ccuracy = 0.762 An epitope prediction tool based
on sequence that can predict both
linear and
conformational epitopes.

The BepiPred-3.0 model currently
in use relies on known solved
antibody-antigen complexes, which
only make up a tiny portion of all
potential pathogenic proteins
and antibodies.

ensitivity – 80.1%
recision – 55.2%
UC - 0.70

A web service that integrates
tripeptide similarity and propensity
scores from a human protein
sequence backdrop to predict non-
redundant B-cell linear epitopes.

The performance of SVMTriP in
predicting discontinuous epitopes
is not stated.

ccuracy = 0.75 A software suite used for protein
structure prediction improves
upon the constraints of earlier
predictors by integrating an
amino-acid propensity scale,
alongside side chain orientation
and solvent accessibility
information, utilizing half-sphere
exposure values.

The focus on linear B-cell epitopes,
as opposed to discontinuous
epitopes, which make up a
significant fraction of B-cell
epitopes, is a shortcoming of this
ML approach.

UC – 0.53 for the
EP method

A web-based application capable of
predicting immunogenic regions in
a protein, whether in its 3D
structure or linear sequence.

It relies on a benchmark dataset of
well-known epitopes.

UROC = 0.85 An online interface for forecasting
the potential immunogenicity of
specific HLA alleles, as well as
identifying which patients could
gain the most from
immunogenic therapy.

This model’s weakness is that it
has a lower specificity than is ideal
for confidently choosing
immunogenic antigens.
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Reference Purpose Approach Dataset Used P
e
m

(54) To identify useful neoepitopes for
the development of TCVs

NLP, GRU, NN 228,348 peptides A

(55) To improve the accuracy of
predictions made on multiple
separate test sets for both
conformational and linear
epitope prediction.

FFNN (Feed Forward), CNN, and
LSTM, Random Forest
Classifier (RFC)

BP3 and BP3C50ID A

(56) To predict linear
antigenic epitopes.

SVM The dataset consisted of 65,456 B-cell
linear epitopes from IEDB.

S
P
A

(57) To develop a web server for B-cell
conformational epitope prediction.

RNN Discotope dataset and the
Epitome dataset

A

(58) To identify areas of a protein
sequence and structure that
are immunogenic.

Naïve Bayes, SVM 194 non-redundant epitopes from
antigen sequences and 66 non-
redundant epitopes from antibody-
antigen co-crystal structures were used
to train the model.

A
C

(59) To use sequence alone to
determine the immunogenic
potential of peptides

ElasticNet, K-nearest neighbors
(KNN), SVM, RF, and AdaBoost.

IEDB dataset A
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based methods. For example, a recent method used MS to collect

185,000 high-quality MHC class I-bound peptides from human

tumor biopsies and used them to train an ML model that achieved

over 75% prediction accuracy (39). Another approach is to use a

consortium of different ML models to improve prediction

performance (40). Racle et al. (41) created MoDec, a motif

deconvolution algorithm similar in concept to convolutional neural

networks (CNNs), using mass spectrometry-based peptide datasets.

This algorithm aims to identify MHC II-binding motifs by

incorporating core offset preferences and peptide cleavage motifs.

They had a dataset comprising 23 different samples and 77,189

unique peptides in total. These methods showcase the synergy

between ML and MS in enhancing the identification of

neoantigens, potentially resulting in more effective and personalized

cancer immunotherapy.

Vaccine development relies heavily on computational prediction

of T-cell epitopes, focusing on antigen processing and presentation

mechanisms such as transporter associated with antigen processing

(TAP), proteasomal cleavage, and MHC binding. Developing

computational techniques that are accurate, rapid, and capable of

providing comprehensive insights into this binding can significantly

accelerate the progress of immunotherapies and the development of

vaccines in general. A crucial step in targeting melanoma cells is

binding off these MHC molecules to the epitope and presentation to

cytotoxic T-cells. In this context, Chu et al. (42) introduced the

TransMut framework, consisting of TransPHLA for pHLA binding

prediction and Adaptive Optimization of Mutated Peptides (AOMP)

for modified peptide optimization. TransPHLA, powered by a self-

attention model derived from Transformers, excels in predicting

pHLA binding, neoantigens, and the Human Papillomavirus

Vaccine (HPV) identification, outperforming 13 other methods.

One of the most used techniques for MHC peptide binding

prediction and epitope design is SVMs (43). They are employed to

predict T-cell epitopes by utilizing data descriptions to determine

peptide binding preferences. For example, Zhao et al. (44) developed

an SVM model for peptide-MHC molecule interaction. The

foundation of developing novel immuno-diagnostic reagents and

vaccines is the identification of protein surface areas that antibodies

preferentially recognize (antigenic epitopes). Computational

techniques for antigenic epitope identification offer essential tools to

support this endeavor. Tri-peptide similarity and propensity scores

have been combined to use SVMTriP. Using a five-fold cross-

validation, SVMTriP obtains a sensitivity of 80.1% and a precision

of 55.2% when applied to non-redundant B-cell linear epitopes

retrieved from IEDB. The AUC (Area Under the Curve) results in

a value of 0.702. The accuracy for linear B-cell epitopes can be

enhanced by combining the similarity and propensity of tripeptide

sequences An SVM-based technique was developed by Nagpal et al.

(45) to forecast peptides’ capacity to alter APCs for antigen

presentation. Their developed modulator demonstrated an

impressive accuracy rate of 95.71% on the training dataset and has

been made publicly accessible via a web-based server named

VaxinPAD. The effectiveness of these technologies highlights the

importance of continued innovation and precision in computational

techniques to facilitate advancements in this field. Accurately

predicting peptides that bind to MHC class I molecules and are
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subsequently expressed on melanoma cells using AI methods exhibits

several significant challenges. Firstly, the limited amount and

variability of experimental data, especially for rare MHC alleles,

hinders the training and effectiveness of AI models. Secondly, the

vast diversity of MHC alleles in the human population, each with

unique binding preferences, necessitates pan-specific models capable

of generalizing across this complexity (46). Further compounding the

issue is the complex and dynamic nature of peptide processing and

presentation, influenced by various cellular factors. Finally, selecting

the most suitable AI model from a plethora of available options

requires careful consideration of data type, features, parameters, and

performance metrics to ensure optimal prediction accuracy.

Addressing these challenges is crucial for harnessing the full

potential of AI in developing effective immunotherapy strategies

against melanoma.
5.2 Advancements in AI-driven cancer
diagnosis and personalized
treatment strategies

Biomarkers are measurable signals or indicators used to assess

various biological processes, including the presence of cancerous cells

or the effectiveness of a specific treatment (60). One critical aspect of

AI-driven cancer vaccines involves mutation and biomarker

prediction, enabling the identification of specific genetic alterations

and biomarkers for accurate cancer diagnosis and personalized

therapies. Cancer biomarkers are biomolecules created by the body

or within a tumor in individuals with cancer. These biomarkers

encompass various forms, including DNA, RNA, proteins, or

metabolic patterns, and are unique to the tumor (61). By

scrutinizing unique genetic or molecular alterations inherent to a

patient’s specific tumor, medical practitioners can precisely

determine the most appropriate treatment strategies. Significantly,

in research centered on breast cancer, the identification of the HER2

biomarker has played a crucial role in recognizing individuals who

can gain advantages from targeted therapies like trastuzumab (62).

Through HER2 biomarker testing, clinicians can gauge the likelihood

of a patient’s cancer responding positively to this specific treatment,

thereby avoiding ineffective therapies and possible adverse effects.

Following the identification of these biomarkers, the next phase

focuses on determining whether there are exploitable genetic

alterations that accelerate tumor development.

These biomarkers are classified into various groups according to

their nature and function. Genetic Biomarkers involve the analysis

of specific genetic mutations or alterations associated with cancer

(63). Protein biomarkers involve the measurement of specific

proteins or protein expressions associated with cancer (64). These

biomarkers can be used to predict treatment response or monitor

disease progression. For example, the prostate-specific antigen

(PSA) is commonly used to monitor treatment response and

detect recurrence in prostate cancer (65). Imaging biomarkers

utilize various imaging techniques, such as MRI or PET scans, to

assess tumor characteristics or treatment response (66). These

biomarkers provide valuable information about tumor size,

location, and metabolic activity, aiding in treatment planning and
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evaluation. Liquid biomarkers involve the analysis of various

substances present in body fluids (67). These biomarkers can

provide non-invasive and real-time information about tumor

characteristics or treatment response. For example, circulating

tumor nucleic acids (DNA) in the blood can help in monitor

treatment response and detect minimal residual disease. In this

context, Wood et al. (68) developed a fully automated, AI-driven

somatic mutation finding tool called Cerebro. The model employs

an RF algorithm to assess numerous decision trees, generating

confidence scores for potential mutations. Cerebro demonstrated

superior performance in identifying validated mutations, with high

sensitivity (97%) and positive predictive value (98%).

Mutations in the Isocitrate dehydrogenase (IDH) gene is an

important biomarker for the diagnosis and management of gliomas

(a type of brain tumor) (69). Using tumor slides with Hematoxylin

& Eosin (H&E) stains from glioma patients, Liu et al. (70) suggested

a GAN-based data enhancement technique to improve the

prediction of these mutations. Through data augmentation, their

study greatly improved prediction accuracy. In the context of

cutaneous melanoma, a promising mRNA-based biomarker

signature has been developed by Bai et al. (71). The signature,

created through a combination of Cox proportional hazards

regression and random survival forest algorithms, outperformed

clinical prognostic markers and holds significant potential to be a

predictive biomarker for cutaneous melanoma. Classifying cancers

based only on mutations is challenging due to intratumor

heterogeneity, low tumor purity, and common mutations across

cancer types. A greater comprehension of the spatial connection

between immune and other cells in individual tissues is made

possible by the clinical use of contemporary analytical and

diagnostic tools like multiplexed immune- and genetic analysis

(72, 73) along with AI. This reveals relevant intratumor

heterogeneity, which may have significant ramifications for

immune-related and combination therapies (74, 75). Despite the

burgeoning arsenal of immunotherapies, their successful

integration into clinical practice hinges upon a thorough

understanding established through academic research, economic

viability, and demonstrably positive clinical outcomes (76–78).

Genomic profiles obtained from alternative sources like cell-free

DNA (cfDNA) can provide valuable insights into the genetic

landscape of tumors and aid in the classification of cancers. ML

can be crucial in analyzing complex genomic data (79) and

improving our ability to classify and understand cancer types. AI

predictive models have shown promising potential in identifying

specific mutations or genetic characteristics related to imaging

symptoms in various medical conditions, including cancer. In this

context, Mu et al. (80) developed a DL model based on PET/CT

images to distinguish between patients with EGFR mutations and

wild-type non-small cell lung carcinoma (NSCLC) patients,

achieving an accuracy of 0.81. This model leveraged radiometric

characteristics for accurate prediction. DeepVariant (81) uses

DCNNs to find small indels in sequencing data. In the

PrecisionFDA Truth Challenge, it outperformed other variant

callers with remarkable accuracy. The technology can assist in

identifying neoantigens or indels that cause cancer. Advanced

methods like Fusion-Bloom (82) offer improved fusion variant
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detection through the application of a structural mutation

detection technique based on transcriptome assembly. The

algorithm has demonstrated higher specificity and sensitivity in

detecting true fusion variants. These AI-based tools for mutation

and biomarker prediction are making significant strides in

advancing cancer diagnosis and personalized treatment strategies.

These developments hold great promise for improving the quality

of life for cancer patients.
5.3 AI in immunogenicity prediction

Vaccine immunogenicity refers to the extent to which a vaccine

can trigger the immune system to initiate an immune response.

Immunogenicity prediction helps in streamlined vaccine

development, reduced costs, enhanced safety assessment,

optimized dosing strategies, tailored vaccine designs for specific

populations, and rapid response. An innovative method for

determining a peptide’s immunogenic potential based just on its

sequence was presented by Li et al. (59). They introduced a beta-

binomial distribution method and evaluated its performance

against other models. Surprisingly, the CNN emerged as the most

important prediction model due to its adaptability for datasets of

different sizes. Additionally, the team introduced an independent

GAN called DeepImmuno-GAN. This innovative approach

successfully replicated immunogenic peptides, aligning their

physicochemical properties and immunogenicity predictions to

real antigens.

Diao et al. (83) created a model using CNN called Seq2Neo-

CNN to forecast the immunogenicity of peptides. The model’s

performance was evaluated in comparison with other ML models

(SVM, random forest, ExtraTree, logistic regression, and XGBoost),

which were also trained using data from the independent TESLA

dataset. This model achieved an accuracy rate of 0.801. Numerous

other examples exist, such as, Wang et al. (84) created INeo-Epp, a

classifier based on random forest for predicting the immunogenicity

of T-cell epitopes, including neoantigens (14). discussed the overall

composition, organization, and activity of immune cells within a

specific tissue on clinical response and the potential use of ML in

finding new T-cell neoepitope. The 3T-TRACE platform developed

by 3T biosciences utilizes active ML with extensive target libraries to

discover new targets and T-cell receptors (TCRs). This method

identifies the most common and immunogenic targets within solid

tumors and is suitable for all tumor types (85). Not all MHC-

presented peptides provoke an immune response. myNEO

ImmunoEngine, a personalized cancer platform developed by

myNEO, also emphasizes structural attributes when predicting

the immunogenicity of neoantigens (86).

While AI-driven models have shown significant promise in

predicting immunogenicity, several challenges remain, particularly

concerning tumor heterogeneity and individual genetic variability.

Tumor heterogeneity—wherein distinct subclones with varying

mutational burdens and immune-evasive strategies exist within

the same tumor—presents a substantial hurdle (87, 88). AI

models may accurately predict neoantigens for one subclone but

fail to account for others, leading to incomplete or ineffective
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immune responses. This limitation highlights the necessity for more

dynamic, real-time data integration into AI models to capture

evolving tumor profiles. Moreover, individual genetic variability,

especially within the Major Histocompatibility Complex (MHC),

significantly influences immune responses (88). AI models trained

on data from common MHC alleles may not generalize well to

individuals with rare alleles, resulting in suboptimal vaccine designs

for certain populations. This underscores the importance of training

AI models on diverse datasets that encompass a broader range of

genetic backgrounds, allowing for more personalized and effective

vaccine development.

Vaccine allergenicity refers to the potential of a vaccine to trigger

an allergic reaction in the recipients. For allergenicity prediction,

Dimitrov et al. (89) introduced AlgPred and AllerTOP 1.0 servers for

assessing the allergenicity of chimeric proteins. These servers offer

multiple ways to determine allergenicity, including using allergen

representative peptides (ARPs) and hybrid methods. It entails

searching a database of 2890 ARPs acquired from Gasteiger et al.

(90) for the query protein sequence. The hybrid option combines an

alignment-free method based on the primary physicochemical

properties of proteins with KNN classification, achieving a high

sensitivity of 94% (89). For antigenicity assessment, two servers,

ANTIGENpro and VaxiJen v2.0 (91), were employed. ANTIGENpro,

an alignment-free server, based on sequence, uses microarray data on

protein antigenic properties to predict protein antigenicity (92).

Conversely, VaxiJen v2.0 achieves an 89% classification accuracy by

classifying antigens only based on the physicochemical characteristics

of proteins (93). These diverse applications of AI in immunogenicity

prediction and related fields showcase the vast potential of AI in

advancing our understanding and treatment of cancer. These studies

collectively illustrate the use of AI techniques to enhance the

precision and effectiveness of immunogenicity prediction, paving

the way for more targeted and effective therapeutic interventions.
6 Utilizing AI in the vaccine design

The integrated use of AI in cancer vaccine development is

multifaceted, encompassing several critical processes. Firstly, AI

plays a crucial role in target identification and validation. It analyzes

extensive genomic and molecular data to pinpoint potential tumor

antigens, thereby significantly optimizing the selection of immune

system targets. This allows for a more precise and focused approach

to immunotherapy. Secondly, AI contributes to vaccine design and

optimization. By simulating interactions with the immune system,

AI can predict vaccine efficacy and guide researchers in choosing

the most promising candidates for further development. This

significantly improves the efficiency and effectiveness of the

vaccine creation process. Categorically, cancer vaccines

materialize as four distinct types: tumor or immune cell-based,

viral vector-based, peptide-based, and nucleic acid-based (94).

Therapeutic Cancer Vaccines (TCVs) aim to activate the adaptive

immune system, coordinating a coordinated attack against specific

tumor antigens (95). By orchestrating these mechanisms, TCVs aim

to train the immune system to identify and eliminate cancerous

cells, providing a targeted and specific approach to cancer
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immunotherapy. TCVs often aim to induce a Th1 immune

response, characterized by the activation of killer T cells and the

release of pro-inflammatory cytokines. This response is particularly

effective in combating cancer cells. Table 3 offers an overview of

multiple companies involved in clinical trials for cancer vaccines,

with a common theme being the integration of AI technology in

their development pipelines. These trials encompass a range of

cancer types and innovative projects.
6.1 AI in nucleic acid vaccine design

6.1.1 DNA vaccines
These are plasmids expressed by bacteria containing DNA

sequences that encode antigenic proteins. These vaccines

demonstrate the potential to elicit strong immune responses,

thereby aiding in the fight against cancer. An ideal example is the

ongoing clinical trial (phase-I) for breast cancer involving a

Mammaglobin-A DNA vaccine (NCT00807781) (96). Another

case in point is the clinical effectiveness demonstrated by a DNA

vaccine targeting HPV-16/HPV-18 E6 and E7 oncogenes in

individuals with high-grade cervical intraepithelial neoplasia (97).

DNA vaccines offer several advantages, including ease of

manufacturing, inherent adjuvants, and a good source of TAA.

Nevertheless, they require additional steps of transcription and

translation before dendritic cells can cross-present them for

immune activation (18). There are apprehensions regarding the

possible integration of the DNA vaccine into the host genome,

which may result in unintended outcomes, including the activation

of oncogenes or interference with regular cellular functions (98).

The immune system might perceive the DNA vector as foreign,

eliciting an immune reaction against it. This response has the

potential to diminish the vaccine’s effectiveness and trigger

adverse reactions (99).

Efforts are being made to increase the immunogenicity of DNA

vaccines to improve their effectiveness. Choosing and fine-tuning

the optimal antigens for incorporation into the plasmid DNA is a

strategy to enhance immune responses induced by the vaccine and

improve therapeutic effectiveness (100). Evaxion Biotech’s cancer

vaccine, EVX-01, represents an enhanced, advanced iteration of

DNA-based neoantigen cancer immunotherapy for metastatic

melanoma, developed to address advanced solid cancers (101).

Their AI platform, PIONEER, helps create neoantigens for

targeted cancer therapy (102). Immunoinformatics can aid in

identifying tumor-specific antigens that are likely to trigger rapid

and protective immune responses for DNA vaccines. AI algorithms

can enhance these immunoinformatic approaches (103). Lurescia

et al. (104) discuss the use of immunoinformatics in designing DNA

vaccines against B-cell lymphoma. Combining AI with genome

editing via CRISPR/Cas9 presents a novel frontier in precise gene

mutation modification, molecular cloning, and tumor genome

alteration (105). This synergy expedites gene editing processes by

harnessing AI’s analytical capabilities to interpret data and

construct knowledge models (106). Genetic vaccines are made

possible by CRISPR-Cas, which delivers certain antigen-encoding

genes into host cells to stimulate a strong and focused immune
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response. These developments in CRISPR-based immune

augmentation are very promising for treating cancer, infectious

illnesses, and other situations where effective treatment depends on

a strong immune system (107).

As this field advances, there is a growing focus on enhancing

poly epitope DNA constructs for clinical application, requiring

thorough validation of modifications and epitope combinations

through experimental predictions and in vitro preclinical

investigations (108). To maximize efficacy, it is essential to

concentrate on strategies that enhance epitope expression, fine-

tune the recruitment of the immune system, and identify the most

suitable combinations of epitopes. By utilizing predictive

algorithms, exome/genome sequences, RNA sequencing analysis,

and comparative sequencing of a patient’s tumor and standard

samples, it becomes feasible to pinpoint tumor neoantigens. A

vaccine can be designed to trigger an immune reaction targeted at

the specific neoantigens identified, with minimal risk of provoking

tumor growth (109). Absci, a biotech company, has developed a

model called CO-BERT of codon optimization using advanced DL

algorithms to enhance the process, specifically focusing on

predicting the most effective codons for achieving maximum

protein expression (110). This innovative approach allows them

to design gene sequences with precise modulation for heightened

expression within a particular host organism, circumventing the

traditional trial-and-error method in the laboratory. This
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advancement bears significance in scenarios such as DNA vaccine

development, facilitating optimal antigen expression and eliciting

an intensified immune response within the body. With ongoing

advancements, the horizon of DNA-based cancer vaccines appears

promising, enabling tailored treatments based on individual MHC/

TAA epitope profiles.

6.1.2 RNA vaccines
These are popularly known as mRNA vaccines, which contain a

small piece of synthetic mRNA that codes for either TAAs or

neoantigens (111). Like DNA vaccines, RNA vaccines offer the

advantage of being relatively simple to produce and having

inherent adjuvant properties (112). Furthermore, with the growing

emphasis on tumor mutational burden and the potential benefits of

personalized vaccines targeting neo-epitopes (113), significant

progress has been made in developing vaccination strategies for

cancer treatment. However, unlike DNA vaccines, RNA vaccines

bypass the need for transcription, allowing for faster presentation by

MHC molecules. This streamlined process enhances their efficiency

in triggering immune responses. A recent study has demonstrated the

potent ability of RNA vaccines to elicit robust immune responses

against cancer (114), further supporting their potential as an effective

strategy in cancer immunotherapy. AI technology plays a crucial role

in optimizing mRNA vaccine structures, enhancing their

immunogenicity, safety, and overall efficacy (111). It can also assist
TABLE 3 Clinical studies for an AI-powered cancer vaccine.

Reference Company Tool Name Type
of Vaccine

Vaccine Name Type
of cancer

Remarks Trial
Number

(165) Moderna/
Merck & co.

– mRNA vaccine mRNA-4157 High-risk melanoma Phase-II trial NCT03897881

(166) Moderna
and IBM

– mRNA vaccine KRAS vaccine
(mRNA-5671)

Lung, Pancreatic,
and Colon cancer

Phase-I trial NCT03948763

(167) mRNA vaccine Checkpoint vaccine
(mRNA-4359)

Advanced
solid tumor

Phase-I trial NCT05533697

(101) Evaxion PIONEER &
OBsERV

Peptide vaccine EVX-01 Metastatic or
Unresectable
Melanoma

Phase-II trial NCT05309421

(168) Nykode NeoSELECT DNA vaccine VB10.16 HPV-
positive cancers

– NCT06099418

(169) BioNTech Protein design
tool DeepChain

mRNA-based
cancer vaccine

BNT-122 Localized or
Metastatic
Prostate Cancer

Phase-II trial NCT04486378

(170) Transgene
and NEC

Their technology is
driven by NEC’s AI
capabilities and the
myvac platform.

DNA-based vaccine TG4050 Head and
neck cancer

Phase-I trial NCT04183166

(171) Columbia
University

GeneWays Peptide vaccine NY-ESO-1 combined
with MPLA

Lung, ovarian and
melanoma cancer

Phase I/II NCT01584115

(172) University
of Virginia

Deep Neural
Net QSAR

Peptide vaccine LPV7 Mucosal and
metastatic
Melanoma

Phase I/II NCT02126579

(173) Wakayama
Medical
University

DeepTox peptide-
based vaccine

URLC10-177 and TTK-
567, two tumor-specific
epitope peptides,
combined with CpG7909

Esophageal Phase I/II NCT00669292
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in designing nanoparticles for self-assembling mRNA vaccines,

improving their stability and delivery (115).

Researchers can use DL techniques to optimize mRNA

sequences to enhance protein expression and antigen

presentation, producing a more focused and potent immune

response (116). Through computer modeling supported by ML,

scientists can simulate the interactions and reactions of the

components of the immune system in response to diseases like

cancer, both in the presence and absence of vaccines (117). This

approach assists in the development of effective mRNA sequences

for vaccination purposes. Understanding the secondary structure of

RNA molecules is crucial for gaining insights into their cellular

functions, and designing of novel drugs and vaccines. In this

context, Singh and colleagues (118) introduce an innovative DL-

based approach for predicting RNA secondary structures. Other

tools, such as SPOT-RNA, DMfold, and CDPfold, specialize in

predicting mRNA stability, structure, and binding (119). RNA

degradation is a crucial process that affects the expression and

function of genes. Predicting the degradation features of mRNA

sequences, such as the half-life and the degradation rate at each

nucleotide, can provide insights into the regulation and dynamics of

gene expression. However, this task is challenging due to the

complex interactions between RNA molecules and various factors

that influence their stability. He et al. (120) proposed a CNN model

called RNA deformer, which utilizes self-attention to recognize both

local and global dependencies in RNA sequences. The convolution

layer can extract local features such as secondary structures, while

the self-attention layer can learn long-range dependencies and

interactions. The model also provides interpretability by

visualizing the attention weights of the self-attention layer, which

can reveal the importance of different regions and nucleotides for

degradation prediction. The authors demonstrated that their model

achieved high accuracy and outperformed existing methods on two

datasets: the OpenVaccine dataset, which contains mRNA

sequences of COVID-19 vaccine candidates, and the m6A-

modified dataset, which contains mRNA sequences with m6A

modifications. Their results showed that fine-tuning mRNA

degradation and half-life is necessary for the safety, efficacy, and

proper functioning of mRNA vaccines. Human Immunology

Project Consortium (HIPC) (https://www.immuneprofiling.org),

researchers can perform transcriptional profiling analyses of the

immune system (including microRNA arrays, and next-generation

sequencing (121)) before and after a particular infection,

vaccination, or adjuvant treatment (122). This will enable a more

comprehensive assessment of the efficacy and safety of different

vaccine formulations, as well as expedite the evaluation of

human disease.

By creating a valuable tool for tissue collection, in vitro tumor

culture, and medicine screening, the integration of AI into organoids

is expected to tackle the safety and customization issues associated

with traditional prediction (123). By concentrating on antigen

presentation pathways (124) and cell necroptosis index (CNI)

(125), AI could also predict ICB responses. Using a multiplex gene

detection method, Mizukami et al.’s systems biology approach to

vaccine safety assessment and the discovery of certain indicators in a

rat preclinical investigation allowed for the evaluation of vaccine
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safety against the pandemic H5N1 influenza (126). It’s worth noting

that numerous in silico models are currently employed to predict

protein-protein and drug-protein interactions based on available

datasets. This suggests that AI models hold potential for simulating

interactions between adjuvants and vaccines. This capability extends

beyond cancer vaccines, as there are existing adjuvant databases that

can be leveraged for other vaccine development purposes as well

(127). For instance, using DL, researchers have modeled the

association between human 5′ UTR sequences and mRNA

translation, offering insights into potential translation efficiencies

(128). CNNs excel in identifying motifs in DNA or mRNA

sequences and have demonstrated superior performance compared

to previous non-DL methods in the domain, as seen in convolution-

based architectures such as deep learning-based sequence models

(129). However, CNNs encounter challenges in capturing distant

relationships, which are vital for tasks involving DNA and RNA. AI

algorithms, like transformers, have shown promise in predicting

sequences of DNA and RNA (130, 131). These approaches can

help optimize vaccine development and enhance the understanding

of molecular processes. Leading companies like Moderna are at the

forefront of mRNA vaccine technology and rely heavily on AI for

numerous aspects of their research processes. They are also

developing three types of mRNA vaccines for cancer: mRNA-4157,

mRNA-5671, and mRNA-4359 (132). Furthermore, continued

research is required to improve the accuracy of AI-guided

predictions and to fine-tune the techniques used in preparing

these vaccines.
6.2 Peptide vaccines

Peptide-based cancer vaccines leverage the immune system to

initiate a targeted response against tumor-associated antigens,

ultimately leading to the destruction of cancer cells. However, one

of the major challenges faced in designing effective cancer vaccines

is the intra-tumoral heterogeneity, which refers to the significant

variability in genetic and phenotypic traits among cancer cells

within a single tumor (133). This variability results in a diverse

population of cells, some of which may evade immune detection or

develop resistance to treatments.

The immune system plays a critical role in cancer

immunosurveillance by identifying and eliminating transformed

cells to prevent tumor formation (134). Yet, tumors characterized

by pronounced heterogeneity often display complex interactions

among various subclones, leading to fluctuations in immune cell

infiltration and activation. This dynamic environment can result in

subclones that respond differently to immune-based therapies,

thereby complicating the effectiveness of immunotherapy

approaches (135).

Addressing this challenge requires a multi-faceted strategy that

can account for the diverse subpopulations of cancer cells. Stephens

et al. (136) highlighted the significance of crafting sophisticated

peptide-based cancer vaccines designed to specifically target and

activate various components of the immune system, particularly

antigen-presenting cells. A promising approach is the development

of personalized peptide vaccines based on neoantigens (137). These
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vaccines aim to boost the immune system’s ability to fight tumors

by using neoantigens, which are unique to each patient’s

cancer (138).

Developing peptide-based vaccines is complex due to the

diversity of MHC alleles in the human population. AI models used

to predict T-cell epitopes can have limitations, as the spatial

configuration of epitopes changes when antigens bind to cell

surface receptors, leading to potential false-positive and false-

negative results (139). Additionally, MHC-II-restricted peptides are

highly diverse and challenging to predict due to their complexity

compared to MHC-I cells (140). Advancements in bioinformatics

tools, including predicting HLA allele coverage and using

promiscuous peptides that bind to multiple MHC alleles, offer

potential solutions to address the challenges of peptide vaccine

design (141). One significant obstacle is the enormous variation in

MHC-I molecules among people. It is difficult to predict which

peptides will attach to a particular patient’s MHC-I because there

are thousands of distinct MHC-I alleles (142). Immunodominance

presents another difficulty since not all tumor antigens are equally

effective at eliciting a robust immune response. The peptides’

structural integrity is also very important, as it influences their

ability to interact with T cell receptors and initiate an effective

immune response (143). It’s possible that the peptides won’t be

sufficient to trigger a strong immunological response. To get around

this, scientists are looking into the use of adjuvants, which are

substances that strengthen the immune system and increase the

efficacy of vaccinations. Another obstacle that must be tackled

involves the creation of adjuvants and efficient delivery methods to

ensure the peptides reach their intended destinations effectively (144).

Automated ML systems like SIMON (Sequential Iterative

Modeling “OverNight”) compare results from diverse clinical

datasets, improving predictive accuracy and providing new

vaccine targets (145). AI models such as RF, SVM, Recursive

Feature Selection, Deep Convolutional Neural Networks (DCNN),

LSTM networks, NEC Immune Profiler, and the Immune Epitope

Database (IEDB) assist in predicting epitopes and designing

effective peptide vaccines (137). ML is also being employed in the

design of peptide-based nanomaterials for tumor immunotherapy

(146). Also, AI can offer solutions to improve the affinity and

stability of Peptide-based inhibitors for immune checkpoint

blockade (ICB) and make them more effective in clinical settings

(147). In conclusion, peptide-based cancer vaccines have the

potential to be a powerful tool in the fight against cancer.

However, there are still challenges in antigen selection, adjuvant

use, and personalized approaches. Companies like Ardigen are

developing AI tools like ARDesign and the ARDitox platform to

help design peptide-based cancer vaccines (148). AI is emerging as a

valuable tool to address the challenges of peptide vaccine design and

improve its efficacy in cancer immunotherapy.

The ARDesign platform developed by Ardigen can identify

targets for TCR-based therapeutics and design both customized and

off-the-shelf Personalized Cancer Vaccines (PCVs). It consists of

the following models: ARDitox, ARDisplay (presentation model),

Ardimmune (immunogenicity model), and Meta-model (which

takes into account metrics and their output). As one of the inputs

for the ARDesign platform, DNA sequences will be compared to the
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standard genome, and both somatic and germline mutations will be

identified (149). Cross-reactivity between certain TCRs and

substantially different epitope sequences has been reported.

Sanecka-Duin et al. (150) developed ARDitox, an advanced in

silico technique for detecting and evaluating potential off-target

binding, utilizing computational immunology and artificial

intelligence (AI) to address this issue. They utilized a set of TCRs

targeting a viral epitope and numerous cases from the literature

where TCRs were employed to target cancer-relevant antigens to

assess the efficacy of ARDitox in silico.
6.3 Dendritic cell vaccines

DCVs are activated dendritic cells that are exposed to cancer

antigens. They are infused into patients to elicit an immune

response against melanoma cells (151). The components used in

DCVs consist of antigens obtained from the patient’s tumor cells,

and in some cases, subsets such as cancer stem cells can also be

utilized (152). Acquisition of these cells can be achieved through

methods like biopsy or surgical extraction of the tumor. The

selected antigens are typically proteins that demonstrate

distinctive or elevated expression levels in cancer cells compared

to normal cells. In the laboratory, dendritic cells are then subjected

to these extracted antigens. This exposure process may entail co-

culturing dendritic cells with tumor cell lysates or purified antigens

(153, 154). emphasized the difficulties in extrapolating immune

responses from small trials to large trials and the preference for

autologous tumor lysate-based strategies rather than shared

antigens. DCVs target tumor-specific peptides or epitopes to

induce anti-tumor effects. These epitopes are short amino acid

sequences derived from TAAs and chosen for their immunogenicity

and compatibility with HLA alleles. ANNs have been used to

estimate the binding strength between MHC molecules and

different positions of peptide sequences (115). Mirsanei et al.

(155)used an ANN mathematical model to improve DCV

delivery. Their research aimed to identify the optimal DC dosage

and administration schedule to enhance the effectiveness of DC-

based immunotherapy. ANNs can process data on nano-bio

interactions and predict optimal DC vaccination parameters, such

as DC types, activation techniques, and injection sites.

Creating superior personalized DCVs involves considering

various factors, including individual patient physiological

information, nanoparticle features, and tumor variation (156).

Paulis et al. (157) explored the design of DC-based nano vaccines

for tumor immunotherapy, emphasizing the delivery of cancer

antigens and immunostimulatory signals to elicit potent anti-tumor

responses. Hashemi et al. (158) focused on using nanoparticles for

targeted drug delivery to DCs, aiming to improve the effectiveness

and stability of immunological reactions in DC-based cancer

immunotherapy. Nanoparticles (NPs) are essential for promoting

strong T-cell and B-cell immune reactions, increasing the absorption

by cells of immunostimulatory representatives, and frequently acting

as self-adjuvants. Despite these advantageous attributes, a

comprehensive exploration of the interactions between these

naturally derived NPs and diverse biological components, including
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immune cells, remains imperative. This thorough investigation is

essential for evaluating immunotoxicity and propelling the progress

of immunostimulatory NPs as a secure and efficacious tool in the

realm of cancer immunotherapy (159). Scientists have created AI

algorithms capable of forecasting the ideal dimensions, structure, and

surface properties of nanoparticles designed for drug delivery and

cancer immunotherapy. For example, an Artificial Neural Network

(ANN) was utilized to predict the size and initial release rates of poly

(lactic-co-glycolic acid) (PLGA) nanoparticles (160).

NPs vary according to the tumor model, cancer type, and

physicochemical characteristics. Development and research on

cancer nanomedicine can benefit from the integration of ML/AI

with physiologically based pharmacokinetic (PBPK) models, as

demonstrated by Lin et al. (161). Their DL model can serve as a

platform to aid in the design of future cancer nanomedicines and

help scientists decide which NPs should proceed to pre-clinical

trials, thereby reducing and enhancing animal investigations. When

designing nanostructures and RNA nano designs, computer-aided

and mathematical modeling can assist in selecting specific building

blocks to achieve desired structures (162). By utilizing ML and AI

simulations, the design of nanoparticles can facilitate the

understanding of molecular interactions. This computer-aided

approach enhances comprehension of RNA and nanoparticle

interactions, thereby increasing the likelihood of success and

optimizing nanoparticle utilization.

Because of the interactions with small molecules, peptides,

receptors, antigens, and nucleic acids, nanoparticles in particular

are helpful in medical biophysics. Particularly, gold nanoparticles

(Au NPs) hold great promise for drug delivery, cancer therapy, and

therapeutic and diagnostic applications. Owing to their optimal

dimensions, form, and surface area, Au NPs are adaptable elements

that offer encouraging outcomes and support. Optimal therapeutic

conditions are ensured by their perfect cellular absorption and

preventative cytotoxicity measures. Through control using AI and

mathematical modeling, Au NPs have advanced and will continue

to progress in medical biophysics. This topical review emphasizes

the significance of advancing future nanotechnology research

through the integration of mathematical modeling and artificial

intelligence (AI) to enhance medical biophysics (163). Suberi et al.

(164) developed an image-based technique to enhance vaccine

manufacturing by incorporating image-based techniques that

require minimal computational t ime for analysis and

investigation. Incorporating AI into the development and

optimization of dendritic cell-based cancer vaccines holds

promise for enhancing their effectiveness and personalization. AI-

driven analyses can help identify optimal peptide sequences,

vaccination parameters, and vaccine manufacturing processes,

contributing to more effective cancer immunotherapy (18).
7 Adjuvant development and AI

Adjuvants are molecules with the ability to enhance and/or

shape antigen-specific immune responses (144). Adjuvants, such as

oil-in-water mixtures and aluminum salts, have been in use for

years (174). However, many adjuvants face challenges during
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development, such as stability, efficacy, tolerability, or safety

concerns. For instance, aluminum salts can induce antigen

aggregation, thereby influencing the stability and immunogenicity

of vaccines (175). Squalene-based adjuvants, like MF59 and AS03,

have been associated with injection site reactions (176). Recent

advancements in AI have resulted in the discovery of two novel,

broad-spectrum adjuvants through computer-aided molecular

design and ML.

While adjuvants have been integral components of vaccinations

for an extended period, their precise mechanisms of action and their

effects on enhancing or altering immune responses triggered by

vaccinations are often unclear. The model vaccine utilized in this

study was a Self-Assembling Protein Nanoparticle (SAPN)

displaying the malarial circumsporozoite protein (CSP),

adjuvanted with three distinct liposomal formulations: liposome

plus Alum (ALFA), liposome plus QS21 (ALFQ), and both

(ALFQA). They identified unique vaccine-induced immune

responses by using a computational approach to combine the

immune-profiling data. They also constructed a multivariate

model that was able to forecast the adjuvant condition with 92%

accuracy based solely on immune response data. This served as an

effective means of locating putative immunological correlates of

protection, which is necessary to match vaccination candidates with

adjuvants in a logical manner (177). In contrast, AI is capable of

quickly and effectively analyzing enormous databases of molecular

and genetic data to locate possible adjuvants that might boost the

immune system. Moreover, AI systems can potentially simulate the

interactions between adjuvants and immune cells, allowing

researchers to optimize adjuvant doses and combinations. This

optimization leads to the generation of an ideal immunological

response, making the growth of more effective and tailored cancer

treatments possible.

Adjuvants play a crucial role in shaping vaccine-induced

immune responses through a variety of intricate yet often subtle

mechanisms, underscoring their indispensable contribution to the

efficacy of vaccinations. Adjuvant-specific immune response

features may be identified by machine learning and in-depth

analysis of vaccine-induced cytokine, cellular, and antibody

responses (known as “immune profiling”). This information

could be utilized to make informed decisions regarding the

rational selection of adjuvants. Chaudhury et al. (178)

investigated the profiles of human immune responses elicited by

vaccines adjuvanted with two comparable, clinically significant

adjuvants, AS01B and AS02A. They identified important

differentiators, or immunological signatures, that these adjuvants

imprint on vaccine-induced immunity. The computational analysis

identified a combination of immunological characteristics that

could classify participants by adjuvant with 71% accuracy.

Additionally, it revealed statistically significant changes in cellular

and antibody responses between cohorts.

Adjuvants stimulate a strong immunological response in

response to a vaccination (77). Despite being in use for decades,

many adjuvants used today, like oil-in-water emulsions and

aluminum salts, do not produce widespread or durable immune

responses. Stronger adjuvants are therefore required. Through the

utilization of machine learning and computer-aided molecular
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design, Ma et al. (179) discovered two novel broad-spectrum

adjuvants with the potential to augment vaccine responses. Their

library includes 46 toll-like receptor (TLR)–targeting agonist

ligands that were synthesized on Au nanoparticles. This study

illustrates computer-aided design and testing that can rapidly

identify effective adjuvants to counteract the declining immunity

associated with current vaccinations. AI offers a promising avenue

for accelerating adjuvant development in cancer vaccines. It

streamlines the identification of effective adjuvants, optimizes

their usage, and enhances our ability to create more efficient and

individualized cancer therapies while saving valuable time

and resources.
8 Personalized cancer vaccines

Personalized cancer vaccines represent a promising strategy to

enhance the efficacy of immunotherapy by specifically targeting

cancer-associated antigens. In a pivotal study, Ott et al. (180)

demonstrated that tailored neoantigen therapy, combined with

the checkpoint inhibitor anti-PD-1, was both well-tolerated and

effective in patients with advanced tumors, such as non-small cell

lung cancer and bladder cancer. Similarly, in the Phase I GAPVAC-

101 study conducted by the Glioma Actively Personalized Vaccine

Consortium, Hilf et al. (181) integrated highly personalized

vaccines containing both tumor-specific and shared antigens into

standard therapies. This approach aimed to maximize the

therapeutic use of the limited target space available for

individuals diagnosed with newly diagnosed glioblastoma.

Neoantigens, which arise from protein-coding mutations

specific to tumors, play a crucial role in eliciting robust immune

responses (182, 183). These neoantigens can serve as potent targets

for cancer vaccines, aiding in the rejection of tumors (94). For

tumors with typically "cold" immunological microenvironments,

such as glioblastoma, a personalized neoantigen vaccination

strategy using multiple epitopes has shown feasibility. This

approach has also been explored in high-risk melanoma patients

(184). Keskin et al. (185) further demonstrated that neoantigen-

specific T cells derived from peripheral blood could infiltrate an

intracranial glioblastoma tumor, as revealed through single-cell T-

cell receptor research. Sahin et al. (186) reported that personalized

RNA mutanome vaccines, either as a standalone therapy or in

combination with anti-PD-L1, triggered multi-specific therapeutic

immune responses, resulting in objective clinical improvements in

some patients with advanced tumors. These findings underscore the

potential of personalized cancer vaccines to improve outcomes for

patients across various cancer types.

AI-driven progress is set to be a key factor in the emerging area

of personalized tumor vaccines, signifying the forefront of

innovation. A crucial initial step in developing customized TCVs

is the identification of tumor-specific neoantigens (TSNs) present

on the exterior of cancer cells. The incorporation of AI into this

process significantly accelerates the identification and selection of
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potential cancer vaccines for individual patients. By utilizing

machine learning (ML) to translate somatic mutations into

actionable neoantigens, AI offers more effective selection of

immune responses with the greatest therapeutic potential (187,

188). Additionally, other computational approaches, such as

combining genetic algorithms with support vector machines

(SVMs), have achieved high predictive accuracy in vaccine

development (43). One such tool, PREDIVAC (189), excels at

identifying CD4+ T-cell epitopes, surpassing existing methods in

predicting HLA class II peptide binding. Integrating computational

analysis, high-throughput genomics, and machine learning can

significantly streamline the identification of therapeutic targets

and response biomarkers, which are critical for the development

of effective personalized cancer vaccines. However, achieving

success in this domain will require the development of

interpretable AI systems capable of explaining the rationale

behind their conclusions, ensuring transparency and trust in AI-

assisted decision-making processes.
9 Open challenges for developing
cancer vaccines using AI

The critical importance of large, high-quality datasets in

training AI models is underscored by the need for accurate and

relevant information. To develop robust models capable of handling

noisy data and generalizing to untrained samples, it is essential to

ensure that the data feeding these models is both comprehensive

and precise. This becomes particularly important when predicting

B-cell epitopes, which vary widely in location, size, and sequence

within proteins. The challenge of predicting antigenic epitopes lies

in identifying regions of a protein that can bind to antibodies, a task

that becomes even more complex when considering entire protein

complexes. Predicting antigenic epitopes in a multi-chain protein

structure requires modeling interactions between the chains, adding

layers of complexity compared to single-chain protein predictions.

Moreover, antigenic epitopes are subject to selective pressure from

host immunity, making them more variable than standard binding

sites. This variability renders antigenic epitope prediction poorly

suited for traditional binding site prediction techniques (190).

Comparatively, several conformational B-cell epitope-forecasting

algorithms, which employ ML techniques alongside features like

conservation, structure, geometry, and amino acid properties, have

outperformed binding site prediction models in terms of accuracy.

However, even with these advancements, the presence of clonal

diversity and intra-tumor heterogeneity in both primary and

metastatic tumors presents a significant challenge to mutation-

dependent neoantigen predictions (191, 192). Not all neoantigens

can serve as viable targets for cancer vaccines, highlighting the

difficulty in identifying immunologically relevant neo-peptides. For

cancers with a lower mutational burden, the need for mutation-

independent neoantigens becomes even more crit ical .

Unfortunately, most current AI models primarily focus on
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mutation-dependent neoantigen prediction, often overlooking

important factors such as tumor accessibility (193). A crucial

aspect of neoantigen prediction is the role of HLA alleles, which

present antigens to the immune system. Accurate neoantigen

prediction must consider the alignment of peptide mutations with

the patient's unique HLA alleles (194). By incorporating this

relationship, researchers can more effectively identify neoantigens

capable of eliciting a robust immune response, which is essential for

developing personalized cancer immunotherapies (195, 196). The

integration of these features into prediction algorithms has the

potential to significantly enhance their performance (197).

T-cell migration within the tumor microenvironment may

encounter obstacles, including the extracellular matrix and

Cancer-related macrophages, which can constrain T-cell access to

tumor antigens (198). Tumor accessibility, affected by factors such

as poor vascularization, physical barriers, and the presence of blood

vessels limiting T-cell infiltration, constitutes a critical stage

following the generation of neoantigen-specific T-cell responses

(199), yet this aspect is often overlooked in current prediction tools

due to dataset limitations. Single-cell analysis can be used to address

bulk sequencing’s shortcomings in capturing the heterogeneity of

the tumor immune microenvironment (200).

Vaccine efficiency is also influenced by T-cell inability to detect

immune-evading tumors and T-cell suppression by the

immunosuppressive tumor microenvironment (TME) (201). Efforts

to model TME have been made (202), but current AI models struggle

to detect immune-evading tumors. Personalized neoantigen cancer

vaccines also face challenges with T-cell exhaustion and dysfunction,

branded by a loss of effecter function, enhanced repressive receptor

expression, and a tendency for cell death, significantly limiting their

benefits (199). Early predictive signatures for vaccine responses are

critical for advancing next-generation cancer vaccines, necessitating

ongoing research.
10 Future prospects

Future research in cancer vaccine design should prioritize

strategies aimed at enhancing the recruitment of immune cells,

increasing epitope expression, and selecting optimal combinations

of epitopes capable of eliciting robust T-cell responses against

tumor-associated antigens. Advances in molecular sequencing, AI,

and cellular engineering hold the potential to revolutionize cancer

vaccines, making them faster, more affordable, and more effective.

These technologies allow for rapid and comprehensive assessment

of immune responses to cancer vaccinations, facilitating real-time

adjustments based on individual patient responses. Digitally

transformed clinical studies play a crucial role in predicting

patient reactions under different conditions, leading to more

precise vaccine development. The application of ML and

stochastic optimization techniques contributes to identifying

optimal vaccination strategies, ensuring efficacy with minimal

doses. AI technologies can forecast potential changes in

melanoma cells, enabling the development of vaccines that

remain effective against driver mutations. Moreover, AI can

collaborate with systems like VARES (Vaccine Adverse Event
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Reporting System) to identify populations that could face

potential vaccination risks. In addition to predictive modeling, AI

models and synthetic developmental biology have led to the

creation of biobots and xenobots with potential applications in

cancer therapy. These innovative entities could play roles ranging

from drug delivery to tumor targeting, expanding the scope of

cancer treatment possibilities. The synergy between AI, molecular

advancements, and biobots represents a multifaceted approach to

advancing cancer vaccine design and delivery. AI facilitates real-

time adjustments based on individual patient responses, predictive

modeling, and the identification of optimal vaccination strategies.

However, ethical and legal considerations, such as data privacy,

algorithm bias, regulatory compliance (203), and equitable access,

are of utmost importance.

Nano computers are devices that control or guide nanobots

inside the body. They can be electrical, biological, organic, or

quantum in nature. Software programmed using four nitrogenous

base letters from DNA can control the expression of genes in

computers built at the molecular level from DNA. It can also

identify the type of mRNA associated with specific genes that,

when overexpressed or conversely under-expressed, can contribute

to cancer development. This makes it possible to diagnose various

cancer forms and treat the illness with the recommended

medication (204). In 2016, researchers developed simulated

nanobots designed to target and destroy brain cancer cells (205).

These nanobots possess the capability to recognize and eradicate

cancerous cells. Upon detection of the tumor, they emit an auditory

signal, facilitating precise localization for subsequent intervention.

The advent of artificial intelligence (AI) has raised numerous legal

and ethical dilemmas for society, encompassing concerns related to

privacy and surveillance, bias and discrimination, and the role of

human judgment. These challenges may also present philosophical

complexities. The emergence of newer digital technologies has

sparked concerns that they could introduce additional sources of

errors and data breaches. In the medical field, errors in processes or

protocols can have catastrophic consequences for patients who fall

victim to such mistakes.

Finding ethical and legal issues could also be a proactive way to

reduce risks, which would help AI technology become more widely

used and successful overall. Transparency in the application of AI

technology can be fostered by resolving ethical concerns and

guaranteeing regulatory compliance, which can improve patient

trust—a crucial component of healthcare. Another potential aspect

in assessing the effectiveness of immunotherapy is AI’s ability to

identify lymphocytes, tumor cells, and mesenchymal stroma in the

slice and to emphasize the spatial distribution of various cell types

using 3-D modeling (206). For immunotherapy, an optimal AI-based

predictive model should incorporate all pertinent clinical data about

the patient, such as genetics, imaging, proteomics, pathological tissue,

demographic data, medical history, etc. To allow the sharing of huge

data from many locations, it is vital to enhance the integrity and

objectivity of data gathering since ideas such as pan-cancer analysis

have been reflected in the assessment of PD-1/PD-L1 efficacy (207).

This bodes very well for immunotherapy’s future (208).

Clinicians are beginning to pay more and more attention to DL

neural networks, as they demonstrate good performance in tracking
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and predicting treatment responses (209). Nowadays, solid tumor

diagnosis (tumors of the gastrointestinal tract, lung cancer,

melanoma, etc.) is accomplished using biomarker analysis,

computerized histopathological image interpretation, or automatic

quantification of radiological imaging (210). Nevertheless, there

hasn’t been much study on using AI to assess the effectiveness of

immunotherapy in NSCLC (Non-small cell lung cancer). Russo

et al. (203)’s computational framework has the potential to expedite

and improve the process of designing and developing the optimal

vaccine formulation that can boost the immune system’s response,

hence boosting the efficiency of therapeutic vaccines and protecting

prophylactic ones. With the use of in silico trial technology, the

advantages of this computational pipeline may expedite and

improve the design of phase I/II clinical trials for the most

promising vaccine candidates that have been found. There is a lot

of work being done for IST to receive the regulatory bodies’

qualifying stamp.

Currently, healthcare settings lack clear legislation to address

the ethical and legal concerns that may arise from the utilization of

artificial intelligence. Striking a balance between innovation and

ethical safeguards is crucial to ensuring the responsible

development and deployment of AI-driven cancer vaccines.
10.1 Summary

Cancer vaccine research is focused on improving immune

responses through enhanced recruitment and epitope selection.

Advanced technologies like molecular sequencing, artificial

intelligence (AI), and cellular engineering hold promise for faster

and more effective vaccine development. AI enables real-time

adjustments based on individual patient responses, while Nano

computers and nanobots offer innovative drug delivery solutions.

However, ethical and legal considerations, including data privacy and

algorithm bias, must be addressed to ensure responsible deployment

of AI-driven cancer vaccines. Balancing innovation with ethical

safeguards is crucial for safe and effective cancer treatment.
11 Discussion

Despite attempts to compile a diverse range of studies, the

review acknowledges the limitations arising from data availability

primarily in the English language. This linguistic limitation raises

awareness of the potential exclusion of valuable insights from non-

English literature. This underscores the importance of future

reviews to adopt a more encompassing language approach. The

use of PRISMA-ScR methodology is employed to mitigate personal

biases in data collection. Furthermore, the disclaimer stating that

the review paper is not accountable for the results of the cited

research papers raises questions about the reliability and validity of

the included studies. This prompts a consideration of the

methodological rigor of the underlying research and its

implications on the overall robustness of the review’s findings.

Furthermore, the deliberate emphasis on high-quality papers from

reputable journals introduces a potential bias that should be
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acknowledged when interpreting the conclusions of the review.

This underscores the importance of having a nuanced

understanding of the limitations associated with excluding

research from lesser-known journals.

The review significantly contributes by highlighting the

complex challenges in developing effective cancer vaccines,

covering areas such as target identification, immunological

tolerance, and patient-specific variations. It guides researchers

through this intricate landscape. The review also plays a crucial

role in explaining fundamental biological concepts and the

application of AI tools in cancer vaccine design. The study

explores biomarker prediction, epitope design, MHC binding

prediction, and immunogenicity prediction, bridging traditional

biology with advanced AI applications. The detailed exploration

of various cancer vaccine types, including DNA, mRNA, peptide,

and dendritic cell vaccines, enhances comprehension. The inclusion

of tables summarizing datasets, AI techniques in vaccine

development studies, and ongoing clinical trials serves as a

valuable resource for researchers, facilitating data gathering and

comparative analysis. These tables also offer insights into the

current research landscape and guide future research efforts.

Beyond its specific contributions, the review initiates a broader

conversation about the challenges impeding the broad adoption of

cancer vaccines. It delves into reasons for their limited usage,

examining challenges in clinical adoption, and regulatory aspects,

providing context to the current status of therapeutic cancer vaccine

development. The review also extends its focus beyond vaccine

design to explore AI’s potential in designing clinical trials, finding

people with potential vaccination risks, and selecting optimum

dosage. This wider viewpoint emphasizes the transformative

impact of AI, not just in vaccine development but also in

reshaping different aspects of cancer treatment, including patient

stratification and personalized therapeutic strategies.
12 Conclusion

The advent of cancer vaccines represents a significant stride in

global cancer treatment. Leveraging AI and ML-based techniques

during vaccine development enables the precise prediction and

identification of neoantigens capable of triggering robust anti-

tumor immune responses. Recent progress in cancer vaccine

discovery has partially addressed the challenges associated with

antigen selection. These novel approaches incorporate diverse

mechanisms to counteract cancer cells’ immune-suppressive

effects, paving the way for personalized cancer vaccine

development. AI has been pivotal in tailoring these vaccines,

presenting a promising solution to the limitations of conventional

therapies. For optimal outcomes, deploying cancer vaccines early in

the disease’s progression or during its minimal residual stages

appears to be most effective. Advances in related fields like

artificial intelligence, cellular technology, and DNA sequencing

could benefit these vaccines, all of which facilitate the

examination and optimization of vaccine-induced immunological

reactions. While computational technologies for designing nucleic

acid vaccines, such as epitope prediction and sequence
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optimization, currently demonstrate moderate performance levels

due to evolving technology, the availability of extensive online data

and advanced models holds significant promise. ML algorithms can

predict epitopes and have integrated into several prediction

approaches, albeit with some accuracy limitations. One of the

difficulties is the restricted supply of high-quality data for

developing and evaluating AI models in a clinical setting.

Although the creation of synthetic immunogenic peptide models

via GANs and diffusion models remains relatively unexplored, these

tools have been successful in domains like computer vision and

synthetic biology, generating novel images and sequences of

interest. The potential of AI to tailor treatments for individual

cancer patients and expedite the development of new technologies

promises to revolutionize the field of oncology therapy.

Immunomics is poised to take a leading role in the future of

tumor immunology but there is still a substantial amount of work

to be done. Advances in AI, especially in immunogenomics and

single-cell analysis, are expected to significantly advance this field’s

clinical utility. Greater accessibility to data with experimental

validation and the ongoing development of improved algorithms,

driven by extensive datasets, will enhance vaccine design strategies.

While AI presents a promising avenue for accelerating cancer

vaccine design, it is essential to acknowledge its limitations,

particularly regarding the complexity of biological systems and the

challenges of clinical translation. AI-driven models, despite their

predictive power, are often constrained by the availability and

quality of data, and their predictions may not fully account for the

dynamic nature of the immune system and tumor microenvironment.

Biological factors such as immune evasion, tumor heterogeneity, the

unpredictable nature of immune responses and individual genetic

variability can significantly impact the effectiveness of vaccines in

clinical settings. Thus, AI should be viewed as a complementary tool

that works alongside traditional experimental approaches rather than

as a standalone solution. Experimental validation, animal models, and

rigorous clinical trials remain crucial.

In conclusion, the AI-driven cancer vaccine design and

development is gaining significant attention in academia and

industry. Various companies are contributing substantial

resources to the field to address current challenges, offering

customized solutions using AI. The vital role of therapeutic

cancer vaccines is highlighted by developments in tumor biology

and vaccine technology, especially in cases of early-stage or minimal

residual disease. The progress in the development of tumor vaccines
Frontiers in Immunology 20
is driven by the critical demand for effective cancer treatments.

These advancements could greatly benefit from collaborative efforts

across multiple disciplines, including immunology and cancer

biology, as well as the integration of artificial intelligence (AI).
Author contributions

AK: Conceptualization, Data curation, Investigation,

Methodology, Software, Visualization, Writing – original draft.

SD: Conceptual izat ion, Data curat ion, Invest igat ion,

Methodology, Software, Visualization, Writing – original draft.

KS: Supervision, Validation, Writing – review & editing. DM:

Writing – review & editing, Funding acquisition, Project

administration. PV: Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The APC

was supported by Vellore Institute of Technology, India.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References

1. Cai Y, Chen R, Gao S, Li W, Liu Y, Su G, et al. Artificial intelligence applied in

neoantigen identification facilitates personalized cancer immunotherapy. Front Oncol.
(2023) 12:1054231. doi: 10.3389/fonc.2022.1054231

2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence andmortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. (2021) 71:209–49. doi: 10.3322/caac.21660

3. Vishweshwaraiah YL, Dokholyan NV. mRNA vaccines for cancer immunotherapy.
Front Immunol. (2022) 13:1029069. doi: 10.3389/fimmu.2022.1029069

4. Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol
Cancer. (2021) 20:41. doi: 10.1186/s12943-021-01335-5
5. Faghfuri E, Pourfarzi F, Faghfouri AH, Abdoli Shadbad M, Hajiasgharzadeh K,
Baradaran B. Recent developments of RNA-based vaccines in cancer immunotherapy.
Expert Opin Biol Ther. (2021) 21:201–18. doi: 10.1080/14712598.2020.1815704

6. Jia Q, Wang A, Yuan Y, Zhu B, Long H. Heterogeneity of the tumor immune
microenvironment and its clinical relevance. Exp Hematol Oncol. (2022) 11:24.
doi: 10.1186/s40164-022-00277-y

7. Monie A, Hung C-F, Roden R, Wu T-C. Cervarix: a vaccine for the prevention of
HPV 16, 18-associated cervical cancer. Biologics. (2008) 2:97–105. doi: 10.2147/BTT.S1877

8. McLemore MR. Gardasil®: introducing the new human papillomavirus vaccine.
Clin J Oncol Nurs. (2006) 10:559–60. doi: 10.1188/06.CJON.559-560
frontiersin.org

https://doi.org/10.3389/fonc.2022.1054231
https://doi.org/10.3322/caac.21660
https://doi.org/10.3389/fimmu.2022.1029069
https://doi.org/10.1186/s12943-021-01335-5
https://doi.org/10.1080/14712598.2020.1815704
https://doi.org/10.1186/s40164-022-00277-y
https://doi.org/10.2147/BTT.S1877
https://doi.org/10.1188/06.CJON.559-560
https://doi.org/10.3389/fimmu.2024.1357217
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kumar et al. 10.3389/fimmu.2024.1357217
9. Kirby T. FDA approves new upgraded Gardasil 9. Lancet Oncol. (2015) 16:e56.
doi: 10.1016/S1470-2045(14)71191-X

10. Zhao H, Zhou X, Zhou Y-H. Hepatitis B vaccine development and
implementation. Hum Vaccin Immunother. (2020) 16:1533–44. doi: 10.1080/
21645515.2020.1732166

11. Ullah M, Akbar A, Yannarelli G. Applications of artificial intelligence in, early
detection of cancer, clinical diagnosis and personalized medicine. WArtificial Intell
Cancer. (2020) 1:39–44. doi: 10.35713/aic.v1.i2.39

12. Kringelum JV, Lundegaard C, Lund O, Nielsen M. Reliable B cell epitope
predictions: impacts of method development and improved benchmarking. PloS
Comput Biol. (2012) 8:e1002829. doi: 10.1371/journal.pcbi.1002829

13. Vaka AR, Soni B, K. SR. Breast cancer detection by leveraging Machine Learning.
ICT Express. (2020) 6:320–4. doi: 10.1016/j.icte.2020.04.009

14. Xu Z, Wang X, Zeng S, Ren X, Yan Y, Gong Z. Applying artificial intelligence for
cancer immunotherapy. Acta Pharm Sin B. (2021) 11:3393–405. doi: 10.1016/
j.apsb.2021.02.007

15. KohnMS, Sun J, Knoop S, ShaboA, Carmeli B, SowD, et al. IBM’s health analytics and
clinical decision support. Yearb Med Inform. (2014) 23:154–62. doi: 10.15265/IY-2014-0002

16. Høie MH, Gade FS, Johansen JM, Würtzen C, Winther O, Nielsen M, et al.
DiscoTope-3.0: improved B-cell epitope prediction using inverse folding latent
representations. Front Immunol. (2024) 15:1322712. doi: 10.3389/fimmu.2024.1322712

17. Waltz E. AI takes its best shot: What AI can—and can’t—do in the race for a
coronavirus vaccine - [Vaccine. IEEE Spectr. (2020) 57:24–67. doi: 10.1109/
MSPEC.2020.9205545

18. Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer
vaccines. Nat Rev Cancer. (2021) 21:360–78. doi: 10.1038/s41568-021-00346-0

19. Oth T, Vanderlocht J, Van Elssen CHMJ, Bos GMJ, GermeraadWTV. Pathogen-
associated molecular patterns induced crosstalk between dendritic cells, T helper cells,
and natural killer helper cells can improve dendritic cell vaccination. Mediators
Inflammation. (2016) 2016:1–12. doi: 10.1155/2016/5740373

20. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P.Molecular Biology of
the Cell, 4th edition. (New York: Annals of Botany) (2017) 91.

21. Wang S, Liu H, Zhang X, Qian F. Intranasal and oral vaccination with protein-
based antigens: advantages, challenges and formulation strategies. Protein Cell. (2015)
6:480–503. doi: 10.1007/s13238-015-0164-2

22. Macri C, Dumont C, Johnston AP, Mintern JD. Targeting dendritic cells: a
promising strategy to improve vaccine effectiveness. Clin Transl Immunol. (2016) 5:e66.
doi: 10.1038/cti.2016.6

23. Birkholz K, Schwenkert M, Kellner C, Gross S, Fey G, Schuler-Thurner B, et al.
Targeting of DEC-205 on human dendritic cells results in efficient MHC class II–
restricted antigen presentation. Blood. (2010) 116(23):2277–85. doi: 10.1182/blood-
2010-02-268425

24. Caminschi I, Proietto AI, Ahmet F, Kitsoulis S, Shin Teh J, Lo JC, et al. The
dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine
enhancement. Blood. (2008) 112(8):3264–73. doi: 10.1182/blood-2008-05-155176

25. Macri C, Dumont C, Panozza S, Lahoud MH, Caminschi I, Villadangos JA, et al.
Antibody-mediated targeting of antigen to C-type lectin-like receptors Clec9A and
Clec12A elicits different vaccination outcomes. Mol Immunol. (2017) 81:143–50.
doi: 10.1016/j.molimm.2016.12.010

26. Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, et al. Detection of
immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. (2020) 11
(11):1013. doi: 10.1038/s41419-020-03221-2

27. Garg AD, Agostinis P. Cell death and immunity in cancer: From danger signals
to mimicry of pathogen defense responses. Immunol Rev. (2017) 280:126–48.
doi: 10.1111/imr.12574
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TABLE A1 List of all the abbreviations used in this manuscript,

accompanied by the meaning of each one.

Acronym Definition

AI Artificial Intelligence

ANN Artificial Neural Network

AOMP Adaptive Optimization of
Mutated Peptide

APCs Antigen-Presenting Cell

AUC Area Under the Curve

CNN Convolutional Neural Networks

DC Dendritic Cells

DCV Dendritic Cell Vaccines

DL Deep Learning

DNA Deoxyribonucleic acid

DNN Deep Neural Network

EGFR Estimated Glomerular Filtration Rate

GAN Generative Adversarial Network

GNN Graph Neural Network

HLA Human Leukocyte Antigen

HPV Human Papillomavirus Vaccine

IDH Isocitrate Dehydrogenase

LSTM Long Short-Term Memory

MHC Major Histocompatibility Complex

ML Machine Learning

MOA Mechanism-Of-Action

MRI magnetic resonance imaging

mRNA messenger ribonucleic acid

MS Mass Spectrometry

NN Neural Network

NSCLC Non-Small Cell Lung Carcinoma

PAMPs Pathogen-Associated
Molecular Patterns

PET scan positron Emission Tomography

PLGA Poly (Lactic-co-Glycolic Acid)

PRRs Pattern Recognition Receptors

PSA Prostate-Specific Antigen

RF Random Forest

RNA Ribonucleic acid

SVM Support Vector Machines

TAP Tumor Antigen Processing

(Continued)

TAA Tumor-Associated Antigens

TCRs T-Cell Receptors

TCV Therapeutic Cancer Vaccines

TLR Toll-Like Receptors

TME Tumor Micro-Environment

TSNs Tumor-Specific Neoantigens

VARES Vaccine Adverse Event
Reporting System
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