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Enhancing the cytotoxicity of natural killer (NK) cells has emerged as a promising

strategy in cancer immunotherapy, due to their pivotal role in immune surveillance

and tumor clearance. This literature review provides a comprehensive overview of

therapeutic approaches designed to augment NK cell cytotoxicity. We analyze a

wide range of strategies, including cytokine-based treatment, monoclonal

antibodies, and NK cell engagers, and discuss criteria that must be considered

when selecting an NK cell product to combine with these strategies. Furthermore,

we discuss the challenges and limitations associated with each therapeutic strategy,

as well as the potential for combination therapies to maximize NK cell cytotoxicity

while minimizing adverse effects. By exploring the wealth of research on this topic,

this literature review aims to provide a comprehensive resource for researchers and

clinicians seeking to develop and implement novel therapeutic strategies that

harness the full potential of NK cells in the fight against cancer. Enhancing NK cell

cytotoxicity holds great promise in the evolving landscape of immunotherapy, and

this review serves as a roadmap for understanding the current state of the field and

the future directions in NK cell-based therapies.
KEYWORDS

natural killer cell (NK cell), NK cell, cytotoxicity, NK cytotoxicity, immunotherapy,
TriKEs, cancer immunotherapy, NK cell engager
1 Introduction

While improvements in cancer prevention and treatment have led to a decrease in cancer

deaths per capita, it remains the second leading cause of death worldwide, highlighting the need

for novel treatment strategies (1). Following several observations that tumors are capable of

inhibiting and evading the immune system, immunotherapy has come to the forefront of cancer

research and drug development following the turn of the twenty-first century.

Some cancers, for example, have been shown to upregulate inhibitory ligands for immune

cells, like programmed cell death ligand 1 (PD-L1). Upon binding to PD-1 on T and other

immune cells, strong inhibition of cytotoxic activity is observed, and a similar inhibitory

interaction was discovered through cytotoxic T-lymphocyte antigen-4 (CTLA-4) (2). In

response, the researchers responsible for identifying these immunosuppressive interactions
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sought to block receptor-ligand binding and restore optimal cytotoxic

activity against cancer cells. This was achieved through the use of

monoclonal antibodies, leading to the development of therapeutics that

significantly improved the likelihood of survival across several types of

cancer. In metastatic malignant melanoma, for example, the long-term

survival rate increased from 5% to a staggering 50% upon combined

anti-CTLA-4 and anti-PD-1 monoclonal antibody treatment (3). The

2018 Nobel Prize in Physiology or Medicine was awarded for these

discoveries inhibiting negative regulation of the immune system in

cancer, more than a quarter of a century since it was last given for

discoveries in the field of cancer therapy. While early research in

immunotherapy, like the pioneering studies described above, tends to

focus on CD8+ T cells, natural killer cells have recently become

attractive candidates for immunotherapy, in part for their positive

safety profile. Compared to chimeric antigen receptor (CAR) T cell

therapy, for example, which is not appropriate for all patients due to

significant side effects including cytokine release syndrome and

neurotoxicity, NK cell therapy has been shown to be more tolerable

and can be generated for off-the-shelf usage.
2 NK cell biology

Natural killer cells are vital components of the innate immune

system, with potent abilities to recognize and eliminate virus-

infected and/or cancer cells (4–6). Unlike CD8+ T cells and other

adaptive immune cell types, NK cell receptors are germline-encoded

and do not undergo rearrangement, nor do they display specificity

(7). Instead, they display several activating and inhibitory receptors

(see Table 1) and the net signal through these receptors determines

whether or not the NK cell will become activated, kill target cells,

and produce cytokines. As a result of the relatively low specificity of

these receptors, NK cells do not require prior sensitization to exert

their cytotoxic effects, nor are they major histocompatibility

complex (MHC) restricted (8). NK cell-based therapies, therefore,

do not require the time-intensive process of scaling up autologous

cells, but rather can undergo haploidentical and allogeneic adoptive

transfer without high risk of graft versus host disease (9, 10).

NK cells, like CD8+ T cells, arise from the lymphoid lineage of

hematopoietic stem cells best known for their cytotoxic ability, and for

their production of inflammatory cytokines upon activation, like IFN-g
and TNF-a, as well as CC-chemokines (11). Also akin to CD8+ T cells,

NK cells directly kill target cells through degranulation of perforin- and

granzyme-loaded vesicles and Fas ligand-dependent cytotoxicity.

However, unlike T cells, these lymphocytes do not require prior

sensitization or specific antigen recognition to mount their cytotoxic

response, and instead possess activating and inhibitory innate receptors

capable of distinguishing between healthy cells and cells altered by

infection or malignancy (12). CD16, for example, binds the Fc-portion

of cell surface-bound IgG antibodies, leading to formation of an

immunological synapse and degranulation. This ultimately results in

lysis of the target cell, a process termed antibody-dependent cell-

mediated cytotoxicity (ADCC) (13). Through several receptors,

including members of the natural cytotoxicity family (NKp30,

NKp44, NKp46) and C-type lectin family (NKG2C, NKG2D,

NKG2E), NK cells are activated upon detection of transformed cells
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(the “induced-self hypothesis). Another member of the C-type lectin

family, NKG2A, along with inhibitory members of the killer cell

inhibitory receptor (KIR) family, inhibits NK function upon binding

to class I HLA ligands, making NK-mediated cytolysis more likely after

downregulation of HLA (the “missing-self hypothesis). In part due to

the lack of antigen-specificity of these receptors, NK cells are not

generally considered mediators of graft-versus-host disease (GvHD)

and have even been shown to suppress it, highlighting their potential

for accessible and standardized allogeneic administration (14).

Additionally, NK cells have been shown to infiltrate several tumor

types, and are positively correlated with patient outcomes (15).

For these reasons, and because of their crucial role in tumor

immunosurveillance and anti-tumor responses, NK cells are attractive

candidates for immunotherapy. In recent years, there has been a

growing interest in therapeutic approaches to enhance NK cell

cytotoxicity for such purposes despite immunosuppression within

the tumor microenvironment. These strategies aim to intensify NK

cell function, improving their ability to recognize and eliminate tumor

cells by leveraging unique properties of NK cells, such as their natural

cytotoxicity and their diversity of activating and inhibitory receptors.
3 Immunosuppression in the
tumor microenvironment

As with most immune responses, NK cell activity is inhibited by

the immunosuppressive tumor microenvironment, as a result of

several physical, molecular, and cellular barriers. As tumors rapidly
TABLE 1 Activating and inhibitory receptors found on NK cells.

Receptor
Family

Receptor Function Ligand(s)

Fragment
Crystallizable
Receptor (FcR)

CD16 Activating IgG

Natural
Cytotoxicity Receptor

NKp30 Activating Bacterial, viral, and
tumor-
associated ligandsNKp44

NKp46

C-type lectin NKG2A Inhibitory HLA-E

NKG2C Activating HLA-E

NKG2D Activating MICA
MICB
ULBP1-ULBP6
Rae-1

NKG2E Activating HLA-E

Killer-Cell
Immunoglobulin-Like
receptor (KIR)

2DS1-
2DS5, 3DS1

Activating HLA Class I
or unknown

2DL1-2DL3,
2DL5,
3DL1-3DL3

Inhibitory

2DL4 Activating
and
Inhibitory
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proliferate and expand, the demand for oxygen becomes higher

than the available supply (16). This, along with the high metabolic

activity and suboptimal vasculature within solid tumors, leads to

hypoxia. Such conditions lead to significant changes in the

transcriptome of NK cells, including downregulation of

proinflammatory cytokines and chemokines like IFNg, TNFa,
GM-CSF, CCL3, and CCL5 (17). This is likely due, in part, to the

restricted metabolic capacity of NK cells in hypoxic conditions (18).

Immunosuppressive cells like regulatory T cells (Tregs) and

myeloid-derived suppressor cells (MDSCs) are found in high

concentrations within solid tumors, producing several cytokines

that exert inhibitory effects on NK cells (19). For example, TGFb,
released by Tregs, MDSCs, and other stromal cells, leads to the

downregulation of activating receptors of NK cells, including

NKG2D and NKp30 (20). TGFb signaling also leads to impaired

ADCC and IFN-g production by activating the transcription factor

SMAD3 (21). Other immunosuppressive molecules, such as IL-10

and prostaglandin E2 lead to similar defects in the anti-tumor

capabilities of NK cells. Some tumors have also been shown to evade

NK responses by upregulation of molecules that push NK cells

toward a more tolerant state, such as the NKG2A ligand HLA-E

(20). Such findings highlight the importance of developing novel

therapeutics that overcome the immunosuppressive tumor

microenvironment and enhance NK cytotoxicity.
4 Approaches to enhance
NK cytotoxicity

One promising approach to enhance the cytotoxic effects of NK

cells therapeutically is through the use of cytokines. Interleukin-2 (IL-2)

has been extensively studied for its role in enhancing NK cell

cytotoxicity. IL-2 acts as a growth factor for NK cells, promoting

their proliferation and activation (22). It also enhances NK cell-

mediated cytotoxicity through both the upregulation of activating

receptors and the production of cytotoxic molecules (23, 24).

Another cytokine, interleukin-15 (IL-15), has gained attention for its

critical role in NK cell development, survival, and function (25–28).

The IL-15 and IL-2 receptor on NK and other immune cells consists of

identical beta (CD122) and gamma chains (common gamma chain [gc]
or CD132), with differences in the alpha chain differentiating the two

cytokines’ functions (29–31). IL-15 administration, like IL-2, has been

shown to stimulate NK cell cytotoxicity and promote anti-tumor

responses, though with less toxicity and absence of Treg stimulation,

which present challenges to IL-2-based therapies (32–35). Additionally,

cytokines such as interleukin-12 (IL-12), interleukin-18 (IL-18), and

interleukin-21 (IL-21) have demonstrated the ability to modulate NK

cell activity and enhance their antitumor function through various,

often interlaced, mechanisms (36–39).

Monoclonal antibodies (mAbs) have also emerged as powerful

tools in cancer immunotherapy, especially in regard to their ability to

activate NK cells. One notable class, NK checkpoint blockade

antibodies, block inhibitory receptors on NK cells or inhibitory

ligands on tumor cells, thereby unleashing NK cell cytotoxicity. For

example, several checkpoint blockade antibodies originally found to act

upon T cells have shown to also improve NK cell cytotoxicity. For
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example, mAbs targeting the programmed death receptor axis PD-1/

PD-L1, T cell immunoglobulin and ITIM domain (TIGIT),

lymphocyte activation gene-3 (LAG-3), and T cell immunoglobulin

mucin-3 (TIM-3) are known to enhance NK cell function and improve

anti-tumor responses (40–43). Another recent example is

monalizumab, which targets NKG2A, an inhibitory receptor on NK

cells. By blocking NKG2A and inhibiting its binding with HLA-E,

monalizumab enhances NK cell cytotoxicity against tumor cells (44).

Furthermore, mAbs targeting pan-cancer antigens, such as rituximab

(targeting CD20), trastuzumab (targeting HER2), and cetuximab

(targeting EGFR), have been shown to rely on NK cell-mediated

ADCC for their anti-tumor effects, though other immune cells

including macrophages, dendritic cells, and granulocytes are also

known to contribute (45–48). NK cells, through the recognition of

antibody-coated target cells by CD16, a potent Fcg-receptor, exert their
cytotoxic activity and are major contributors to the efficacy of these

mAbs (7). However, surface CD16 can be rapidly shed by ADisintegrin

And Metalloproteinase 17 (ADAM17), leading to inhibition of NK cell

responses. ADAM17 inhibitors have been developed, but this remains

a major issue in the therapeutic efficacy of NK cell-based therapies (49).

In addition to cytokines and monoclonal antibodies, NK cell

engagers have emerged as a promising strategy to enhance NK cell

cytotoxicity. Such molecules are designed to bridge NK cells with

target cells, thereby directing NK cell-mediated cytotoxicity towards

specific tumor cells. These engagers can be in the form of bispecific

antibodies or engineered proteins that simultaneously bind to NK

cell activating receptors and tumor antigens. For example,

Trispecific Killer Engagers (TriKEs) have been developed to target

CD16 on NK cells, target a tumor antigen, and deliver IL-15 (50). By

binding to CD16, TriKEs activate NK cells, while the tumor

antigen-specific component directs NK cell cytotoxicity towards

tumor cells. Additionally, the inclusion of IL-15 provides sustained

stimulation and proliferation of NK cells. Other NK cell engagers,

such as TriNKET, ROCK, and ANKET, have also been explored to

enhance NK cell-mediated cytotoxicity against tumor cells (51–54).

In this review, we aim to provide a comprehensive overview of the

current state of therapeutic approaches to enhance NK cell cytotoxicity

in an anti-tumor setting. We will explore the role of cytokines,

monoclonal antibodies, and engagers, in augmenting NK cell function,

highlighting recent clinical trials for each approach (summarized in

Table 2). To conclude, we will highlight important characteristics that

shouldbe consideredwhen selectinganNKcell product to combinewith

these therapeutic approaches. Furthermore, we will discuss different

schools of thought, controversies, fundamental concepts, current

research gaps, and potential developments in each area. By presenting

abalancedperspective,wehope toshed lighton the recentadvancements

and future prospects of these therapeutic strategies.
5 Cytokines

5.1 IL-2

Despite their ability to lyse target cells without prior

sensitization, NK cell effector function can be enhanced by

exposure to inflammatory cytokines, first demonstrated in the
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context of IL-2. Currently, 75 clinical trials are underway that

involve the use of IL-2 (www.clinicaltrials.gov). Discovered in

1976, IL-2, like other members of the common gamma-chain

family, is a proinflammatory cytokine known to stimulate

lymphocyte populations (55, 56). In the late 1970s, it was

observed that transplant patients receiving immunosuppressive

drugs developed high rates of cancer, leading to the hypothesis

that suppressed activity of lymphocytes, including NK cells, must

contribute to the development of cancer (57, 58). In the early 1980s,

following seminal studies in NK biology, this hypothesis was
Frontiers in Immunology 04
confirmed when it was found that patients with cancer exhibit

decreased peripheral-NK cell function, including ADCC and

natural cytotoxicity (59, 60). At the same time, groups studying

the effects of IL-2 on T cells found that it also increased cytotoxicity

in NK cells in vitro (61). Such reports provided the basis for a study

showing that by culturing dysfunctional NK cells from cancer

patients with IL-2, cytotoxic activity was not only restored, but

elevated compared to levels seen in healthy controls (62).

Based on this important finding, researchers began a clinical

trial testing the administration of autologous, activated NK cells in
TABLE 2 Selected clinical trials aiming to enhance NK cytotoxicity.

Agent of Interest Treatment Approach Malignancy/patient profile Trial
Phase
(Status)

ClinicalTrials.gov
Identifier
(Trial Name)

Cytokines

IL-2 In combination with haploidentical NK cell
adoptive transfer post-chemo and/
or radiotherapy

Pediatric, adolescent, and young adult
refractory or metastatic sarcomas

Phase I/
II (recruiting)

NCT05952310
(SANKOMA)

Saltikva (Salmonella
typhimurium expressing
IL-2)

Oral administration while on chemotherapy Stage IV metastatic pancreatic cancer Phase
II (recruiting)

NCT04589234

MDNA11 (“beta-only” IL-2
– human albumin
fusion protein)

Monotherapy, or in combination
with pembrolizumab

Advanced or metastatic solid tumors Phase I/
II (recruiting)

NCT05086692
(ABILITY-1)

N-803 Monotherapy, or in combination with BCG BCG unresponsive high grade non-
muscle invasive bladder cancer

Phase II/
III (recruiting)

NCT03022825
(QUILT-3.032)

N-803 In combination with standard-of-care
chemotherapy, aldoxorubicin HCl, and PD-L1
t-haNK cells

Locally advanced or metastatic
pancreatic cancer

Phase
II (recruiting)

NCT04390399
(QUILT-88)

Monoclonal Antibodies

Rituximab In combination with allogeneic NK cells,
high-dose chemotherapy, and stem
cell transplant

Recurrent or refractory B cell non-
Hodgkin’s lymphoma

Phase
II (completed)

NCT03019640

Daratumumab In combination with BCMA-targeted CAR
NK cells

Relapsed or refractory
multiple myeloma

Phase
I (recruiting)

NCT05182073

Mogamulizumab In combination with third-party NK cells Relapsed or refractory cutaneous T cell
lymphoma or adult T cell
leukemia/lymphoma

Phase
I (recruiting)

NCT04848064

Monalizumab
and trastuzumab

Combination therapy Metastatic or locally incurable HER2+
breast cancer

Phase II
(active,
not recruiting)

NCT04307329

Monalizumab
and durvalumab

Combination therapy Locally advanced, unresectable non-
small cell lung cancer

Phase
III (recruiting)

NCT05221840
(PACIFIC-9)

Engagers

GTB-3550 (anti-
CD33 TriKE)

Monotherapy High risk CD33+
hematological malignancies

Phase I/
II
(terminated)

NCT03214666

IPH6501 (anti-
CD20 ANKET)

Monotherapy Relapsed or refractory B cell non-
Hodgkin lymphoma

Phase I/II (not
yet recruiting)

NCT06088654

DF1001 (anti-
HER2 TriNKET)

In combination with nivolumab or
nab-paclitaxel

Advanced HER2+ solid tumors Phase I/
II (recruiting)

NCT04143711

AFM13 (anti-CD30 ROCK) Monotherapy Relapsed or refractory CD30+ T cell
lymphoma or transformed
mycosis fungoides

Phase II
(active,
not recruiting)

NCT04101331
(REDIRECT)
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combination with IL-2 in various metastatic cancers (63, 64). While

IL-2 alone or activated NK cells alone showed little tumor

regression, the combined treatment resulted in marked regression

in several patients, leading to its approval by the FDA (64, 65). It

was approved for metastatic renal cell carcinoma (RCC) in 1992

and for metastatic melanoma in 1998 and is still in use today for

both cancers.

IL-2 is also being tested for clinical use in other tumor settings,

mainly in combination with other forms of treatment. At least ten

clinical trials are currently underway involving IL-2 in combination

with tumor-infiltrating lymphocytes (TILs). While variations exist

between each trial, the general strategy involves the expansion of TILs

from small, surgically resected tumor samples and, following

lymphodepletion, are readministered into the patient, followed by

IL-2 treatment (66). Cancer types currently being tested include

advanced cervical (NCT05475847), lymphocytic leukemia

(NCT04155710), relapsed or metastatic melanoma (NCT05903937,

NCT05628883, NCT04812470), and head and neck cancers

(NCT03991741). There has also been a recent interest in

combining IL-2 with other forms of immunotherapy, such as in

combination with immune checkpoint blockade (NCT04562129,

NCT04165967, NCT05493566), or in combination with the

Bacillus Calmette-Guerin (BCG) vaccine (NCT03928275).

Several additional trials combine IL-2 treatment with adoptive

transfer of activated NK cells. One phase I/II study combines this with

localized irradiation (NCT05952310). 24-48 hours after myeloablative

chemotherapy and irradiation, patients receive one of two

haploidentical NK cell infusions, with the other infusion given 4 days

later. Simultaneously, IL-2 is administered every 48 hours

subcutaneously for six total doses (results not yet available). In 2021,

another clinical trial utilizing adoptive transfer of NK cells with IL-2

administration received fast track designation by the FDA (67). The

study utilized hematopoietic stem cell-derived NK cells from CD34+

human placental cells and culturing them in the presence of several

cytokines, including IL-7, IL-15, and IL-2 (NCT04310592). In vivo,

such cells were shown to have increased expression of activating

receptors NKG2D, NKp46, and NKp44, as well as increased

antitumor cytotoxicity, compared to peripheral blood-derived NK

cells (68). Following deletion of CBLB, a negative regulator of

lymphocyte activity, proliferative and effector function was further

increased. The cell therapy, CYNK-001, was tested in the setting of

acute myeloid leukemia (AML) in combination with IL-2

administration. Early results show low response rates and indicate

that IL-2 administration stimulated Treg populations without

enhancing NK engraftment, and the study is no longer accepting

enrollment (69). Other trials that also utilize the combination of IL-2

and NK cells, as well as the administration of mAb to the treatment

regimen, will be discussed in future sections.

Despite the historical success of IL-2-based treatments, two

major difficulties have since been encountered. First, it was observed

early-on that high dose IL-2 administration, which is often required

due to its short half-life, can lead to severe toxicity, thereby limiting

treatment duration and interfering with patient safety (70, 71).

More common side effects include rash, hypotension,

thrombocytopenia, neurologic symptoms, and gastrointestinal

symptoms (72–75). However, life-threatening capillary leak
Frontiers in Immunology 05
syndrome, leading to pulmonary and cerebral edema, respiratory

distress, and heart failure can develop following intravenous

administration of high dose IL-2. As IL-2 interacts with several

aspects of the immune system, widespread pro-inflammatory

cytokine release and lymphocyte activation is observed, leading to

increased capillary permeability and eventual organ damage (76).

To overcome this challenge, alternative methods of delivery are

being explored clinically through the use of IL-2 expression in

attenuated Salmonella (NCT04589234) and oncolytic adenoviruses

(77). Such viruses are only capable of propagation within cancerous

cells, leading to lysis and increased immune infiltration (78). TILT-

123, a recently developed oncolytic adenovirus, contains an IL-2 as

well as a TNFa coding region, to further elevate the immune

response (79). Preclinical data showed promising results, and the

treatment is now undergoing clinical assessment in ovarian

(NCT05271318), advanced melanoma (NCT04217473), and other

solid tumor settings (NCT04695327) (80).

Another issue observed with IL-2 administration is T regulatory

cell (Treg) development and subsequent immune suppression. One

study found that patients with metastatic cancers that showed no

response to IL-2 treatment had significantly higher ICOS+ Tregs, an

especially proliferative and immunosuppressive subset, than

patients who responded to treatment (81). This suggests a direct

role of Treg stimulation limiting the effectiveness of IL-2-based

therapies. A recent approach to combat such suppression is through

the generation of IL-2 mutants that exhibit selective binding to NK

cells. The IL-2 receptor (IL-2R) exists in three forms, low-affinity

(IL2Ra or CD25), intermediate-affinity (IL2Rb or CD122 and cg or
CD132), and high-affinity (IL2Ra, IL2Rb, and cg) (82). NK cells,

unlike Tregs, typically express the intermediate-affinity receptor,

prompting the generation of a “beta-only” IL-2 (83). Known as

MDNA11, it exists as a fusion to human albumin that was shown to

improve pharmacokinetics. In preclinical models, it was shown to

selectively bind IL-2Rb, and therefore had significantly reduced

Treg stimulation compared to IL-2. Additionally, the improved

pharmacokinetics resulted in durable responses in animal studies

with only once weekly dosing. Currently, MDNA11 is being tested

in a phase I/II clinical trial as a monotherapy and in combination

with immune checkpoint blockade (NCT05086692).

The historical success of IL-2-based therapies has been

instrumental in advancing cancer treatment. In part through

restoring and elevating NK cell cytotoxicity, IL-2 treatment has

led to improved patient outcomes in conditions such as metastatic

renal cell carcinoma and metastatic melanoma. These early studies

have aided in the development of numerous ongoing clinical trials

testing novel combinations and delivery methods of IL-2 to enhance

NK cell cytotoxicity. Another vital cytokine, IL-15 plays a crucial

role in the stimulation of lymphocyte populations, and its potential

to boost NK cell function presents new opportunities for

cancer therapy.
5.2 IL-15

IL-15, like IL-2, is a pro-inflammatory member of the common

gamma-chain cytokines (84). It also signals through similar
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receptor components as IL-2, but it is trans-presented at high

affinity with IL-15 receptor-alpha (IL-15Ra) (85). It also shows

less systemic toxicity than IL-2 and does not lead to stimulation of

Tregs (86–88). Though IL-15 was originally discovered as an

inducer of T cell proliferation, its effect on NK cells was later

discovered (29). For example, it was found that IL-15 and IL-15Ra
deficient mice lack peripheral NK cell populations (26). It was also

discovered that IL-15 enhances the survival, proliferation, and

cytotoxicity of NK cells, resulting in improved anti-tumor

capabilities (89, 90).

Although IL-15 is not currently approved in any form, the FDA

will soon consider approval for an IL-15 in combination with BCG

for non-muscle invasive bladder cancer (NMIBC). In 2009, targeted

mutagenesis of human IL-15 led to the development of an IL-15

superagonist with 4-5-fold increases in effector cell proliferation

and target cell lysis (91). The pharmacokinetics and functionality of

the superagonist was further improved when complexed with an IL-

15Ra-Fc fusion protein, resulting in significantly enhanced NK cell

responses in vivo (92, 93). This therapeutic (N-803), in combination

with BCG, was found to reduce tumor burden in a NMIBCmodel in

rats (94). Specifically, the antitumor response was dependent on

increases in the infiltration, proliferation, and activation of NK cells.

Based on these findings, a Phase Ib clinical trial was started in 2014

to test BCG plus N-803 in human NMIBC patients who had not

previously received BCG (NCT02138734). The trial enrolled nine

patients, and, remarkably, complete response (CR) was achieved in

all nine patients, and they all remained disease free six years post

treatment (95). Simultaneously, the same treatment was tested in a

Phase II/III trial with BCG-unresponsive patients, an especially

difficult-to-treat form of NMIBC (NCT03022825). Findings from

this trial revealed a 71% CR rate, with a median duration of

response of 26.6 months (96). These observations provided the

basis for the FDA to accept a Biologics License Application for N-

803 plus BCG in BCG-unresponsive NMIBC. However, in May of

2023 the FDA’s decision to approve it was postponed because of

deficiencies in data on duration of response and safety profiles,

though it seems likely that FDA approval will eventually be reached

(97, 98).

N-803 is also being tested in combination with PD-L1 targeting

high-affinity NK (t-haNK) cells. t-haNKs are NK92 cells engineered

to express both a PD-L1-targeting CAR and high-affinity CD16.

PD-L1 t-haNKs were shown to retain expression of native NK

receptors and inhibit growth of several tumor types in vivo (99,

100). A phase II clinical trial is testing these cells in combination

with N-803 and standard-of-care chemotherapy in patients with

locally advanced or metastatic pancreatic cancer (NCT04390399).

Additionally, a phase I trial will test CD19 t-haNKs in combination

with N-803 and rituximab in patients with relapsed or refractory

non-Hodgkin Lymphoma (NHL) (NCT05618925). Other clinical

trials involve N-803 in combination with various other forms of

immunotherapy, such as cancer vaccines and pembrolizumab

(NCT05642195, NCT05445882, NCT05096663).

IL-15 in combination with other NK-based therapies are also

being tested. For example, two ongoing phase I clinical trials are

treating hematologic malignancies with CAR NK cells and
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membrane-bound IL-15 (mbIL-15), which has been shown to

increase NK cell proliferation and cytotoxic function in

preclinical studies in an autocrine fashion (NCT04623944,

NCT05020678) (101). Haploidentical, IL-15-stimulated NK cells

are also being tested in the setting of hematologic malignancies

post-hematopoietic stem cell transplant. Prior clinical trials with

these cells in refractory cancers showed feasibility and safety, with

some clinical benefit (102, 103).

Recently, continuous IL-15 treatment has been shown to lead to

NK cell exhaustion consisting of decreased proliferation, antitumor

function, and viability in vitro and in vivo (104). However, this was

combated by both mTOR inhibition and treatment schedules which

include gaps in IL-15 administration. Additionally, while toxicity

related to IL-15 is less likely than with IL-2, some patients still

develop toxicity such as weight loss, rash, and hypotension

(though capillary leak syndrome has not been observed) (105).

Similar to IL-2, alternative methods of administration (such as

through oncolytic viruses) may alleviate these IL-15 toxicities (88).

Such consequences of IL-15 dosing strategies, both in terms of

toxicity and IL-15-mediated exhaustion, should be considered in

clinical trial design.

IL-15, like IL-2, holds great potential for boosting NK cell

function and enhancing the immune response against cancer.

This is exemplified by the ongoing trials, particularly in NMIBC,

where the combination of IL-15 with BCG has shown remarkable

success, achieving complete responses in patients, and raising the

prospect of FDA approval. Furthermore, IL-15’s role in

combination with other NK-based therapies, such as CAR NK

cells and membrane-bound IL-15 (mbIL-15), presents an exciting

frontier in the treatment of hematologic malignancies.
6 Monoclonal antibodies

6.1 Tumor-specific mAb

Antigens differentially expressed on malignant cells with

minimal expression on healthy tissue, known as pan-cancer

antigens, represent optimal targets for immunotherapy, including

mAb treatment (106). Targeting antigens with such expression

patterns, like CD20, epidermal growth factor receptor (EGFR),

human epidermal growth factor receptor 2 (HER2), and GD2

disialoganglioside results in limited off-target effects and

manageable toxicity (107). Following mAb administration, NK-

mediated ADCC is considered to be the major mechanism of action

as, unlike other Fc-receptor expressing cell types, NK cells lack

inhibitory Fc-receptors (108). Such synergism leads to elevated

immune responses, and the combination of NK cells with tumor-

targeting monoclonal antibodies is being tested in several

clinical trials.

A monoclonal antibody targeting CD20, which is expressed on

B cells and upregulated in hematological malignancies, was the first

FDA approved mAb for the treatment of cancer (109). While the

exact mechanism and ligand of CD20 in B cell biology remains

unknown, animal models and studies in humans with mutated
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1356666
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Stenger and Miller 10.3389/fimmu.2024.1356666
MS4A1, the gene encoding it, suggest it is required for efficient B

cell receptor signalling (110). Aside from B cells, CD20 expression is

limited in healthy tissue. While discrepancies exist between patients

and cancer type, CD20 expression is generally high in B cell

malignancies, highlighting its potential for targeting with mAbs

(111). The first anti-CD20 mAb, rituximab, is a chimeric mouse/

human mAb and was originally thought to cause target cell lysis

through binding of C1q and subsequent complement activation as

well as through transmission of apoptotic signals (112, 113).

However, it is now known that FcR mechanisms are likely the

dominant mediator of clinical success (114).

Rituximab became the first FDA approved therapeutic antibody

in 1997 for various forms of NHL, and since then several new CD20

mAbs, alone and in combination with other drugs, have been

approved (115, 116). Still, rituximab and other anti-CD20

antibodies are being utilized in clinical trials, several of them with

the goal of enhancing NK cell cytotoxicity in hematologic

malignancies. For example, a recently completed clinical trial

tested NK cells, rituximab, plus high-dose chemotherapy, and

stem cell transplant for the treatment of recurrent or treatment-

resistant B cell NHL (NCT03019640). Allogeneic, expanded cord

blood NK cells were administered intravenously five days prior to

autologous stem cell transplant, with CD20+ patients receiving

rituximab on days 13 to 7 pre-transplant (117). To highlight an

“off-the-shelf” approach, the adoptively transferred NK cells were

not HLA-matched. 22 patients were enrolled with ages ranging from

15 to 70, a majority of whom were male with diffuse large B-cell

lymphoma. Early results reveal an 84% overall response rate (ORR),

a 68% relapse-free survival (RFS) rate, and almost 70% of patients in

remission 18 months after treatment. No adverse events were

associated with the cord blood NK cell infusion, and these cells

were shown to exhibit a significantly higher percentage of NKG2D

and NKp30 than recipient NK cells. Additionally, the persistence of

the transferred NK cells was not affected by HLA mismatch. A

similar ongoing trial is combining CD19-targeted, allogeneic CAR

NKs with rituximab for the treatment of B cell acute lymphoblastic

leukemia (ALL) (NCT05379647).

Like CD20, HER2, a member of the erythroblastic leukemia

viral oncogene homologue (ErbB) family, is an antigen with optimal

expression patterns for targeting with mAbs. It was originally found

to be overexpressed in breast cancer and induce mammary

carcinogenesis, but overexpression of HER2 has since been

indicated in gastric, esophageal, ovarian, and endometrial cancers

(118). HER2 overexpression eventually leads to constitutively

activated tyrosine kinases, leading to activation of pathways

associated with survival and proliferation, like Ras and PI3K

(119). Trastuzumab, a humanized mAb specific to the HER2

extracellular domain (ECD), was first approved for the treatment

of HER2+ breast cancer in 1998 (120). In combination with

chemotherapy, it led to significant decreases in recurrence and

death (both breast cancer and all-cause mortality) and is now being

tested in several other HER2-expressing cancers (121). An active

phase 1/2a clinical trial for gastric or gastroesophageal junction

adenocarcinoma (GJA) is testing a combination of trastuzumab,

pembrolizumab, and CYNK-101 cells, though initial results are not

yet available (NCT05207722).
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Pertuzumab, a more recently developed HER2 humanized

recombinant mAb approved for use in various types of breast

cancer, blocks a binding pocket required for dimerization, causing

inhibition of downstream signalling (122). While its mechanism of

action is NK cell-independent, its approval is in combination with

trastuzumab. An ongoing clinical trial in the context of breast

cancer combines allogeneic NK cells with rituximab and

pembrolizumab (NCT05385705). Additionally, two CAR NK cells

targeting HER2 are being tested in the context of advanced solid

tumors (NCT04319757, NCT05678205), though initial results are

not yet available.

EGFR, another member of the ErbB family, is upregulated in

glioblastoma multiforme, breast, colorectum (CRC), and lung

carcinomas (123). Cetuximab, an anti-EGFR mAb, was approved

to treat refractory metastatic CRC in 2004, and late-stage head and

neck cancer in 2011. Cetuximab is currently being tested in a phase

1b clinical trial in combination with cytokine-reprogrammed,

expanded, cryopreserved, off-the-shelf NK cells termed WU-NK-

101 in CRC and squamous cell carcinoma of head and neck

(SCCHN) (NCT05674526). When compared with conventional

NK cells, WU-NK-101 showed higher expression of activating

receptors, Ki67, and Granzyme B (124). In xenograft CRC

models, the combination of WU-NK-101 with cetuximab resulted

in potent anti-tumor cytotoxicity, as well as increased infiltration

and persistence.

A more recent development in the treatment of cancer with

mAbs was in the setting of high-risk neuroblastoma, where

disialoganglioside GD2 is highly expressed (125). Dinutuximab,

or ch14.18 is a chimeric anti-GD2 mAb combining mouse variable

genes of the 14.18 mAb with human IgG1 and k genes (126).

Originally, it was tested clinically in the early 2000s and showed no

advantage over the conventional therapy (127). However, a

retrospective analysis of more than a decade’s worth of follow-up

revealed a significant increase in overall survival (128). Largely

because of this study, the FDA approved a new standard of care for

high-risk neuroblastoma, combining dinutuximab, GM-CSF, IL2,

and isotretinoin to treat minimal residual disease (MRD). Recent

studies have highlighted further benefit by including the antibody in

induction chemotherapy, leading to significant improvements in

early responses, tumor volume, and event-free survival (EFS) (129).

A phase Ib/II trial is testing another anti-GD2 mAb, naxitamab

(approved for use in combination with GM-CSF for neuroblastoma

in the bone or bone marrow) in combination with TGFbi NK cells

and gemcitabine-based chemotherapy for the treatment of HER2-

negative, GD2-positive metastatic breast cancer (NCT06026657)

(130). TGFbi NK cells are peripheral blood NK cells that were

activated (with IL-2 and K562 cells expressing mbIL21 and 4-1BBL)

in the presence of TGFb, which leads to hyperactive cytokine

secretion (131).

Several clinical trials are underway combining activated NK

cells with mAbs targeting antigens with more restricted expression

across tumor types. For example, daratumumab, a mAb targeting

CD38 is being tested in multiple myeloma (MM) in combination

with FT576, a B cell maturation antigen (BCMA) specific CAR NK

with high-affinity, non-cleavable CD16, and a knockout of CD38 (to

prevent fratricide) (NCT05182073). In preclinical models, this dual-
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targeting approach exhibited superior tumor control compared to

treatment with CAR T cells, FT576 alone, or daratumumab alone

(132). Early clinical results highlight a lack of dose-limiting

toxicities, cytokine release syndrome, neurotoxicity, or GvHD

(133). Another ongoing trail approaches fratricide a different way,

encouraging it. DR-01, a CD94-specific mAb, is being tested in a

phase I/II study in the context of granular lymphocytic leukemia or

cytotoxic lymphomas, though results are not yet available

(NCT05475925). These cancers of T and NK cells express high

levels of CD94, as do healthy T and NK cells. Therefore, through

DR-01-mediated fratricide, potent depletion of leukemic cells in

preclinical models, and a favorable toxicity profile in non-human

primates is observed (134). Despite these approaches to prevent

fratricide, it continues to limit therapeutic efficacy of adoptively

transferred NK cells, and novel engineering and ex vivo activation

strategies are needed to overcome it.

Two recent studies in the context of adult T cell leukemia (ATL)

utilize mAbs shown to enhance ADCC in vivo. A recently

completed and published trial utilized alemtuzumab, an anti-

CD52 mAb with IL-15, resulting in enhanced NK-mediated

ADCC and more durable responses in pre-clinical models

(NCT02689453). In humans, the treatment showed no dose-

limiting toxicities or severe adverse events, with a 45% ORR and

an over 7-fold increase in NK cells ten days post-treatment (135).

The other study, an ongoing phase I trial, is attempting to treat ATL

with IL-21 expanded, matched donor NK cel l s and

mogamulizumab, an anti-CCR4 mAb (NCT04848064). Preclinical

data showed synergy and a two-fold increase in NK-mediated

ADCC (136). Mogamulizumab was also tested in combination

with IL-15 for ADL and mycosis fungoides/Sezary syndrome in a

recently completed phase I trial (NCT04185220). In total, six

patients were enrolled, with partial response seen in only one

patient and serious adverse events occurring in five (137).

The concept of targeting pan-cancer antigens with mAbs has

revolutionized cancer therapy and has opened doors for the

optimization of NK cell-mediated antibody-dependent cell

cytotoxicity. Tumor-specific mAbs have been pivotal in reducing

off-target effects and enhancing the precision of cancer treatment.

The pioneering use of rituximab exemplifies the clinical success of

mAbs, while the emergence of more recent treatment strategies like

dinutuximab and naxitamab for high-risk neuroblastoma highlights

the continued evolution of mAb therapies. The synergy between

tumor-targeting mAbs and NK cells in the context of cancer offers

the potential for more durable responses and better patient

outcomes, and this integration continues to be at the forefront of

innovative cancer therapies. However, development of resistance to

tumor antigen-targeting antibodies as a result of antigen escape is a

major barrier to their clinical success. Dual-targeting approaches,

such as the combination of daratumumab with an anti-BCMA CAR

NK, may prolong or abrogate development of antigen escape,

and should be tested further. The subsequent section will delve

into the diverse array of checkpoint blockade mAbs, providing

further insights into the ever-evolving landscape of NK cell-

enhancing strategies.
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6.2 Checkpoint blockade mAb

A key development in this field of immunotherapy is immune

checkpoint blockade (ICB), the use of monoclonal antibodies

targeting specific checkpoints to overcome tumor-mediated

immune suppression. While many of these mAbs were originally

designed with a focus on T-cells, emerging research indicates their

potential to influence other crucial components of the immune

system, notably natural killer (NK) cells (138, 139). For example,

avelumab, an FDA approved mAb targeting PD-L1 for treatment of

metastatic Merkel cell carcinoma and urothelial carcinoma, has

been shown to rely on T and NK cell-based mechanisms. Avelumab

binds PD-L1 on tumor cells or APCs, resulting not only in the

blocking of the PD-1 pathway in T cells, but also leading to

induction of ADCC by NK cells, similarly to the tumor-targeting

mAbs discussed earlier (140, 141). However, ICB has also been

shown to enhance NK cell cytotoxicity independent of ADCC.

PD-1 expression is increased on activated NK cells in the TME

in several solid and hematologic cancers, where this subset of cells is

associated with poor prognosis (142). Upon binding of PD-L1, the

activation, cytokine production, proliferation, and cytotoxicity of

PD-1+ NK cells are inhibited (40, 143). Following treatment with

anti-PD-1 mAbs, the functionality of these NK cells is rescued

(144–146). A similar phenomenon is seen with NK cells expressing

other immune checkpoints, such as TIGIT, TIM-3, and LAG-3 (42,

147, 148). As such, several ongoing clinical trials are testing the

addition of immune checkpoint inhibitors with adoptive transfer of

NK cells (NCT05334329, NCT03941262, NCT03388632).

A recent development in the field of NK cell-specific immune

checkpoint blockade was the development of monalizumab, a

humanized anti-NKG2A blocking antibody. The NKG2A/CD94

heterodimer, expressed on NK and certain CD8+ T cell subsets,

binds the non-classical MHC class I molecule HLA-E (149, 150).

HLA-E is upregulated in several human cancers and leads to

suppression of NK cell antitumor activity when bound by

NKG2A/CD94 (151). Monalizumab has been shown to combat

this immunosuppression and restore NK cell (and T cell) effector

functions (44). As such, monalizumab is undergoing clinical testing

in combination with other therapeutics in several tumor settings. For

example, a study tested it in combination with cetuximab for

treatment of recurrent or metastatic SCCHN. The phase Ib/II

study enrolled forty patients who had previously received

platinum-based chemotherapy, with a positive toxicity profile (6%

grade 3 or 4 adverse events related to treatment) and a 20% ORR

(NCT02643550) (152, 153). A phase III study was started based on

these results but was discontinued as a result of missing a pre-defined

efficacy for threshold (154) (NCT04590963). Another study is testing

the combination of monalizumab with trastuzumab for metastatic

HER2-positive breast cancer (NCT04307329).

Another ongoing study is testing durvalumab (MEDI4736), an

anti-PD-L1 antibody, with monalizumab following chemoradiation

for the treatment of stage 3 non-small cell lung cancer

(NCT05221840). Early results from this phase III trial, which

included 189 patients, show that those who received both mAbs
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achieved a 35.5% ORR, compared to 17.9% in the group who

received durvalumab alone (155). The same treatment strategy is

also being tested in extensive stage small cell lung cancer in an

ongoing phase II trial (NCT05903092). Another phase II trial is

testing monalizumab plus durvalumab in addition to either

cetuximab or bevacizumab, an anti-VEGF mAb in several solid

tumor settings (NCT02671435). Preliminary results for 18 patients

receiving monalizumab, durvalumab, and cetuximab for metastatic

microsatellite-stable colorectal cancer reveal a 41.2% ORR, though

100% of patients experienced treatment related AE’s, which were

grade 3 or 4 in 77.8% (156).

ICB has emerged as a pivotal development with monoclonal

antibodies (mAbs) designed to influence several aspects of the

immune system, including NK cells. Clinical trials testing these

mAbs in combination with various therapeutics in diverse tumor

settings show promise in revolutionizing cancer immunotherapy,

highlighting the versatile role of mAbs in enhancing NK

cell function.
7 Engagers

NK cell engagers, which include the TriKE, ANKET, TriNKET,

and ROCK platforms, among others, are a diverse and promising

class of therapeutic agents designed to boost NK cell activity and

target malignant cells with precision (see Figure 1). These cutting-

edge technologies represent a new frontier in the field of cancer

immunotherapy, developed much more recently than most of the

recombinant cytokines and mAbs discussed earlier. Here, we will

discuss each platform, specifically their mechanisms of action,

applications in different tumor settings, and the promising results

from preclinical and/or clinical studies, shedding light on their role

in enhancing the cytotoxic capabilities of NK cells.

Our group has developed an NK cell engager platform is the

trispecific killer engager (TriKE), a multi-pronged approach that

simultaneously targets tumors, activates NK cells, and facilitates their
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cytotoxic functions. Second-generation TriKEs contain cam16, a

humanized single-domain anti-CD16 nanobody, an IL-15 moiety,

and a tumor targeting single-domain antibody (sdAb) or single-

chain variable fragment (scFv) (157). TriKEs have been developed

and tested that target CD33, CD19, B7H3, EpCAM, mesothelin, and

several other tumor-associated antigens (50, 158–161). These

molecules improve NK expansion, priming, survival, and cytotoxic

activity in vitro, in vivo, and in early clinical studies. A recent clinical

trial tested 161533, a CD33-targeted TriKE, in the setting of

myelodysplastic syndromes and AML (NCT03214666). A dose

dependent CD16+ NK cell expansion was seen, and four of twelve

patients achieved a decrease in CD33+ blast cells (162). This trial

tested a first-generation TriKE, which contained an anti-CD16 scFv,

but was terminated due to development and improved functionality

of the second-generation TriKE (163).

Camelids, such as camels, llamas, and alpacas, as well as

cartilaginous fish like sharks, possess immunoglobulins that

consist exclusively of heavy chains (164). Their smaller size

equips them with superior tissue-penetrating capabilities, and

their variable length CDR3 regions allow for binding in deeper

grooves when compared to conventional antibodies, prompting

interest in their use to treat human diseases (165). The TriKE

platform stands out for its utilization of a camelid sdAb/nanobody,

resulting in enhanced IL-15 potency when compared to first-

generation TriKE, which included a CD16 scFv (157, 163). To

date, caplacizumab, a bivalent nanobody designed to target von

Willebrand factor for treating thrombotic thrombocytopenic

purpura and thrombosis, remains the only FDA-approved

nanobody (166). However, a CAR T cell armed with two

nanobodies that target BCMA is approved for the treatment of

multiple myeloma, and an anti-PDL1 nanobody has gained

approval in China.

Another NK engager platform, the tetraspecific ANKET (antibody-

based NK cell engager therapeutics), contains an IL-2 variant that

inhibits Treg stimulation, an antibody domain to a tumor antigen, an

antibody domain to NKp46, and the Fc domain of IgG1 that binds
FIGURE 1

NK cell engager platforms binding both a tumor-associated antigen and an NK cell. Created with Available at: BioRender.com.
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CD16 (54). A CD20-targeting ANKET termed IPH6501 showed

increases in NK cell proliferation, cytotoxicity, and chemokine and

cytokine secretion (167). It will soon be tested in a phase I/II clinical

trial for patients with NHL (NCT06088654). A trispecific ANKET,

SAR445514, targeting BCMA without an IL-2 domain, is currently

being tested against relapsed MM and refractory light-chain

amyloidosis (NCT05839626). Another trispecific ANKET,

SAR443579, targeting CD123, is also currently being tested in a

phase I/II trial in various hematologic malignancies (NCT05086315).

Three TriNKET (trispecific NK cell engager therapy)molecules are also

undergoing clinical testing, targeting HER-2, CD33, and BCMA,

though little information is publicly available for these molecules

(NCT04143711, NCT04789655, NCT04975399).

The final platform, ROCK (redirected optimized cell killing)

consists of tetravalent bi-specific engagers. A recently completed

phase II clinical trial testing AFM13, a ROCK molecule targeting

CD16 and CD30, treated 25 patients with relapsed or refractory

classical Hodgkin lymphoma (NCT02321592). Only two patients

suffered treatment-associated serious adverse events, which were both

completely resolved. The ORR was 16.7%, and 12-month PFS was seen

in 12.6% of patients (168). AMF13 is also being tested in a phase II trial

for mycosis fungoides, with preliminary results showing a 24.1% ORR

(NCT04101331) (169). A third, phase I/II trial is testing AFM13 in

combination with cord blood-derived NK cells for the treatment of

CD30+ Hodgkin and NHL (NCT04074746). Preliminary results are

very promising, with a 100% ORR, and 62% complete response rate

after 2 cycles of the recommended phase 2 dose (170). Strikingly, the

enrolled patients had a median of seven prior forms of treatment. Of

note, as all engagers discussed in this section rely on activation through

CD16, ADAM17-mediated cleave remains a barrier to therapeutic

efficiency and may benefit from the addition of an ADAM17 inhibitor.
8 Synergistic combinations with NK
cell products

The therapeutic strategies discussed here, including cytokines,

monoclonal antibodies, and NK cell engagers, possess the ability to

stimulate endogenous NK cell populations within a tumor. Ideally,

this intrinsic mechanism would be sufficient to drive positive

clinical outcomes. However, practical challenges arise as the

development of tumor-resistance to endogenous NK cells and

widespread immunosuppression hampers the effectiveness of

therapeutics aimed to stimulate NK cells in situ (171). Therefore,

these strategies can benefit from adoptive transfer of NK cells,

introducing two crucial considerations: first, ensuring that the

administered NK cells effectively migrate to the tumor, and

second, ensuring their sustained persistence for optimal

therapeutic impact.

A recent focus in the field of NK cell therapy has been to expand

NK cells in a way that allows for optimal persistence and

infiltration. As such, several forms of NK cell products exist that

vary in their source, activation, and function, several of which were

referenced earlier in this review, in combination with therapies

aimed to enhance cytotoxicity. Therapeutic NK cell products can be

derived from placental/umbilical cord blood, peripheral blood,
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induction of stem cells, or immortalized cell lines, which then can

be expanded using a variety of methods. For example, NK cells can

be expanded in vivo and stimulated with IL-2, generating cytokine-

induced memory-like NK cells that have been shown to persist in

patients for over six months (172, 173). Alternatively, NK cells can

be expanded using feeder cells, like K562 expressing membrane-

bound IL-21 and 4-1BB ligand, which interact with NK cell-surface

receptors to induce proliferation and activation (174, 175).

Alternative genetic alterations to the K562 feeders can further

change characteristics of the NK cells, such as the increased

persistence seen when K562 cells contain membrane bound IL15

and 4-1BB ligand (176). Additionally, the expression of CCR7 on

K562s enhances homing of NK cells to lymph nodes via CCR7

trogocytosis in preclinical models (177). Epstein-Barr virus-

transformed lymphoblastoid cell lines have also been used to

successfully expand human NK cells (178). NK cell products can

also be expanded without feeder cells, such as those generated

following enrichment of placental stem cells and subsequent culture

with cytokines including IL-15 (179).

When integrating a therapeutic strategy aimed at boosting NK

cell cytotoxicity with the adoptive transfer of NK cells, the selection

of an appropriate expansion process is crucial to generate NK cells

that align synergistically with the therapeutic approach. For

example, in the context of monoclonal antibodies and TriKEs,

which exert their effects through cross-linking of CD16, the

expansion process must retain expression of CD16 on the NK

cells destined for administration with these therapies. In this

context, NK-92 cells (an immortalized NK cell line used in some

clinical trials), which have no CD16 expression, and stem cell-

derived NK cells, which have low endogenous CD16 expression,

would not be logical choices to combine with monoclonal

antibodies or TriKEs (180). However, genetic engineering could

alleviate this issue.

Another important issue to consider when selecting an NK cell

product is the use of autologous or allogeneic NK cells. In general,

adoptive transfer of allogeneic NK cells may outperform autologous

ones for several reasons. First, autologous NK cell activity is

downregulated due to expression of inhibitory KIR and NKG2A,

which bind self-HLA present on tumor cells and may exhibit

functional deficits from widespread immunosuppression (181).

Second, autologous cell therapies are notably more labor- and

time-intensive due to the requirement that they are generated

individually for each patient, while allogeneic NK cells could be

generated for “off the shelf” use (182). However, autologous NK cell

infusions offer certain advantages, as they may eliminate the

requirement for lymphodepletion, mitigate fratricide, and avoid

potential challenges associated with HLA-mismatch (183).

In conclusion, while therapeutic strategies aiming to stimulate

endogenous NK cell populations show promise, practical challenges

such as tumor resistance and immunosuppression necessitate the

consideration of adoptive transfer of NK cells. The efficacy of these

strategies relies on the careful selection of suitable expansion

processes, considering factors such as the consistent maintenance

of surface receptor expression that complements the therapeutic

strategy, the necessity for genetic engineering, and the decision

between utilizing autologous or allogeneic NK cells. Achieving
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optimal persistence, infiltration, and compatibility with specific

therapeutic approaches is essential for maximizing the therapeutic

impact of NK cell-based strategies in cancer treatment.
9 Conclusion

In this comprehensive review, we have delved into the

landscape of therapeutic approaches aimed at enhancing NK cell

cytotoxicity, encompassing fundamental insights into NK cell

biology, immunosuppression within the TME, and the arsenal of

innovative strategies for fortifying NK cell activity. However,

toxicity and off-target effects remain barriers that need to be

overcome. The development of molecules with refined binding

specificities, like IL-2 that doesn’t interact with Tregs, and

alternative methods of administration, such as through oncolytic

adenoviruses, allows for greater precision and safety. More research

is needed in this area to further the clinical translation of NK-

based therapies.

Our exploration has shed light on the potential of these

strategies to revolutionize cancer immunotherapy, from the

foundational understanding of NK cell biology to the clinical

translation of advanced therapies. The advent of cytokines,

monoclonal antibodies, and NK cell engagers has offered a diverse

toolbox to empower NK cells and bolster their cytotoxicity.

Investigation into these therapeutic approaches leaves us with a

sense of optimism and confidence in the future of NK cell-based

immunotherapy. We are hopeful in the potential to improve patient

outcomes and reshape the landscape of oncology.
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mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma.
Oncotarget. (2016) 7:72961–77. doi: 10.18632/oncotarget.12150

144. Liu Y, Cheng Y, Xu Y, Wang Z, Du X, Li C, et al. Increased expression of
programmed cell death protein 1 on NK cells inhibits NK-cell-mediated anti-tumor
function and indicates poor prognosis in digestive cancers. Oncogene. (2017) 36:6143–
53. doi: 10.1038/onc.2017.209

145. Pesce S, Greppi M, Tabellini G, Rampinelli F, Parolini S, Olive D, et al.
Identification of a subset of human natural killer cells expressing high levels of
programmed death 1: A phenotypic and functional characterization. J Allergy Clin
Immunol. (2017) 139:335–346.e3. doi: 10.1016/j.jaci.2016.04.025

146. Oyer JL, Gitto SB, Altomare DA, Copik AJ. PD-L1 blockade enhances anti-
tumor efficacy of NK cells. OncoImmunology. (2018) 7:e1509819. doi: 10.1080/
2162402X.2018.1509819

147. Grottoli M, Carrega P, Zullo L, Dellepiane C, Rossi G, Parisi F, et al. Immune
checkpoint blockade: A strategy to unleash the potential of natural killer cells in the
anti-cancer therapy. Cancers. (2022) 14:5046. doi: 10.3390/cancers14205046

148. Hasan MF, Croom-Perez TJ, Oyer JL, Dieffenthaller TA, Robles-Carrillo LD,
Eloriaga JE, et al. TIGIT Expression on Activated NK Cells Correlates with Greater
Anti-Tumor Activity but Promotes Functional Decline upon Lung Cancer Exposure:
Implications for Adoptive Cell Therapy and TIGIT-Targeted Therapies. Cancers.
(2023) 15:2712. doi: 10.3390/cancers15102712

149. Wang X, Xiong H, Ning Z. Implications of NKG2A in immunity and immune-
mediated diseases. Front Immunol. (2022) 13:960852. doi: 10.3389/fimmu.2022.960852

150. Lee N, LlanoM, Carretero M, Ishitani A, Navarro F, López-Botet M, et al. HLA-
E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc Natl
Acad Sci. (1998) 95:5199–204. doi: 10.1073/pnas.95.9.5199

151. Borst L, van der Burg SH, van Hall T. The NKG2A–HLA-E axis as a novel
checkpoint in the tumor microenvironment. Clin Cancer Res. (2020) 26:5549–56.
doi: 10.1158/1078-0432.CCR-19-2095

152. Fayette J, Lefebvre G, Posner MR, Bauman J, Salas S, Even C, et al. Results of a
phase II study evaluating monalizumab in combination with cetuximab in previously
treated recurrent or metastatic squamous cell carcinoma of the head and neck (R/M
SCCHN). Ann Oncol. (2018) 29:viii374. doi: 10.1093/annonc/mdy287.005
frontiersin.org

https://doi.org/10.1155/2011/379123
https://doi.org/10.21037/atm.2019.01.42
https://doi.org/10.1097/00001622-199811000-00012
https://doi.org/10.3324/haematol.2019.243543
https://doi.org/10.3324/haematol.2019.243543
https://doi.org/10.1080/08820130500496878
https://doi.org/10.1182/blood.V83.2.435.bloodjournal832435
https://doi.org/10.1016/j.molimm.2007.06.151
https://doi.org/10.1016/j.molimm.2007.06.151
https://doi.org/10.1182/blood.v99.3.754
https://doi.org/10.2174/1389201003379059
https://www.onclive.com/view/cd20-targeting-antibodies-are-shaping-a-new-landscape-for-b-cell-cancers
https://www.onclive.com/view/cd20-targeting-antibodies-are-shaping-a-new-landscape-for-b-cell-cancers
https://tct.confex.com/tandem/2021/meetingapp.cgi/Paper/18012
https://tct.confex.com/tandem/2021/meetingapp.cgi/Paper/18012
https://doi.org/10.1155/2014/852748
https://doi.org/10.1007/s40291-013-0024-9
https://doi.org/10.1016/S1470-2045(21)00288-6
https://doi.org/10.1016/S1470-2045(21)00288-6
https://doi.org/10.1056/NEJM200103153441101
https://doi.org/10.1056/NEJM200103153441101
https://doi.org/10.3390/cancers10100342
https://doi.org/10.3390/cancers13112748
https://doi.org/10.1200/JCO.2023.41.4_suppl.170
https://doi.org/10.2217/imt-2016-0021
https://doi.org/10.1200/JCO.2004.08.143
https://doi.org/10.1186/1471-2407-11-21
https://doi.org/10.1200/JCO.21.01375
https://doi.org/10.1007/s40265-021-01467-4
https://doi.org/10.1007/s40265-021-01467-4
https://doi.org/10.3390/cancers10110423
https://doi.org/10.1158/1538-7445.AM2021-1550
https://doi.org/10.1182/blood-2022-166994
https://doi.org/10.1182/blood-2022-159242
https://doi.org/10.1182/blood-2022-159242
https://doi.org/10.1182/bloodadvances.2021006440
https://doi.org/10.1182/blood-2021-150543
https://clinicaltrials.gov/study/NCT04185220
https://doi.org/10.3389/fimmu.2022.954804
https://doi.org/10.1038/nature14011
https://doi.org/10.1080/21645515.2018.1551671
https://doi.org/10.1158/2326-6066.CIR-15-0059
https://doi.org/10.1158/2326-6066.CIR-18-0062
https://doi.org/10.18632/oncotarget.12150
https://doi.org/10.1038/onc.2017.209
https://doi.org/10.1016/j.jaci.2016.04.025
https://doi.org/10.1080/2162402X.2018.1509819
https://doi.org/10.1080/2162402X.2018.1509819
https://doi.org/10.3390/cancers14205046
https://doi.org/10.3390/cancers15102712
https://doi.org/10.3389/fimmu.2022.960852
https://doi.org/10.1073/pnas.95.9.5199
https://doi.org/10.1158/1078-0432.CCR-19-2095
https://doi.org/10.1093/annonc/mdy287.005
https://doi.org/10.3389/fimmu.2024.1356666
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Stenger and Miller 10.3389/fimmu.2024.1356666
153. Cohen RB, Bauman JR, Salas S, Colevas AD, Even C, Cupissol D, et al.
Combination of monalizumab and cetuximab in recurrent or metastatic head and
neck cancer patients previously treated with platinum-based chemotherapy and PD-(L)
1 inhibitors. J Clin Oncol. (2020) 38:6516–6. doi: 10.1200/JCO.2020.38.15_suppl.6516

154. Study of Monalizumab and Cetuximab in Recurrent/Metastatic SCCHN
Discontinued (2022). Target Oncol. Available online at: https://www.targetedonc.
com/view/study-of-monalizumab-and-cetuximab-in-recurrent-metastatic-scchn-
discontinued (Accessed October 22, 2023).

155. Barlesi F, Goldberg SB, Mann H, Gopinathan A, Newton MD, Aggarwal C.
Phase 3 study of durvalumab combined with oleclumab or monalizumab in patients
with unresectable stage III NSCLC (PACIFIC-9). J Clin Oncol. (2023) 41:TPS8610–
TPS8610. doi: 10.1200/JCO.2023.41.16_suppl.TPS8610

156. Wainberg ZA, Diamond JR, Curigliano G, Deva S, Bendell JC, Han S-W, et al.
First-line durvalumab + monalizumab, mFOLFOX6, and bevacizumab or cetuximab
for metastatic microsatellite-stable colorectal cancer (MSS-CRC). J Clin Oncol. (2020)
38:128–8. doi: 10.1200/JCO.2020.38.4_suppl.128

157. Felices M, Lenvik TR, Kodal B, Lenvik AJ, Hinderlie P, Bendzick LE, et al. Potent
cytolytic activity and specific IL15 delivery in a second-generation trispecific killer engager.
Cancer Immunol Res. (2020) 8:1139–49. doi: 10.1158/2326-6066.CIR-19-0837

158. Sarhan D, Brandt L, Felices M, Guldevall K, Lenvik T, Hinderlie P, et al. 161533
TriKE stimulates NK-cell function to overcome myeloid-derived suppressor cells in
MDS. Blood Adv. (2018) 2:1459–69. doi: 10.1182/bloodadvances.2017012369

159. Felices M, Kodal B, Hinderlie P, Kaminski MF, Cooley S, Weisdorf DJ, et al.
Novel CD19-targeted TriKE restores NK cell function and proliferative capacity in
CLL. Blood Adv. (2019) 3:897–907. doi: 10.1182/bloodadvances.2018029371

160. Merino A, Hamsher H, Mansour D, Berk GI, Felices M, Miller MD. B7-H3 trike
enhances killing of myeloid derived suppressor cells in multiple myeloma. Blood.
(2022) 140:8851–2. doi: 10.1182/blood-2022-162566

161. Kennedy PR, Vallera DA, Ettestad B, Hallstrom C, Kodal B, Todhunter DA,
et al. A tri-specific killer engager against mesothelin targets NK cells towards lung
cancer. Front Immunol. (2023) 14:1060905. doi: 10.3389/fimmu.2023.1060905

162. Felices M, Warlick E, Juckett M, Weisdorf D, Vallera D, Miller S, et al. 444
GTB-3550 tri-specific killer engager TriKETM drives NK cells expansion and
cytotoxicity in acute myeloid leukemia (AML) and myelodysplastic syndromes
(MDS) patients. J Immunother Cancer. (2021) 9. doi: 10.1136/jitc-2021-SITC2021.444

163. Felices M, Eckfeldt CE, Lenvik TR, Kodal B, Lenvik AJ, Bendzick L, et al. Second-
generation camelid trike induces improvedNK cell mediated targeting of AML in pre-clinical
models. Blood. (2017) 130:4465. doi: 10.1182/blood.V130.Suppl_1.4465.4465

164. Arbabi-Ghahroudi M. Camelid single-domain antibodies: promises and
challenges as lifesaving treatments. Int J Mol Sci. (2022) 23:5009. doi: 10.3390/
ijms23095009

165. Debie P, Lafont C, Defrise M, Hansen I, van Willigen DM, van Leeuwen FWB,
et al. Size and affinity kinetics of nanobodies influence targeting and penetration of
solid tumours. J Control Release Off J Control Release Soc. (2020) 317:34–42.
doi: 10.1016/j.jconrel.2019.11.014
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