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1Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China, 2Key
Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin
Medical University), Ministry of Education, Harbin, Heilongjiang, China, 3College of Bioinformatics
Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
Background: During aging, chronic inflammation can promote tumor

development and metastasis. Patients with chronic inflammatory bowel

diseases (IBD) are at an increased risk of developing colorectal cancer (CRC).

However, the molecular mechanism underlying is still unclear.

Methods: We conducted a large-scale single-cell sequencing analysis

comprising 432,314 single cells from 92 CRC and 24 IBD patients. The analysis

focused on the heterogeneity and commonality of CRC and IBD with respect to

immune cell landscape, cellular communication, aging and inflammatory

response, and Meta programs.

Results: The CRC and IBD had significantly different propensities in terms of cell

proportions, differential genes and their functions, and cellular communication. The

progression of CRC was mainly associated with epithelial cells, fibroblasts, and

monocyte-macrophages, which displayed pronounced metabolic functions. In

particular, monocyte-macrophages were enriched for the aging and

inflammation-associated NF-kB pathway. And IBD was enriched in immune-

related functions with B cells and T cells. Cellular communication analysis in CRC

samples displayed an increase in MIF signaling from epithelial cells to T cells, and an

increase in the efferent signal of senescence-associated SPP1 signaling from

monocyte-macrophages. Notably, we also found some commonalities between

CRC and IBD. The efferent and afferent signals showed that the pro-inflammatory

cytokine played an important role. And the activity of aging and inflammatory

response with AUCell analysis also showed a high degree of commonality.

Furthermore, using the Meta programs (MPs) with the NMF algorithm, we found

that the CRC non-malignant cells shared a substantial proportion of the MP genes

with CRC malignant cells (68% overlap) and IBD epithelial cells (52% overlap),
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respectively. And it was extensively involved in functions of cell cycle and immune

response, revealing its dual properties of inflammation and cancer. In addition, CRC

malignant and non-malignant cells were enriched for the senescence-related cell

cycle G2M phase transition and the p53 signaling pathway.

Conclusion: Our study highlights the characteristics of aging, inflammation and

tumor in CRC and IBD at the single-cell level, and the dual property of

inflammation-cancer in CRC non-malignant cells may provide a more up-to-

date understanding of disease transformation.
KEYWORDS

comparative analysis, heterogeneity, commonality, colorectal cancer, inflammatory
bowel disease, aging and inflammation
1 Introduction

Colorectal cancer (CRC) is a malignant tumor with the third

cause of new cancer cases and cancer deaths worldwide (1). During

aging, chronic inflammation can affect the cells of the tumor

microenvironment (TME), such as fibroblasts and immune cells

(2). It can promote tumor progression and metastasis (3).

Senescence prevents the proliferation of potentially cancerous cells,

and acts as a potent anti-tumor mechanism. For example,

interactions between the p53/ARF and RB/p16 tumor suppressor

pathways can block the cell cycle and play a central role in regulating

senescence (4). The senescence-associated secretory phenotype

induction relies on the activation of the inflammatory TFs NF-kB,
a chronic DNA damage response (5). As a chronic inflammatory

disorder, inflammatory bowel disease (IBD), which includes

ulcerative colitis (UC) and Crohn’s disease (CD), increased the risk

of developing CRC (6). IBD-related CRC is responsible for

approximately 2% of annual mortality in CRC patients, and has a

5-year survival rate of 50%. It also affected patients at a younger age

compared to sporadic CRC (7). Although there are many differences

between IBD-related colorectal cancer and sporadic CRC, a study by

Shailja C. Shah et al. suggested that colitis-associated CRC shares

many molecular similarities with sporadic CRC (8). The factors

generated by the host immune response may contribute to the

inflammatory, aging and carcinogenic processes. Therefore, it is

important to explore the potential differences and similarities

between CRC and IBD as an immediate and urgent objective.

Single-cell RNA sequencing (scRNA-Seq) technology has the

potential to unravel the diversity of cell states and the heterogeneity of

cell populations (9). It serves as a powerful tool for investigating

heterogeneous tissues, such as the tumor microenvironment (TME)

(10). Extensive research has been conducted on the heterogeneity of

immune cells in intestinal diseases, particularly tumors. For example,

Zhang L et al.’s study utilized scRNA-seq analysis on colorectal

cancer (CRC) patients and identified specific subsets of macrophages

and conventional dendritic cells (cDCs) as key mediators in the TME
02
(11). Pelka K et al.’s research discovered a mismatch repair-deficient

(MMRd) enriched immune hub in the MMRd CRC individuals, with

activated T cells together withmalignant andmyeloid cells expressing

T cell-attracting chemokines (12). Similarly, a study on colonic

mucosa and peripheral blood mononuclear cells from ulcerative

colitis (UC) or Crohn’s disease (CD) patients revealed increased

abundances of HLA-DR+CD38+ T cells, CXCR3+ plasmablasts,

IL1B+ macrophages, and monocytes in the colonic mucosa samples

from IBD patients (13). However, a clear characterization of the

differences and similarities at the single-cell level between CRC and

IBD is lacking.

In this study, we performed a comprehensive analysis of single

cell transcriptomes in both CRC and IBD, comprising a total of

432,314 cells, which contained 92 CRC patients, 24 IBD patients, as

well as 59 normal samples. Our analytical approach included the

following key components: 1) providing an landscape by

enumerating proportions, the differentially expressed genes (DEGs),

and their functions for each cell subpopulation in both CRC and IBD;

2) comparing the intercellular communication mediated by receptor-

ligand pairs to elucidate potential mechanisms of signaling

interactions between cells; 3) evaluating the activity of aging and

inflammation between CRC and IBD; 4) defining gene sets of Meta

programs (MPs) as a means to capture the pattern of intra-disease

heterogeneity. The overall objective of this study is to generate novel

insights into the intra-disease pathogenesis of CRC and IBD.
2 Methods and materials

2.1 scRNA-seq data processing and cell
type identification

By screening the Gene Expression Omnibus (GEO) and the

Arrayexpress databases, we obtained scRNA-seq data from eight

studies on colorectal cancer (GSE132257, GSE132465, GSE200997,

GSE166555, GSE188711, GSE144735, GSE161277, EMTAB.8107), and
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five studies on inflammatory bowel disease (GSE150115, GSE164985,

GSE182270, GSE184291, GSE134809). We constructed a single-cell

metadata profile of intestinal disorders. All scRNA-seq data were

obtained from published studies with raw counts for 10X Genomics,

and the sample information is described in Supplementary Table 1. To

perform batch correction, data integration, and quality control, we

utilized the R packages Seurat v4 and Harmony v0.1.1 on a total of 175

single-cell samples from thirteen studies (14, 15). We filtered out genes

that were detected in 5 or fewer cells, as well as cells with an expressed

gene count lower than 2% or greater than 98% (16). The samples were

then normalized using logarithmic normalization. We further

identified the top 30 principal components using principal

component analysis (PCA) on the top 3000 highly variable genes.

Clustering was performed using the FindNeighbors and FindClusters

functions (resolution = 0.8), and all cells were classified into 45 clusters

using the uniform manifold approximation and projection (UMAP)

algorithm (17). Each cell cluster was annotated with well-known cell-

type specific markers (18–20). Additionally, we employed the

FindAllMarkers and FindMarkers functions in Seurat to identify the

differentially expressed genes (DEGs) for each cell type based on

the non-parametric Wilcoxon rank-sum test. We then combined the

DEGs with the CellMarker website for further manual annotation of

cell types (21).
2.2 Identification of malignant cells in
colorectal cancer

Considering the presence of tumor heterogeneity, we integrated

and used two methods, namely Copy Number Karyotyping of

Aneuploid Tumors (CopyKAT) and Single Cell Variational

Aneuploidy Analysis (SCEVAN), to distinguish malignant cells

from non-malignant epithelial cells (22, 23). CopyKAT is an

integrative Bayesian approach with hierarchical clustering to

quantify genomic copy number profiles and define clonal

substructure from high-throughput scRNA-seq data. It can be

used to identify tumor cells in the TME and is implemented

using the R package “copykat” (22). On the other hand, SCEVAN

is a fast variational algorithm for deconvoluting the clonal

substructure of tumors from scRNA-seq data. It assumes that all

cells within a given copy number clone share the same breakpoints.

Using the R package SCEVAN, it can automatically and accurately

discriminate between malignant and non-malignant cells (23).

Here, we assigned the epithelial cells of CRC patients as

malignant and non-malignant cells (22, 23) using the R packages

copykat and SCEVAN. Through the integration of both approaches,

we successfully defined 32,387 malignant cells and 23,805 non-

malignant cells with high confidence.
2.3 Defining robust NMF programs and
Meta programs

We performed the non-negative matrix factorization (NMF)

process separately for each of the included studies to generate a

program that captures the intercellular heterogeneity. Here we used
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the computational scheme proposed by Avishai Gavish et al. to

obtain robust NMF programs (24). 1) NMF was run with different

parameter values (k=4, 5, 6, 7, 8, 9), generating 39 programs for

each study. 2) Each NMF program was used to synthesize the top 50

genes, selected by their coefficients. 3) The robust NMF programs

were then selected, using different values of k to obtain programs

with at least 70% overlap (35 out of 50 genes) and more than 20%

similarity across studies.

Finally, the robust NMF programs were clustered based on

Jaccard similarity to identify a new cluster. We compared each

robust NMF program with all other robust NMF programs (>10

genes), assessing the degree of genetic overlap. The NMF program

with the highest gene overlap was designated as the founder NMF

program. We repeated this process by searching for the next

program with maximal overlap (>10 genes) with the cluster and

adding it to the cluster until no additional NMF program could be

added. We denoted this cluster as a Meta program (MP), and

defined the top 50 genes as the gene set most commonly shared

between programs from that cluster (24). The part of the code were

from Avishai Gavish et al.`s research (available in https://

github.com/tiroshlab/3ca). We performed the non-negative

matrix factorization (NMF) process separately for each of the

included studies to generate a program that captures the

intercellular heterogeneity.
2.4 Gene set enrichment analysis,
Functional enrichment analysis, and
AUCell analysis

We utilized the R package msigdbr V7.5.1 to retrieve gene sets

from the Human Molecular Signatures Database (MSigDB). The

MSigDB includes Hallmark gene sets, Gene Ontology gene sets for

biological processes (GOBP), molecular functions (GOMF), and

cellular components (GOCC), canonical pathways gene sets, and so

on (25). Gene set enrichment analysis was conducted on the DEGs

identified for each cell type between the patients and normal samples.

Additionally, we assessed the enrichment of marker genes with Gene

Ontology terms (C5:BP/CC/MF) and pathway enrichment analysis

using a hypergeometric test (FDR-adjusted P<0.05 was considered

significant). All of the above analyses are implemented using the R

package clusterprofiler (26). AUCell is an approach to determine the

activity of specified gene sets on single cell RNA-seq data (27). The area

under the curve (AUC) is used to calculate whether the input gene set is

enriched within the expressed genes for each cell.
2.5 Cell-cell communication analysis

A toolkit CellChat used to quantitatively infer and analyze

intercellular communication networks from scRNA-seq data (28).

It is based on the database of interactions among ligands, receptors

and their cofactors. It can predict key signaling inputs and outputs

for cells, and the functional coordination between cells and signals

using network analysis and pattern recognition approaches. The P

value< 0.05 was filtered.
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2.6 Software packages

Data analysis was performed in R (versions 4.1.1 and 4.3.0) with

the following packages: Seurat (version 4.3.0.1), harmony (version

0.1.1), monocle3 (version 1.3.1), AUCell (version 1.24.0), NMF

(version 0.26), msigdbr (version 7.5.1), clusterprofiler (version

4.8.2), CellChat (version 1.6.1), SCEVAN (version 1.0.1), copykat

(version 1.1.0), ggplot2 (version 3.4.3), and pheatmap

(version 1.0.12).
3 Results

3.1 Epithelial cells increased with the
progression of CRC whereas B cells were
more concentrated in IBD patients

We integrated scRNA-seq data from eight colorectal cancer

studies (92 tumor samples, 49 para-carcinoma tissues), and five

inflammatory bowel disease studies (24 IBD samples and 10 normal

samples), and constructed a scRNA-seq metadata profile of the

intestinal disorders (Supplementary Table 1, detail see Methods and

Materials). To ensure comparability between IBD and CRC in

scRNA-seq data, we used the R packages Seurat and harmony for
Frontiers in Immunology 04
integration and quality control. As a result, we obtained 432,314

cells, which were then classified into 45 clusters. Based on the

previously reported marker genes, as well as the human cell marker

genes from the CellMarker website, we identified nine major cell

types. Then the UMAP plots were shown in Figure 1A and

Supplementary Figure 1A, which were colored by nine cell

clusters, disease type, position, organism, and gene scores with

cell type markers that calculated by function AddModuleScore. The

marker genes or characteristic genes for each cell type are as

following: B cells (CD79A, MZB1, JCHAIN, IGLC3, RGS13),

plasma cells (IGHA1, IGLC2), CD4+ T cells (CD3D, CD3G,

CD3E), CD8+ T cells (KLRB1, CD8A), natural killer (NK) cells

(NKG7, ICAM1, IL7R), monocyte-macrophages (LYZ, CST3, CD14,

CD68, IL1B), endothelial cells (CDH5, PECAM1, VWF, ENG),

fibroblasts (DCN, THY1, COL1A, COL1A2), MAST cells (KIT,

CPA3, GATA2, TPSAB1), and epithelial cells (EPCAM, KRT18,

CLDN4,KRT8) (Figure 1B).

Comparing the frequency and proportions of the nine cell types

recognized in CRC and IBD, significant differences can be observed.

The proportions of epithelial cells and monocyte-macrophages were

remarkably higher in CRC patients, whereas the B cells and CD4 T

cells were more abundant in IBD (Figures 1C, D). Interestingly, the

distribution of cells at different stages of CRC also showed a

decrease in the proportion of immune cells as the disease
A

B

D

E

C

FIGURE 1

Large-scale single cell landscapes of colorectal cancer and inflammatory bowel disease. (A) Uniform Manifold Approximation and Projection
(UMAP) plot showing the immune landscape of CRC and IBD identified by integrated analysis of 175 samples, colored by nine cell clusters,
disease type, position, organism, and gene scores (Epithelial and CD8 T cells). (B) The expressions of marker genes or characteristic genes for
each cell type. (C) Comparison of the frequency of nine cell types recognized in CRC and IBD. (D) Comparison of the proportions of nine cell
types in CRC and IBD, and different CRC stages. (E) Tissue preference of each cluster estimated by Ro/e in CRC and IBD, and different
CRC stages.
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progresses, while epithelial cells increased in advanced stage CRC

patients (Figure 1D). Notably, this distribution trend was

discordant in the cell proportions of individual samples, most

likely due to the high prevalence of dropouts associated with

single-cell RNA sequencing (Supplementary Figure 1B). To

account for the possibility of sampling bias in the integrated

samples for CRC and IBD, we also compared the tissue

distribution of cells in IBD, CRC patients and normal tissues

using a quantitative indicator of the tissue preference called the

Ro/e metric (29). The Ro/e metric compares the ratio of the number

of observed cells to the number of expected cells using Fisher’s exact

test to quantify the degree of tissue preference of each sub-

population. We also found that the B cells, CD4T cells tend to be

distributed in IBD, while the epithelial cells, fibroblasts, and

monocyte-macrophages tend to aggregate in CRC patients

(Figure 1E). In addition, the proportion of B cells, CD4 and CD8

T cells decreases with CRC progression, and epithelial cells and

fibroblasts become increasingly enriched. Frede A et al. study

pointed out that B cells were the major cell type in the healing

colon and IFN-induced expansion of B cell subpopulations reduced

the interaction between stromal and epithelial cells, and thus

affected intestinal mucosal healing (30). In contrast, Non-

malignant cells in the tumor microenvironment, including

fibroblasts, immune cells, and endothelial cells, contribute to

tumor progression through complex interactions with cancer

cells, such as fibroblasts support tumor growth and metastasis

and regulate inflammatory responses and cell proliferation in

tumor tissues (31, 32).
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3.2 CRC showed significant activity
increases in metabolism-related functions
while IBD displayed powerful associations
with immune-related functions

To further investigate the intra-disease heterogeneity of each

cell state encompassed by CRC and IBD, we focused on the

variability of case-control samples of each cell subpopulation

(reflecting disease identity), and explored their functions. Using

Seurat’s FindAllMarkers function and Wilcoxon rank sum test, we

identified the DEGs for each cell subpopulation in CRC and IBD,

separately. Excepting for immune cell-specific marker genes, there

was a markedly different predisposition for the DEGs obtained

(Figures 2A, B; Supplementary Figure 2A). We further explored the

functional heterogeneity of epithelial cells in two diseases, and

performed gene set enrichment analysis (GSEA) using the

signatures from MsigDB database (Figures 2C, D). Pathway

enrichment analysis of epithelial cells showed that the DEGs in

CRC displayed increased activity in metabolism-related pathways

such as ribosomes, proteasomes, fatty acid metabolism, and

nitrogen metabolism, along with T-cell receptor signaling

pathways. However in IBD, there was a significant increase in

activity observed in immune-related pathways such as type 1

diabetes mellitus, graft-versus-host disease, autoimmune thyroid

disease, and antigen processing and presentation. GO functional

enrichment analysis of epithelial cells showed that CRC-related

genes were more involved in functional nodes associated with

ribosomes and protein synthesis, while IBD-related genes were
A

B D

C

FIGURE 2

Heterogeneity of each cell type in CRC and IBD. (A) Volcano plot of DEGs for each CRC cell type. (B) Volcano plot of DEGs for each IBD cell type.
Gene set enrichment analysis (GSEA) results of epithelial Cells (C) in CRC; (D) in IBD.
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associated with adaptive immune responses, signaling pathways,

antigen binding and other immune functions (Figures 2C, D).

These findings reflect significantly different tendencies in the

molecular characterization of CRC and IBD. To account for the

organizational heterogeneity, we also performed differentially

expressed gene (DEG) analysis and pathway enrichment analysis

on epithelial cells, CD4 T cells, CD8 T cells and B cells from the

colon and rectum (Supplementary Table 2). The results showed that

there was significant variation between cell proportions and DEGs,

but a high degree of commonality was found when pathway

enrichment analysis of DEGs was performed (Supplementary

Figures 3A, B).

We subsequently investigated the function of the up-regulated

DEGs shared in two diseases (Figure 3; Supplementary Figure 2B). The

results displayed that epithelial cells were primarily involved in

ribosomal, proteasomal and endoplasmic reticulum protein

processing, as well as infectious diseases. The B cells and T cells were

mainly enriched in immune disease pathways such as rheumatoid

arthritis, autoimmune thyroid disease, and inflammatory bowel

disease. These cells also played a role in the immune system, the

intestinal immune network for IgA production, and antigen processing

and presentation. And the stromal and endothelial cells were found to

be rich in protein functions, including focal adhesion, regulation of the

actin cytoskeleton, ECM-receptor interaction, proteoglycans in cancer,

protein digestion and absorption. The monocyte-macrophages were

associated with various tumor-related signaling pathways, such as NF-

kappa B signaling pathway, TNF signaling pathway,NOD-like receptor

signaling pathway, Toll-like receptor signaling pathway, Chemokine

signaling pathway, IL-17 signaling pathway. In particular, the pathway

activation of NF-kappa B has a causal role in promoting senescence,
Frontiers in Immunology 06
and the association of them have response to chemotherapy (33, 34).

Through NF-kappa B in epidermal cells, aberrant IL-17 signaling

during ageing impairs homeostatic functions, and promotes an

inflammatory state (35). The functional annotations of the biological

process GO also demonstrated that each cell had a distinct role in the

development of diseases. For instance, epithelial cells are mainly

associated with metabolism-related functions, whereas monocytes

and macrophages respond primarily to biotic stimuli (Figure 3;

Supplementary Figure 4). The results revealed the variation in the

intercellular molecular functions between different cell types.
3.3 CRC showed greater intensity of
communication in epithelial cells and
fibroblasts but IBD mainly in immune cells

To explore the characteristics of cellular interactions in CRC

and IBD, we analyzed cell communication using the CellChat

package. The results revealed significant differences in cellular

communication between the two diseases. In CRC, there were

greater intensity of communications observed in epithelial cells

and fibroblasts, which exhibited close connections to immune cells

and monocyte-macrophages. On the other hand, in IBD, the

communication was primarily between B cells and CD8 T cells, as

well as CD4 and CD8 T cells (Figures 4A, B). We compared the

changes in ligand-receptor pairs across cell types of the two diseases

(Figure 4C). In CRC samples, an increase in MIF signaling (e.g.

MIF-(CD74+CD44), MIF-(CD74+CXCR4)) from epithelial cells to

CD4T and CD8T cells was observed. As a pro-inflammatory

cytokine, macrophage migration inhibitory factor (MIF)
FIGURE 3

Pathway enrichment analysis of the up-regulated differentially expressed genes for nine cell types shared by CRC and IBD.
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accelerated deleterious inflammation and promoted cancer

metastasis and progression (36). MIF interacted with the surface

CD74, inducing its phosphorylation and the recruitment of CD44,

ultimately leading to ERK1/2 phosphorylation (37). In contrast,

signaling in the IBD samples increased between CD4 and CD8 T

cells, as well as from B cells to T cells (e.g. CLEC2C-KLRB1, HLA-B-

CD8A, HLA-C-CD8A). Furthermore, we outlined the efferent and
Frontiers in Immunology 07
afferent signalling in CRC and IBD samples (Figures 4D, E). In

CRC, the major efferent signals for epithelial cells included MIF,

APP and MK signals, while for monocyte-macrophages included

MHC-II, CXCL and SPP1 signals, which the high expression of

SPP1 in macrophages having strong senescence-associated

secretory phenotype (SASP) features (38). Conversely, in IBD

samples, the primary efferent signals for B cells and T cells were
A B

D E

C

FIGURE 4

Single-cell transcriptional analysis reveals the cell communication in CRC and IBD. (A) Analysis of the number of interactions and interaction strength
between different cell types in CRC samples. (B) Analysis of the number of interactions and interaction strength between different cell types in IBD
samples. (C) Identification of signaling by comparing the communication probabilities mediated by ligand-receptor pairs from macrophages to other
cell types in CRC and IBD samples. (D, E) Overview of the outgoing signaling and incoming signaling in CRC and IBD samples.
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MHC-I, MHC-II, CLEC and CD99 signals. Afferent signals were

mainly concentrated on immune cells in both CRC and IBD

samples, with the main signals being MHC-I, MIF, COLAGEN,

APP, CLEC, GALECYIN, FN1, SPP1 and CXCL signals. These

results demonstrate that the pro-inflammatory cytokine plays a

role in the development of inflammation and cancer, particularly in

malignant transformation, invasion and metastasis of cancer.
3.4 AUCell analysis showed CRC and IBD
had a high degree of commonality in aging
and inflammatory response

We obtained two classical gene sets from MsigDB database,

GOBP_AGING and GOBP_INFLAMMATORY_RESPONSE, to

compare the relationships of aging and inflammatory responses

between CRC and IBD. We then extracted CRC patients with

disease stage, and then obtained a total of 61 CRC and IBD

samples with 240,501 cells. We re-clustered these samples and

used the AUCell scores to assess the activity of the gene set in

each cell subtype. The results show that inflammatory response and

aging functions had a high degree of commonality in both CRC and

IBD (Figures 5A, B). Function of inflammatory response was

enhanced mainly in the monocyte-macrophage subset, and aging

function was more active in monocyte-macrophages, fibroblasts,

and epithelial cells. In particular, we also observed a significant

enhanced activity of inflammatory response and aging with the

progression of CRC, revealed a tight relationship between CRC and

IBD (Figures 5A, B).
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3.5 CRC non-malignant cells shared a
substantial proportion of Meta program
genes with CRC malignant cells and IBD
epithelial cells

We further compared the heterogeneous characterization of

epithelial cells using the NMF method. First, CRC epithelial cells

were assigned into 32,387 high-confidence malignant cells and

23,805 non-malignant cells using the R packages copykat and

SCEVAN (Supplementary Figure 5). We then utilized robust

NMF programs to characterize the CRC malignant cells, CRC

non-malignant cells, and IBD epithelial cells, respectively (see

Methods and Materials for details). Overall, 71 robust NMF

programs were detected in all samples studied. Comparing the

stable NMF programs in the three sample types, we observed that

only CRC malignant cells and non-malignant cells had robust NMF

programs with more than 70% overlapping genes. Furthermore,

according to the fractions of shared top genes, we clustered the

robust NMF programs and identified four MPs (Figure 6A),

checking the top 50 genes as the common gene set between the

programs (see Methods and Materials for details). Our analysis

revealed that no genes were shared between CRC malignant cells

and IBD epithelial cells (Figure 6A; Supplementary Table 3).

However, CRC non-malignant epithelial cells shared a substantial

proportion of the MP genes with both CRC malignant cells and IBD

epithelial cells, with a 68% overlap (34 out of 50 genes) and a 52%

overlap (26 out of 50 genes), respectively. This indicates a common

molecular signature between inflammation and cancer, suggesting

the potential presence of early transformation between them.
A

B

FIGURE 5

AUCell analysis of the regulation of aging and inflammatory in CRC and IBD. (A) GOBP_AGING scored per cell by AUCell among nine cell subtypes.
(B) GOBP_INFLAMMATORY_RESPONSE scored per cell by AUCell among nine cell subtypes. The yellow dots indicate a strong activity, whereas dark
blue dots indicate a weak activity.
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Similarly, we recognized 151 robust NMF programs among

immune cells (B cells, CD4+ T cells, CD8+ T cells, and monocytes)

in both CRC and IBD. Subsequently, we identified seven MPs in

CRC immune cells and two MPs in IBD immune cells to compare

intra-disease heterogeneity (Supplementary Table 4). The results

revealed only a few shared genes among these MPs between CRC

and IBD, illustrating distinct tendencies of immune cells across the

two diseases. Of particular interest, we noted that the gene S100A4

was common to both CRC immune cells (MP2) and IBD immune

cells (MP2), contributing to colon inflammation and colitis-

associated colon tumorigenesis (39). Several reports have

demonstrated that S100A4 enhanced colitis development by
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increasing the adherence of Citrobacter rodentium in intestinal

epithelial cells (40). Moreover, increased S100A4 expression

significantly correlates with tumor angiogenesis, cell survival,

motility, invasion, and metastasis (41). Additionally, our results

showed that MP1 in CRC immune cells shares an overlap of 28

genes (56%) with both CRC malignant and non-malignant cells,

suggesting a collaborative role in malignant tumor development

(Supplementary Table 4). Notably, we observed the presence of pro-

inflammatory cytokines (IL1A, IL1B, IL6), and chemokines (CCL3,

CXCL2, CXCL3) in CRC immune cells (MP7). These molecules are

downstream of NF-kB and have been shown to promote

inflammation-driven neoplasia (42).
A

B

FIGURE 6

Venn diagram of the Meta programs and their functions recognized in CRC malignant cells, CRC non-malignant cells, and IBD epithelial cells using
the top 50 genes. (A) Comparison of the number of Meta programs; (B) Comparison of the MP-related functional categories.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1356075
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lv et al. 10.3389/fimmu.2024.1356075
3.6 Functions of MPs in CRC non-
malignant cells showed strong association
with CRC malignant cells and IBD
epithelial cells

We performed the functional enrichment analyses for MPs to

compare the relationships among CRC malignant cells, CRC non-

malignant cells, and IBD epithelial cells (Figure 6B; Supplementary

Table 5). Similar as the MPs, we found that the functions of MPs in

CRC non-malignant cells showed a strong association with CRC

malignant cells and IBD epithelial cells. The CRC non-malignant cells

shared 93 functional categories with CRCmalignant cells, and shared

28 functional categories with IBD epithelial cells (Figure 6B). For MP

in CRCmalignant cells and the MP1 in CRC non-malignant cells, the

functional features reflected primarily the role of the cell cycle in

tumors, mainly containing G2M checkpoint (HALLMARK) and cell

cycle G2M phase transition (GOBP) (Figure 7A; Supplementary

Table 5). This finding was consistent with Avishai Gavish et al’s
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conclusion, who suggested that a significant portion of the

heterogeneity observed in malignant cells already exists in the cells

of origin (24). Furthermore, it is well known that a hallmark of

cellular senescence is a stable cell cycle arrest in G1 or G2, which is

mainly regulated by the p53/ARF and RB/p16 pathways (43). Our

study revealed the enrichment of the cell cycle G2M phase transition

and the p53 signaling pathway between two MPs. Interestingly, CRC

non-malignant cells also exhibited another MP2 characterizing

immune response, which shared high similarity with IBD epithelial

cells (Figures 6A, 7A; Supplementary Table 5). The common

functional features of MPs included primary immunodeficiency

(C2KEGG), T cell receptor signaling (C2KEGG), hematopoietic cell

lineage (C2KEGG), allograft rejection (HALLMARK), monocyte

differentiation (GOBP), and more. Studies have shown that the

activation of the T cell receptor (TCR) promotes various signaling

cascades, leading to T-cell proliferation, cytokine production, and

differentiation into effector cells (44). Additionally, MP2 associated

with CRC non-malignant cells exhibited inflammatory responses
A

B

FIGURE 7

MPs and their functional annotations in CRC and IBD. (A) Heatmap showing Jaccard similarity indices for comparisons among 71 robust NMF
programs of epithelial cells. The programs are ordered by clustering and grouped into four MPs with their related functions (marked by black dashed
lines). The disease types are numbered and labeled. (B) Heatmap showing Jaccard similarity indices for comparisons among 151 robust NMF
programs of immune cells. A total of seven MPs with their related functions were recognized in CRC immune cells, and two MPs were recognized in
IBD immune cells (marked by black dashed lines).
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(HALLMARK) and lymphocyte apoptotic processes (GOBP). IBD

epithelial cells also demonstrated the function of lymphocyte-

mediated immunity (GOBP) (see Supplementary Table 5). These

results underscored the extensive involvement of non-malignant

epithelial tissue in the cell cycle and immune responses, and

displayed their dual characteristics of inflammation and cancer in

early non-malignant cells.

For the immune cells between CRC and IBD, we applied the above

analyses to annotate the MPs (Figure 7B; Supplementary Table 6).

Among the nine MPs recognized in CRC and IBD immune cells,

several shared functional categories emerged. Notably, these

encompassed TNFA signaling via NF-kB (HALLMARK) and IL2-

STAT5 signaling (HALLMARK), as well as primary immunodeficiency

(C2.KEGG). Multiple studies have highlighted the significance of NF-

kB activation in instigating acute and chronic inflammation, thereby

establishing a link to the initiation and progression of gastrointestinal

(GI) cancers through mechanisms involving chronic inflammation,

cellular transformation, and proliferation (45, 46). In addition, the MPs

in IBD immune cells were associated with apoptosis and receptor

activity. And for CRC, they also involved in some immune cell-specific

functions, such as granulocyte-specific C5.GOBP granulocyte

migration, C5.GOBP granulocyte chemotaxis (MP7), B cell-specific

C5.GOBP B cell mediated immunity and C5.GOBP B cell activation

(MP5, MP6) (Supplementary Table 6). These findings underscore the

pivotal role played by cancer-associated immune and inflammatory

traits in these conditions. Furthermore, w e also recognized MP1 in

CRC immune cells have overlap with CRC epithelial cells. The

enrichment analyses also displayed some similar functions to the

epithelial cells, such as involved H.HALLMARK G2M checkpoint

(MP1) in the cell cycle, C5.GOBP regulation of inflammatory

response (MP2), C5.GOBP lymphocyte mediated immunity (MP3),

C5.GOBP antigen processing and presentation (MP4)

(Supplementary Table 6).
4 Discussions

CRC and IBD are currently two of the common diseases in the

intestinal tract, and IBD usually have an increased risk of developing

CRC. Thus exploring the differences and connections between them

has become a priority. Single-cell transcriptome data is a powerful

tool for studying heterogeneous tissues, and helps to dissect the

diversity of cell states and the heterogeneity of cell populations.

Combined with 432,314 cells obtained from databases, we

identified nine cell types of CRC and IBD. We then compared the

patterns of intra-disease heterogeneity from cell proportions,

differentially expressed genes and their functions, and cellular

communication, separately. The results revealed significant disease

specificity among nine cell types in CRC and IBD patients. Then

using the NMF program to identify Meta programs based on scRNA-

seq data to further characterize intercellular heterogeneity, we found

that Meta programs and their functions in CRC malignant cells were

extremely different from IBD epithelial cells, but the CRC non-

malignant cells showed strong association with CRC malignant

cells and IBD epithelial cells, respectively. In view of this situation,

we performed trajectory analyses of IBD epithelial cells, CRC non-
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malignant cells and malignant cells using monocle3 software with

default parameters. UMAP analysis revealed that IBD and CRC

belonged to different clusters due to heterogeneity. The

developmental trajectories of three epithelial cells were then

inferred based on transcriptome changes. We selected CRC non-

malignant cells in each cluster as the root point and performed

trajectory analysis. As shown in the Supplementary Figure 6, the

results of one cluster (at the bottom) showed that the developmental

trajectories of the cells correlated with the malignant progression of

the disease. Then by analyzing cell trajectories at different stages of

the disease, we also found that the degree of disease progression was

related to cell activity. Notably, the tumor epithelial cells in stage III

showed higher levels of tumor cell activity than those in stage IV. It is

a follow-up question that needs to be answered urgently whether this

predicts a link to the cellular aging process. Additionally, MPs

recognized between immune cells show strong functional similarity

between IBD and CRC. Thus the results revealed strong similarities

between IBD and CRC, both in non-malignant epithelial cells as well

as immune cells, indicating a common immune mechanism of action

between IBD and CRC. We identified pro-inflammatory cytokines

(IL1A, IL1B, IL6), and chemokines (CCL3, CXCL2, CXCL3) that

promote inflammation-promoted neoplasia. Specifically, MPs

enriched for the functions of TNFA signaling via NF-kB become a

strong support for inflammation and cancer transition.

Although our study characterized the intercellular

heterogeneity of the two diseases from different perspectives, it

has some limitations. All of the samples were retrospective and the

results were mainly for the second mining. It was difficult to obtain

the raw data, so we only performed the analysis for the single cell

transcription profiles. We also lack the scRNA-seq data of IBD-

associated CRC disease, combining the connections between IBD-

associated CRC and sporadic CRC would be more definitive and

reliable to compare the association between IBD and CRC. In

conclusion, our study highlights the heterogeneity and

commonality between CRC and IBD at the single-cell level, and

the dual property of inflammation-cancer in CRC nonmalignant

cells may provide a more up-to-date understanding of

disease transformation.
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AddModuleScore. (B) The cell proportions of 10 individual samples between
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SUPPLEMENTARY FIGURE 2

Differentially expressed genes (DEGs) of each cell subpopulation in CRC and

IBD. (A) Venn diagram of DEGs in nine cell types. (B) Up-regulated DEGs
among the six major cell types.

SUPPLEMENTARY FIGURE 3

The organizational heterogeneity among cell types. (A) Venn diagrams of

differentially expressed gene, and (B) Venn diagram of pathway enrichment
analysis on epithelial cells, CD4 T cells, CD8 T cells and B cells from the colon

and rectum.

SUPPLEMENTARY FIGURE 4

GO biological process of the up-regulated differentially expressed genes for
nine cell types shared by CRC and IBD.

SUPPLEMENTARY FIGURE 5

UMAP plots of the malignant cells identified by the R packages copykat
and SCEVAN.

SUPPLEMENTARY FIGURE 6

the cell trajectory analysis results of IBD epithelial cells, CRC non-malignant

cells and malignant cells. (A) The developmental trajectory in the
pseudotime analysis. (B) The cell trajectory analysis results of malignant

and non-malignant cells. (C) The cell trajectory analysis results of
different stages.

SUPPLEMENTARY TABLE 1

Baseline Clinical characteristics of all samples in CRC and IBD.

SUPPLEMENTARY TABLE 2

Number of cell types in different organism parts.

SUPPLEMENTARY TABLE 3

MP genes in CRC malignant cells, CRC non-malignant cells and IBD
epithelial cells.

SUPPLEMENTARY TABLE 4

MP genes in CRC and IBD immune cells.

SUPPLEMENTARY TABLE 5

Functional enrichment analyses for MPs in CRC malignant cells, CRC non-
malignant cells, and IBD epithelial cells.

SUPPLEMENTARY TABLE 6

Functional enrichment analyses for MPs in CRC and IBD immune cells.
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