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disc degeneration
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Zhigang Zhao1,3, Zhen Chang1,3, Xuefang Zhang1,3

and BaoRong He1,3*

1Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an,
Shaanxi, China, 2Medical College, Yan’an University, Yan’an, Shaanxi, China, 3Shaanxi Key Laboratory
of Spine Bionic Treatment, Xi’an, Shaanxi, China
The incidence of lumbar disc herniation has gradually increased in recent years,

and most patients have symptoms of low back pain and nerve compression,

which brings a heavy burden to patients and society alike. Although the causes of

disc herniation are complex, intervertebral disc degeneration (IDD) is considered

to be the most common factor. The intervertebral disc (IVD) is composed of the

upper and lower cartilage endplates, nucleus pulposus, and annulus fibrosus.

Aging, abnormal mechanical stress load, and metabolic disorders can exacerbate

the progression of IDD. Among them, high glucose and high-fat diets (HFD) can

lead to fat accumulation, abnormal glucose metabolism, and inflammation,

which are considered important factors affecting the homeostasis of IDD.

Diabetes and advanced glycation end products (AGEs) accumulation- can lead

to various adverse effects on the IVD, including cell senescence, apoptosis,

pyroptosis, proliferation, and Extracellular matrix (ECM) degradation. While

current research provides a fundamental basis for the treatment of high

glucose-induced IDD patients. further exploration into the mechanisms of

abnormal glucose metabolism affecting IDD and in the development of

targeted drugs will provide the foundation for the effective treatment of these

patients. We aimed to systematically review studies regarding the effects of

hyperglycemia on the progress of IDD.
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1 Introduction

Low back pain (LBP) is a common public health concern

worldwide (1, 2). Approximately 60-80% of patients experience

chronic low back pain throughout their lifetime (3–5).

Furthermore, LBP is the main cause of disability and productivity

loss and seriously affects the quality of life of patients (6, 7). Although

the cause of most cases of LBP is unclear, intervertebral disc

degeneration (IDD) is considered to be the most common factor.

The intervertebral disc (IVD) consists of the annulus fibrosus (AF),

nucleus pulposus (NP) and cartilage endplate (CEP) (8–10). The NP

is rich in proteoglycans and type II collagen and is highly hydrated.

Therefore, physiological osmotic pressure can easily dissipate any

mechanical force transmitted through the spine (11, 12). The AF is a

layered structure mainly composed of type I collagen (13, 14),

whereas the CEP is composed of transparent cartilage located

between IVD soft tissue and the vertebral bone structures (15, 16).

The CEP is crucial in the maintenance of mechanical integrity and

nutrient exchange of the IVD. Furthermore, the IVD can increase the

range of spinal movement, withstand pressure, cushion vibration and

protect the spinal cord (17).

Degeneration of the IVD occurs naturally with age, weakening

its elasticity and toughness (18, 19). Imbalance between anabolism

and catabolism in the IVD can lead to changes in the composition

of the extracellular matrix (ECM), cell loss, excessive oxidative

stress and inflammation (20, 21). Additionally, abnormal spinal

mechanical changes can easily cause a series of symptoms of

intervertebral disc herniation. Age, repeated mechanical stress,

occupational factors, metabolic disorders (such as obesity and

diabetes), trauma, heredity, and even smoking may lead to the

development of IDD (22–25). The possible factors affecting IDD are

described in the Figure 1.
2 Current treatment of IDD

2.1 Conservative treatment

The preferred treatment methods for lumbar and leg pain

caused by IDD are lifestyle changes, encompassing weight
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management (reducing body weight as a means to alleviate spinal

pressure), optimizing posture (acquiring and sustaining proper

standing, sitting, and lifting postures), incorporating regular

breaks (averting prolonged static positions and periodically

altering postures), thermal therapy (alternating between cold and

heat applications to mitigate pain and inflammation), refining sleep

quality (utilizing appropriate mattresses and pillows, discovering

sleep positions conducive to alleviating spinal pressure), spinal

traction (alleviating pain and diminishing intervertebral disc

pressure), acupuncture, and massage (inducing muscle relaxation

and alleviating discomfort) (26, 27). Lifestyle changes have a

significant effect. Physiotherapy also plays a vital role in relieving

the symptoms of IDD. On the drug therapy aspect, opioids, steroids,

and non-steroidal anti-inflammatory drugs play an important role

in controlling pain and improving function and quality of life (28–

30). While medications prove effective in managing pain and

inflammation, prolonged use carries potential side effects, with

opioids posing a risk of dependence. Emphasis must be placed on

the crucial need to customize treatment plans based on individual

patient needs and responses. Moreover, the sustained efficacy of

these conservative measures varies within patient populations,

underscoring the imperative for personalized therapeutic

approaches that consider specific patient circumstances,

comorbidities, and responses to initial treatments.
2.2 Surgery

Surgical treatment includes discectomy, fusion, and total disc

replacement, and can be considered as the gold standard of IDD

treatment (31, 32). The decision for surgical intervention in cases of

IDD is a complex and multifaceted process that requires a

comprehensive evaluation, combining imaging studies such as

CT, MRI, and bone density scans with an assessment of the

patients overall physical condition. Typically, surgery becomes a

pivotal consideration when conservative treatments, including

medication and physical therapy, prove inadequate in providing

substantial relief from symptoms. The presence of neurological

symptoms such as numbness, muscle weakness, or difficulty in

walking signifies compression of nerve roots or the spinal cord,
FIGURE 1

Possible factors affecting IDD.
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serving as a critical determinant for opting for surgical

decompression procedures. Additionally, the patients general

health, encompassing coexisting conditions like diabetes,

osteoporosis, or cardiovascular diseases, along with the patients

willingness to undergo surgery, are pivotal factors influencing the

decision for surgical intervention. Surgery can effectively relieve the

symptoms of nerve compression and prevent the subsequent

deterioration of muscle strength (33). With the development of

three-dimensional (3D) printing technology and synthetic

biomaterials, using artificial intervertebral discs to replace

degenerative IVD has gradually become feasible (34–36). In

summary, the decision to undergo surgical intervention should be

guided by the substantial benefits observed in terms of pain

alleviation, functional enhancement, and overall improvement in

the quality of life during the evaluation of the patient. Surgical

recommendation is warranted when there is a discernible and

significant positive impact in these critical aspects.
2.3 Biotherapy

IDD is a multi-factor process. Biomolecule therapy aims to

target disease states characterized by decreased anabolism and

increased catabolism (37–39). A variety of biotherapies have been

evaluated in preclinical and clinical studies, including the use of

growth factors and platelet-rich plasma (18, 40, 41). Biomolecule

therapy focuses on repair due to the loss of proteoglycans and

collagen, and its goal is to reduce the environment of pro-

inflammatory catabolism and anti-anabolic metabolism in IDD.
2.4 Cellular and acellular therapy

Cell therapy is one of the best treatment strategies for patients

with mid-term IDD, playing plays an active role by increasing the

number of normal cells in the diseased IVD. Cell transplantation

can secrete various cytokines, immune receptors, and anti-

inflammatory molecules to regulate the microenvironment of host

tissues (42, 43). Furthermore, extracellular vesicles (EVs), as

acellular structures, can freely shuttle between cells and perform

signaling and communication functions (44–46). EVs regulates

apoptosis, senescence, proliferation and inflammation by

delivering targeted non-coding RNA and various proteins to

recipient cells (47, 48).
3 Abnormal glucose metabolism
and IDD

In addition to abnormal mechanical overload, abnormal fat

accumulation, changes in glucose and lipid metabolism and

inflammation are important factors affecting IVD homeostasis

and pro-inflammatory pathophysiology (49–51). High

concentrations of pro-inflammatory cytokines, adipokines, sugars,

and lipids, aggravate systemic low-grade inflammation, which

consequently impairs the metabolism of articular chondrocytes
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and IVD cells. Abnormal glucose metabolism is an important

adverse factor in triggering and exacerbating IDD, and various

biological processes and mechanisms of abnormal glucose

metabolism affect cell senescence, apoptosis, inflammation,

proliferation, and ECM degradation in IDD (Figure 2).
3.1 Type 1 diabetes induced IDD

Type 1 diabetes (Non-obese diabetes, T1D) is an autoimmune

disease characterized by destruction of pancreatic b cells, affecting

more than 1.2 million children and adolescents worldwide. For

these patients, daily insulin injections are necessary to maintain

healthy blood sugar levels. Viral infection (enterovirus and

coxsackievirus), streptozotocin, antibiotics and epigenetic

modification are risk factors for the formation of T1D (52, 53).

Ina clinical study, 118patients with T1D were retrospectively

analyzed and evaluated by Pfirrmann score system and MRI. The

results showed that IDD was serious in patients with poor blood

glucose control. T1D can cause early degeneration of the IVD (54).

At the cellular level, NP tissues from Streptozotocin (STZ) -induced

T1D rats with IDD rats were collected for transcriptome sequencing

and bioinformatics analysis. The results showed that BMP7 could

be used as a core gene, and NLRP3 inflammasome and pyroptosis

related markers were significantly increased in NP cells. Further

experimental detection showed that BMP7 inhibits the activation of

NLRP3 inflammasome and cell pyroptosis processes, thereby

slowing down the IDD of T1D rats (55). In addition, in T1D

mice, higher levels of ADAMTS were shown in the intervertebral

disc matrix, which mediated glycan fragmentation and IVD

apoptosis (56). These studies show that T1D is an important

factor in promoting the progress of IDD, and that effective blood

glucose control is the key strategy to delay IDD.
3.2 Type 2 diabetes induced intervertebral
disc degeneration

Type II diabetes (T2D) is a chronic metabolic disease

characterized by long-term hyperglycemia and insulin resistance

(IR), and the decrease of insulin absorption and glucose utilization

leads to more compensatory insulin secretion, resulting in

hyperinsulinemia (57, 58). Long-term hyperglycemia can lead to

decreased organ function due to various health complications (59,

60). A clinical observation showed that the height of the IVD

decreased significantly in T2D patients, which may lead to an

increase in the risk of vertebral fracture in T2D patients (61). In

addition, increased oxidative stress and AGE/RAGE-mediated

interaction may be important factors leading to an increase in the

incidence of T2D IVD disease (62). Contrastingly, a diabetic mouse

model was established by feeding with a HFD, and it was found that

HFDmice showed obvious IDD. A microarray analysis showed that

the differential genes ADAMTS4 and ADAMTS5 were increased in

IDD samples. Overexpression of ADAMTS4 and ADAMTS5

accelerated the degradation of the ECM and led to the occurrence

of IDD. In mechanism, the complex formed by CBP-PGC-1 a-
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Runx2 binds to the initiation binding regions of ADAMTS4 and

ADAMTS5 to promote gene expression (63).

Leptin receptor deficient knockout (db/db) mice are mature

models for the study of T2D. Leptin receptor deficiency can lead to

cortical and trabecular bone changes, decrease torsional destruction

strength, and destruction of biomechanical behavior of IDD (64).

Furthermore, knockdown of the leptin receptor can increase the

level of MMP3 and induce apoptosis (65). Moreover, Vitamin K is

also related to glucose metabolism and insulin sensitivity. In IDD

induced by T2D, vitamin K2 diets may exert an anti-inflammatory

function by regulating Socs3 and Hmox1 (66). In summary, the

prevention and treatment of IDD induced by T2D cannot be

ignored. The current research is still limited, and further

exploration is needed to elucidate the mechanism of high glucose-

induced IDD. Both Type 1 and Type 2 diabetes contribute to the

exacerbation of IDD, albeit with slightly distinct mechanisms.

Owing to an earlier onset and its autoimmune nature, T1D may

precipitate an earlier onset of IDD with potentially accelerated

progression. In contrast, IDD linked to T2D may manifest more

covertly, exacerbated by the emergence of metabolic syndrome. For

T1D, a concentrated effort on stringent blood glucose control and

vigilant monitoring of early signs of IDD may prove beneficial. In

the context of T2D, addressing the pervasive influence of metabolic

syndrome and achieving optimal blood glucose control may be

more efficacious in IDD management. In essence, although both

diabetes types exert adverse effects on IDD, an in-depth

comprehension of these mechanisms will facilitate the

development of more targeted and efficacious treatment

approaches for IDD within the diabetic milieu.
3.3 Advanced glycation end and IDD

The continuous increase of blood glucose levels in patients with

diabetes can lead to non-enzymatic macromolecular glycosylation

and eventually to the formation of advanced glycation end products

(AGEs) (67, 68). AGEs accumulation is the source of complications

of diabetes. AGEs are mainly accumulated in proteins, including

aggregating glycans and collagen (69, 70), causing the fibers to

soften, rendering the dehydrated matrix unable to withstand the
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typical mechanical forces of the spine, resulting in biomechanical

changes (71). Studies have determined the direct correlation

between AGEs intake and the incidence of IDD. The NP samples

of clinical IDD patients were detected, and it was found that

compared with non-diabetic IDD patients, the level of AGEs in

diabetic patients was significantly higher than that in non-diabetic

controls (72). Transcriptome sequencing analysis showed that the

expression of several MMP genes increased in IVD mice fed with

HFD. AGEs treatment promotes the rise of the AP1-p300/CBP-

PPRC pathway, and AGEs via PAK1/USP24/PPRC1-p300/CBP-

AP1 signaling drives MMP to induce ECM degradation, which

leads to IDD. Inhibition of this pathway by injection of inhibitors in

vivo can effectively prevent the degeneration of the IVD (73). After

ACG activation, Gal3 and RAGE can act as receptors of ACG to

affect collagen, in which Gal3 has a protective effect on AGE attack,

limiting collagen damage and biomechanical changes. RAGE is an

essential receptor for collagen injury induced by AGEs (74). MRI

image analysis showed that oral treatment with the AGE inhibitor

PM could reduce NP dehydration after needle injury. PM also

promoted the increase in the level of oligosaccharides in rats (75). In

addition, AGEs-BSA can induce mitochondrial damage in NP cells

through activation of NLRP3 inflammatory bodies, resulting in a

secondary inflammatory response (76). High AGEs content diets

increase vertebral cortical thickening and endplate calcification,

decrease IVD height and GAG content, and increase COL-X

expression, which promotes the hypertrophic differentiation of

NP cells. This accelerates aging of the spinal structures (77). In

AF cells, AGEs affects cell viability and proliferation by regulating

mitochondrial apoptosis and ROS production in a dose-dependent

manner (78). The formation of AGEs requires sustained

hyperglycemia, so there is no change in AGEs during a short

duration of hyperglycemia (79).
4 High glucose induced cartilage
endplate injury

The CEP is composed of chondrocytes and matrix, located at

the upper and lower edges of the vertebral body, and proteoglycan

and type II collagen (80). The main function of the CEP is to
FIGURE 2

Diabetic IDD regulates the biological function of cells.
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distribute the mechanical load along the spine to protect the

vertebrae from compressive vertebral atrophy under pressure and

to provide nutrition for the IVD (81). After high glucose induction,

the mitochondrial membrane potential of CEP cells decrease and

ROS production and apoptosis related proteins increased. High

glucose may cause damage to the CEP cells through oxidative stress

and CEP apoptosis induced by high glucose is time-dependent (82).

Moreover, lncRNA MALAT1 play an important role in promoting

apoptosis of rat CEP cells by activating the p38/MAPK signal

pathway. This suggests that MALAT1 can be used as a

therapeutic target for diabetes related IDD (83).
5 High glucose induced nucleus
pulposus injury

The NP is located between the CEP and the AF, and is an elastic

translucent gelatinous material composed of a crisscross fibrous

reticular structure (84–86). The water content of the NP in infants

is 80-90%. With an increase in age, the proteoglycan

depolymerization in the NP increases, the water content decreases

gradually and the collagen thickens and is gradually replaced by

fibrocartilage (87, 88). Therefore, the incidence of IVD herniation in

the elderly is significantly higher than that in young adults (89, 90).

The nutrition of the NP is mainly supplied by the vertebral body-

cartilage endplate (84). During spinal movement, the NP rolls like a

bearing to support the vertebral body and assists other parts of the

spine to complete physiological activities (91). When the NP bears an

external force, the force is uniformly transferred to the surrounding

AF, which can balance the stress (86, 92). In a model of diabetes

induced by streptozotocin injection, the protein levels of caspase-8,

caspase-9, and caspase-3 apoptosis proteins in NP cells and the

expression of aging marker p16lnk4A protein were significantly

increased. In addition, the activation of the autophagy pathway in

NP cells inhibits the expression of MMP-13 in diabetic IDD and

triggers the protective mechanism of the NP cells (93, 94).

On the other hand, the addition of osteogenic protein-1 (OP-1)

reverses NP matrix catabolism induced by high glucose (95). A high

glucose concentration significantly decreases the proliferation,

colony formation, migration, wound healing and dry maintenance

of NP mesenchymal stem cells (NPMSCs) and accelerate the

apoptosis and senescence of NPMSCs (96). In recent years, stem

cell therapy has been widely used in cell-based regenerative

medicine (97–99). Treatment of NPMSCs with hMSCs-CM

inhibits the level of phosphorylated p38 MAPK (100). Autophagy

has been shown to prevent premature aging under various

conditions, and autophagy defects may lead to aging (101, 102).

Through screening diabetes data -sets and tissue validation, it was

found that HuR expression in diabetic NP tissue and high glucose

treated NP cells was reduced. Knockdown of HuR promotes

senescence of the NP cells. Further exploration of the mechanism

shows that HuR can bind to the key autophagy gene Atg7 and

regulate the stability of Atg7. In vivo injection of Atg7

overexpression improves IDD progression by promoting
Frontiers in Immunology 05
autophagy (103). It is of great significance to explore new

methods to prevent IDD and cell senescence from the point of

view of the NP and NPMSCs.
6 High glucose induced annulus
fibrosus injury

As the external structure of the IVD, the AF is used to protect

the NP from being released from IVD during axial compression,

tension and bending when the spine is under high load. The AF can

maintain physiological intervertebral disc pressure. When AF cell

degeneration also occurs, various pathological events may occur,

including decreased IVD cells, upregulation of matrix degrading

enzymes, and inflammation. Studies have shown that AF cells of

young rats treated with high glucose for 1 and 3 days showed

increased mitochondrial damage and increased cell senescence

markers, excessive production of ROS and decreased average

telomerase activity (104). Stress-induced accelerated premature

senescence of young AF cells may be an emerging risk factor for

premature disc degeneration in young DM patients. In addition,

high glucose culture significantly increase the caspase-3 and

caspase-9 activity of AF cells and promotes the activation of the

apoptosis pathway. In mechanism, inhibition of JNK pathway and

p38 MAPK signal pathways may attenuate the effect of high glucose

on apoptosis of the AF cells (105). Furthermore, endoplasmic

reticulum stress can lead to the disorder of steady-state behavior

of many cells and induce IVD apoptosis to degenerate. After high

glucose induction, the protein expression of ER stress markers

CHOP, ATF-6, and ATF-6 significantly increased and induced

apoptosis in the AF cells (106).
7 Drug therapy of Diabetic IDD

Surgery can directly and effectively solve the pain and

neurological symptoms of patients, but it is not helpful for the

prevention and progress of IDD. Therefore, effective drugs should

be developed to intervene in the early stage of IDD or to prevent

IDD in high-risk groups, to avoid trauma and risk of surgical

treatment for patients. Research has found that adding resveratrol

to high glucose induced NP cells can reduce apoptosis, ROS

production, downregulate the expression of aging markers (p16

and p53), and increase telomerase activity and the expression of

anti-apoptotic molecules (Bcl-2) in NP cells. On the contrary,

inhibition of the PI3K/Akt pathway can counteract the beneficial

effect of resveratrol in high glucose groups (107).

Glucagon-like peptide-1 (GLP-1) is a key intestinal insulin-

stimulating hormone that regulates glucose and energy homeostasis

(108, 109). Liraglutide (LIR), as a long-acting GLP-1 analog, is

highly homologous to endogenous GLP-1 (110). LIR is considered

to be a powerful therapeutic choice for T2D by binding to GLP-1R

to regulate insulin and cell proliferation, differentiation and

apoptosis (111, 112). In diabetic IDD, the addition of high
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concentration of LIR inhibited the apoptosis of NPs induced by

high glucose, increasing cell activity and proliferation. The PI3K/

Akt/caspase-3 pathway may be one of the mechanisms by which

LIR plays a protective role in IDD (113, 114).

Marein is a flavonoid extracted from C. tinctoria, which can

improve insulin resistance induced by high glucose levels. In IDD,

Marein protects HNPC from HG-induced damage and ECM

degradation by inhibiting the ROS/NF-kB pathway. Therefore,

Marein is a promising therapeutic agent to delay IDD in patients

with diabetes (115).

Cycloastragenol is the only telomerase activator that has anti-

aging effects by increasing telomerase levels to delay telomere

shortening (116, 117). Astragaloside IV (AG-IV) has a variety of

drug properties, such as anti-inflammatory, anti-IR and

neuroprotective effects (118–120). High glucose concentration is

known to have adverse effects on telomerase reverse transcriptase

(TERT) expression and telomere length in NPs. After treatment

with CAG and AG-IV, the cell morphology and vitality significantly

improve, the TERT expression of NPC and telomere length

increased, and apoptosis and senescence an inhibited (121). At

present, the exploration of novel pharmacotherapeutic strategies for

treating IDD, particularly in the presence of concurrent diabetes,

represents a highly promising avenue. Compounds such as

resveratrol, liraglutide, and Marein exhibit diverse mechanisms of

action, underscoring the potential of targeted drug interventions in

mitigating IDD. It is crucial to comprehend how these drugs

interact with conventional diabetes medications and their impact

on blood glucose control. Longitudinal studies are imperative to

assess the prolonged safety and efficacy of these drugs in IDD

patients, especially considering the chronic nature of IDD and

diabetes. The selection of pharmacological interventions should

be personalized based on the individual patients circumstances, the

stage of IDD, and the status of diabetes.
8 Summary and prospects

Studies have shown that both T1D and T2D can cause different

degrees of IDD, and that high glucose and HFD are risk factors for

diabetic IVD. High glucose can promote the aging of endplate cells,

NP cells, and AF cells, increase cell apoptosis and inflammatory

response, and hinder the formation of autophagy pathways and

ECM degradation. The relevant mechanisms are described

in Table 1.

It is worth noting that some drugs have shown beneficial effects

on alleviating high glucose induced IDD, but current drug therapy

is still limited. We believe that health education for the population is

the preferred strategy to preventing high glucose induced IDD in

the future. Patients who adhere to a reasonable diet and regular

living habits can effectively alleviate the progress of IDD. In

addition, it is necessary to further reveal the mechanism of high

glucose-induced IDD and develop specific targeting drugs. Drugs

enter the body through blood circulation and are mostly

metabolized by the liver and kidney. The effective dose to achieve

the function of the IVD is usually greatly reduced. Therefore, the

application of nanoparticles to encapsulate drug components and
Frontiers in Immunology 06
enable drugs to target the therapeutic area should be considered.

For example, exosomes, EVs, and artificial vesicles can all serve as

good carriers for drugs. In summary, current research provides a

fundamental basis for the treatment of high glucose induced IDD

patients. With the further exploration of more mechanisms of

abnormal glucose metabolism affecting IDD and in the

development of targeted drugs, it will bring dawn to the

rehabilitation of patients.
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Names Signaling pathway Function Ref

AGEs PAK1/USP24/PPRC1-p300/CBP-
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Promote
ECM degradation

(1)

STZ BMP7-NLRP3 axis Promote
pyroptosis

(2)

High
glucose

CBP-PGC-1a-Runx2 complex-
ADAMTS4/5 axis

Promote
ECM degradation

(3)

High
glucose

ChREBP/p300- Puma /BAX axis Promote
cell apoptosis

(4)

Resveratrol ROS-PI3K/Akt axis Inhibit cell
apoptosis
and senescence

(5)

LIR-
GLP-1R

PI3K/Akt/mTOR/caspase-3 PI3K/
Akt/GSK3b/caspase-3

Inhibit
cell apoptosis

(6)

High
glucose

HuR-Atg7 axis Suppress
cell senescence

(7)

Marein ROS-NF-kb axis Inhibit
ECM degradation

(8)

High
glucose

JNK - p38 MAPK axis Promote
cell apoptosis

(9)

AGEs BRD4- MAPK/NF-kB -MMP-
13 axis

Inhibit
ECM degradation

(10)

AGEs- NF-kB -NLRP3 axis Promote
inflammation

(11)

LncRNA
MALAT1

p38 MAPK Promote
cell apoptosis
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