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derived suppressor cells
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Introduction: Sepsis engenders distinct host immunologic changes that include

the expansion of myeloid-derived suppressor cells (MDSCs). These cells play a

physiologic role in tempering acute inflammatory responses but can persist in

patients who develop chronic critical illness.

Methods: Cellular Indexing of Transcriptomes and Epitopes by Sequencing and

transcriptomic analysis are used to describe MDSC subpopulations based on

differential gene expression, RNA velocities, and biologic process clustering.

Results:We identify a unique lineage and differentiation pathway for MDSCs after

sepsis and describe a novel MDSC subpopulation. Additionally, we report that the

heterogeneous response of the myeloid compartment of blood to sepsis is

dependent on clinical outcome.

Discussion: The origins and lineage of these MDSC subpopulations were

previously assumed to be discrete and unidirectional; however, these cells

exhibit a dynamic phenotype with considerable plasticity.
KEYWORDS

myeloid-derived suppressor cells, sepsis, transcriptomics, single-cell RNA sequencing,
chronic critical illness
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1 Introduction

Sepsis is defined as life-threatening organ dysfunction caused by a

dysregulated host response to infection (1), with survivors experiencing

either a rapid recovery or chronic critical illness (CCI) (2). The

emergency myelopoietic response to sepsis is characterized by

hematopoietic stem and progenitor cell (HSPC) expansion and

preferential differentiation along myeloid pathways (3–7). We and

others have previously demonstrated that sepsis induces an expansion

of circulating myeloid-derived suppressor cells (MDSCs), and that both

an increase in and persistence of specific MDSC subpopulations are

seen in sepsis patients with poor clinical outcomes (4, 8, 9).

Three MDSC subpopulations are typically described based on cell

surface expression, mechanisms of immune suppression, and

inflammatory profiles: granulocytic (PMN-), monocytic (M-), and early

(E-) MDSCs (10, 11). Although these MDSCs differ phenotypically, they

are all capable of suppressing T-lymphocyte proliferation (4, 12). As

research into the myeloid compartment during inflammation expands,

the complexity of intermediate cell types is just beginning to be

understood. Indeed, Hegde et al. recently concluded that suppressive

myeloid cell types, including MDSCs, “are highly heterogeneous and

context dependent” (13). The authors presented an emergent view of

MDSCs that emphasizes heterogeneity and plasticity in contrast to the

classical view of MDSCs as the midpoint in a differentiation pathway that

results in terminally-differentiated monocytes and granulocytes (13).

Single-cell RNA-sequencing (scRNA-seq) details the transcriptomes

of complex and heterogeneous cell mixtures. An extension of this

technique, Cellular Indexing of Transcriptomes and Epitopes by

Sequencing (CITE-seq), simultaneously profiles cell surface proteins

for each cell. We initially performed CITE-seq in order to identify

MDSC subpopulations based on cell surfacemarkers/cell phenotypes, as

our previous results (14) indicated that MDSCs from septic patients

may not express some of the classic genes found inMDSCs from cancer

patients, making them difficult to identify. We compared the

transcriptomes of myeloid cells from healthy subjects, acutely septic

patients, and patients with good and poor clinical outcomes at later time

points after sepsis. We found that MDSC subpopulations evolve over

time and that outcome-dependent MDSC subpopulations exist.

Specifically, we identified a novel hybrid (H)-MDSC phenotype

unique to some sepsis survivors with poor clinical outcomes as well

as acutely septic patients that progressed to CCI. Additionally, our

findings suggest that the proliferation and cytokine production of

lymphocytes, when co-cultured with MDSCs, vary at different time

points after sepsis. Importantly, MDSCs do not express key genes seen

in cancer whose downstream products suppress T-cell responsiveness.

Overall, our results demonstrate a critical need for disease- or “context-”

specific understanding of MDSCs when considering host-specific

immune dysfunction and potential therapies.

2 Materials and methods

2.1 Study design

Our study design was previously reported by Darden et al. (14).

To summarize, this prospective, observational cohort study was
Frontiers in Immunology 02
registered with clinicaltrials.gov (NCT02276417) and conducted at a

tertiary care, academic research hospital. The objective of the study

was to better understand the myeloid response (specifically blood

MDSCs) to acute sepsis, and to identify transcriptomic differences

in sepsis patients who rapidly recover versus those who develop

CCI. Our hypothesis was that differences in the myeloid

transcriptomic landscape could explain why some sepsis patients

rapidly recover while others develop CCI.

Sepsis designation occurred through an electronic medical record-

based Modified Early Warning Signs-Sepsis Recognition System

(MEWS-SRS), which uses white blood cell count, heart rate,

respiration rate, blood pressure, and mental status to identify patients

at risk for sepsis. All patients with sepsis were treated with early goal-

directed fluid administration, initiation of broad-spectrum antibiotics,

and vasopressor administration if appropriate. Antibiotic treatment

was tailored to culture results and antibiotic resistance information.

Inclusion criteria:
Admission to the intensive care unit (ICU).

Age >17 years.

Diagnosis of sepsis or septic shock according to the 2016 SCM/

ESICM International Sepsis Definitions Conference (1).

Initial septic episode while hospitalized.

Management of patient via the sepsis clinical management

protocol (15).
Exclusion criteria:
Refractory shock.

Inability to achieve source control.

Pre-sepsis expected lifespan <3 months.

Expected withdrawal of care.

Severe congestive heart failure (NYHA Class IV).

Child-Pugh Class C liver disease or undergoing evaluation for

liver transplant.

HIV infection with CD4+ count <200 cells/mm3.

Prior organ transplant, use of chronic steroids, or

immunosuppressive agents.

Pregnancy.

Institutionalized or other vulnerable patients.

Chemotherapy or radiotherapy treatment within 30 days of

sepsis onset.

Severe traumatic brain injury (defined by radiologic evidence

and GCS <8).

Spinal cord injury with permanent deficits.

Unable to obtain informed consent.
CCI was defined as ICU length of stay >13 days with persistent

organ dysfunction as measured by the Sequential Organ Failure

Assessment (SOFA) score. Patients were also designated CCI with

<14 days ICU length of stay if they were transferred to another

hospital, or discharged to a long-term acute care facility or hospice

with evidence of persistent organ dysfunction (4, 16).
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2.2 Human blood collection and
sample preparation

Whole blood samples were collected at the following time points: 4

± 1 days and 14-21 days after sepsis (16). For the former, we enrolled 4

patients diagnosed with septic shock (1) in order to guarantee a strong

host response and transcriptomic alterations in circulating leukocytes.

Interestingly, only half of these septic shock patients went on to develop

CCI (17, 18). Samples from 5 patients who developed CCI and 4

patients who rapidly recovered after sepsis were obtained from

additional patients between 14-21 days after sepsis diagnosis. We

previously determined this time point to be key to MDSC

differentiation as well as distinguishing CCI from rapid recovery (4,

16). In addition, whole blood was collected from 12 healthy subjects (1,

2). The proportion of men and women did not differ between sepsis

patients and healthy subjects (Table 1). Healthy subjects trended

towards being younger than sepsis patients, although they still met

the criteria of middle age (>45 years), encompassing patients who have

poor outcomes after sepsis compared to younger cohorts (17, 18).

Healthy subjects and septic patients had similar underlying

comorbidities (most commonly hypertension, chronic obstructive

pulmonary disease, and diabetes mellitus).

Each blood collectionunderwent two enrichment procedures. Peripheral

blood mononuclear cells (PBMCs) were collected from half of each sample

using Ficoll-Paque™ PLUS (Millipore Sigma, St. Louis, MO) and density

gradient centrifugation. Myeloid cells were collected using the RosetteSep™

HLAMyeloid Cell Enrichment Kit (STEMCELL Technologies, Vancouver).

A 1:3 mixture of enriched PBMCs: myeloid cells was created in order to

adequately analyze the small target population (MDSCs, especially in healthy

subjects) while also allowing for characterization of other important immune

cell populations using CITE-seq.

2.2.1 Human T-cell isolation and
proliferation assay

Total T cells in the PBMC suspension were captured by

immunomagnetic negative selection using EasySep™ Human T Cell
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Isolation Kits (STEMCELL Technologies, Vancouver) according to the

manufacturer’s instructions. Isolated CD3+ lymphocytes were labeled

with cell trace violet (Thermo Fisher, Waltham, MA) to assess T-cell

proliferation. T lymphocytes (1 x 105 CD3+) were seeded into a 96-well

plate and stimulated with soluble anti-CD3/CD28 antibodies

(STEMCELL Technologies, Vancouver) or without, which served as

the control. CD66b+ cells were also isolated from the PBMC fractions

using EasySep™ positive selection kits (STEMCELL Technologies,

Vancouver) and were co-cultured with stimulated T cells in a 1:1 ratio

at 37°C and 5% CO2. After 4 days, cells were harvested and

supernatants were obtained for cytokine analysis. Cells were stained

with anti-CD8 FITC and anti-CD4 PE and analyzed via flow cytometry

(ZE5 Cell Analyzer, Bio-Rad Laboratories, CA). Proliferation indices

were calculated as the total number of cell divisions divided by the

number of cells that went into division (considering cells that

underwent at least one division).

2.2.2 Cytokine analysis
Human high sensitivity T cell magnetic bead 6-plex panels

(IFN-g, IL-10, IL-12 (p70), IL-17a, IL-2, IL-23) were purchased

from EMDMillipore (Billerica, MA). Supernatants after cell culture

were used for T cell-associated cytokines. xPONENT software

(EMD Millipore, Billerica, MA) was used for cytokine analysis.

2.2.3 Flow cytometry
PBMC samples were analyzed fresh (not frozen and rethawed) due

to differential viability of cell populations, particularly granulocytes (19,

20). Although the PBMC fraction excludes mature granulocytes, it does

contain low-density granulocytes that are presumed to include PMN-

MDSCs (21). Classically, human blood MDSCs are defined from

PBMCs as: M-MDSCs (CD11b+CD14+CD33+HLA-DRlow/-) and

PMN-MDSCs (CD11b+CD15+HLA-DRlowCD66b+) (22). Our

preliminary flow cytometric analysis revealed that CD15 was not a

good cell surface marker to isolate CD14- cells from PBMCs (Figure

S1C). In fact, the analysis of CD33+CD11b+HLA-DRlow/- cells revealed

heterogeneity in CD14 and CD15 cell surface expression. Thus, we chose
TABLE 1 Patient characteristics between cohorts.

Healthy
Subjects (n=12)

Sepsis Day
4 ± 1 (n=4)

RAP Days
14-21 (n=4)

CCI Days
14-21 (n=5)

p-value

Male, # (%) 7 (58) 1 (25) 1 (25) 3 (60) 0.48

Age in years, (m ± SD) 46 ± 10 67 ± 22 61 ± 16 58 ± 18 0.08

BMI (m ± SD) 39 ± 19 37 ± 20 21 ± 3 0.19

Septic shock, # (%) 4 (100) 1 (25) 4 (80)

CCI (median) 5.5 2 2

Comorbidities (#) Cancer (1), COPD (1), DM
(1), HTN (3)

COPD (1), DM (2),
HTN (4)

COPD (1), DM (1),
HTN (4)

DM (1), HTN (2)

Admission Diagnosis (#) NSTI (1),
Choledocholithiasis (1),
SBO (1), Planned
operation (1)

NSTI (2), SBO (2) Planned operation (1),
Complication (1), Intra-
abdominal abscess (1)
Pancreatitis (1), MCC (1)
fro
Cohorts are healthy subjects, acutely septic patients, and late sepsis patients who experienced rapid recovery (RAP) and chronic critical illness (CCI). BMI, body mass index; CCI, Charlson
comorbidity index; COPD, chronic obstructive pulmonary disease; DM, diabetes mellitus; HTN, hypertension; NSTI, necrotizing soft tissue infection; SBO, small bowel obstruction; MCC,
Motorcycle crash.
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to isolate CD66b+ cells from PBMCs to obtain PMN-MDSCs

(Figure S1C).
2.3 Statistics

2.3.1 scRNA-seq read preprocessing
Gene expression and feature-barcoding data were generated

using 10x Genomics v1.1 5’ chemistry and were sequenced on an

Illumina HiSeq® with a target of 10,000 cells per sample (23). The

Cell Ranger (10X Genomics) software suite was used to process base

calls into FASTQ files, which were checked for quality control

aberrations using FastQC v0.11.7 (24). A spliced + intronic, or plice,

reference transcriptome was generated from the hg38 reference

genome (25). Reads were pseudoaligned to the reference

transcriptome with alevin-fry v0.8.1; USA mode was used for

gene expression reads in order to provide separate quantifications

of spliced, unspliced, and ambiguous mRNA abundance (26–28).

The counts of 11 cell surface proteins of interest were also

quantified using alevin-fry. Splicing-aware gene expression

quantification was performed using Ensembl transcript IDs, with

final counts matrices aggregated using Ensembl gene IDs.

2.3.2 scRNA-seq data processing
Downstream data processing and analysis were performed

primarily in R v4.2.3, with some additional processes written in

Python v3.8 as required (29, 30). After loading the unfiltered

spliced, unspliced, and ambiguous mRNA counts into R using

fishpond package v2.4.1, we defined total mRNA counts as the

elementwise sum of all three counts matrices and added the

ambiguous counts to the spliced counts matrix (31). Unless

otherwise specified, total mRNA counts were used as input

throughout the analysis. Empty droplets and ambient mRNA

were then identified and filtered out using the DropletUtils

package v1.18.1 (32, 33). Cells with an estimated false discovery

rate of <0.01 were kept for each sample. Next, the percentage of

spliced reads coming from mitochondrial genes was computed for

each cell, and cells with less than 5% mitochondrial DNA were kept

(no significant difference between healthy and septic samples). Cell

surface protein counts were imported as well, and cells that had

valid gene expression barcodes but not protein barcodes were

assigned a value of “0” for each protein. The raw counts matrices

were then formatted and merged using the Seurat package v4.3.0,

providing a single object with total, unspliced, and spliced mRNA as

well as cell surface protein assays (34). Cells with less than three

spliced and unspliced transcripts were removed by filtering; thus,

the final merged dataset comprised 28,952 genes and 119,062 cells.

The total mRNA counts were scaled by library size factors and

log1p-normalized, while protein counts were normalized via a centered

log ratio transformation across each gene. Four thousand highly

variable genes (HVGs) were identified using a local polynomial

regression between the log of expression variance and the log of

mean expression as implemented in the FindVariableFeatures

function. After scaling the normalized counts, 100 principal

components were computed using the set of HVGs as input, and
Frontiers in Immunology 04
each cell was scored and assigned a cell cycle phase as described

previously (35). Next, the 25 different samples were integrated by the

Harmony package v0.1.1, which corrects the existing Principal

Component Analysis (PCA) embedding (36). The first 50 principle

components were used as input, and a two-dimensional UMAP

embedding was computed using the cosine distance on the resulting

50 Harmony components (37). Lastly, an approximate shared nearest

neighbors graph was computed on the first 50 Harmony components

using the cosine distance with the number of nearest neighbors set to

100, and the resulting graph was partitioned into clusters via Louvain

modularity optimization using a resolution of 0.1 (38).

2.3.3 scRNA-seq annotation
After clustering, the SingleR package v2.0.0 was used with several

different immune reference datasets with known labels to assign a

most-likely broad cell type to each cluster (39–44). In addition, the

Azimuth package was used to map reference labels from an annotated

dataset of healthy human PBMCs to each cell at multiple levels of

granularity (34). Lastly, between-cluster differential expression testing

was performed using the Wilcoxon rank-sum test with p-values

adjusted via the Bonferroni correction. Genes were considered for

testing if they were expressed by at least 25% of the cells in the cluster

being tested, and results were retained if themean log2 fold-change was

greater than 0.25 and the adjusted p-value was less than 0.05 (45, 46).

After a comparison of the resulting differentially expressed gene sets

(DEGs) with canonical marker genes from the literature and an

investigation of the unsupervised annotations, a broad cell type

identity was manually assigned to each cluster.

After subsetting the initial dataset to just the cluster labeled as

monocytes, cells with confident T-cell labels from Azimuth were filtered

out and the data were split into two groups based on whether the cells

came from healthy subjects or septic patients. Subcluster analysis was

performed on the monocytes from the healthy subjects and septic

patients. Briefly, the data were reprocessed and reintegrated as described

before, though the number of HVGs was lowered to 3,000 and only 30

principal components were used as input to the integration, nonlinear

dimension reduction, and clustering routines. In addition, the number

of estimated nearest neighbors was reduced based on the smaller sizes of

the subsets. Any further subclustering of heterogeneous cell types was

performed using the same methods. Differential expression testing was

again used to identify potential marker gene sets, and a fine cell type

label was manually assigned to each cluster. Lastly, the cell type labels

were subjected to confirmatory analysis using the available cell surface

protein data as needed.

2.3.4 scRNA-seq differential expression
Differential expression testing between for each time point

versus healthy subjects in the “classically” annotated MDSCs was

performed using a pseudobulk approach. Counts across all cells for

each patient were aggregated and summed, then the DESeq2

method was applied for differential testing using the muscat R

package v1.14.0 (47). The cell-type specific marker gene expression

testing on the MDSCs annotated using the “emergent” view was

performed using the FindAllMarkers function in Seurat using the

Wilcoxon test.
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Differentially expressed testing between sepsis groups was

performed using linear mixed models. Each gene was tested

between comparison groups for M-MDSCs, as they were the only

population of MDSCs with a sufficient number of cells (n > 50) per

group. Normalized expression was used as the response, with a

binary indicator for sepsis group as the sole fixed effect. A random

intercept was included for each sample, and models were fit via the

maximum likelihood estimation using the MixedModels.jl Julia

package (48, 49). After recording expression statistics such as

mean expression per group, raw fold change, and log2 fold

change, the p-value of the group difference fixed effect from the

linear mixed model was used to determine the significance of

differential expression after adjustment using the Holm correction

(38, 50).

2.3.5 Enrichment of genes with high
transcriptional activity in MDSCs

The unspliced ratio per gene per cell was calculated as

(unspliced counts + 1) divided by the (spliced counts + 1), then

the mean for each gene was calculated separately for the MDSC

subpopulations. Genes having a mean ratio greater than 1.1 were

considered as having a high degree of active transcription. The

gprofiler2 R package v0.2.1 (51) was used to identify significantly

enriched biological processes for each set of genes, then a network-

based approach was performed to better understand biological

functions using the vissE R package v1.8.0 (52). Similarities

among the enriched processes were computed using the Jaccard

index and then used to build an overlap network. Clusters of

enriched gene-sets were identified by graph clustering; for each

cluster a frequency analysis of words in the gene-set names indicates

the most relevant biological functions.

2.3.6 scRNA-seq trajectory inference and
RNA velocity

After annotating the septic monocytic cells, the data were

further subject to only include the cell types thought to be

relevant to MDSC development and differentiation: classical and

non-classical monocytes, conventional dendritic cells (cDCs), and

MDSCs. This subset was re-embedded using UMAP, and the cells

were reclustered using the re-computed simulated neural network

graph as input to the Louvain algorithm (37). After extracting the

UMAP parameters from the output of the RunUMAP function, we

used the uwot R package to regenerate the fitted UMAP model and

nearest neighbor data that were generated internally (53). From this

output we extracted the UMAP connectivity graph, which is a

sparse representation of the fuzzy simplicial data set that can be

loosely interpreted as a metric of how likely connections are

between cells (37). The raw counts matrices, metadata for cells

and genes, nearest neighbor graphs, PCA, Harmony, UMAP

embeddings, and the UMAP connectivity graph were used to

generate an AnnData object in Python that exactly matched the

preprocessing used when annotating the cells in R (54).

The preprocessed data were used as input to an RNA velocity

estimation workflow built around the scVelo package v0.2.5. After

computing first-order moments of the spliced and unspliced counts,
Frontiers in Immunology 05
the dynamical velocity model was used to estimate per-gene

velocities and a cell-level velocity graph, after which the velocities

were projected onto the existing UMAP embedding (55, 56). Next,

transition probability matrices, absorption probabilities, and initial

and terminal cell state likelihoods were estimated based on a

weighted kernel of the velocity estimates and UMAP

connectivities using the CellRank package v1.5.1 (57). The

resulting cell fate probabilities then served as a prior for the

estimation of a gene-shared latent time for each cell. Lineage

driving genes were identified by estimating the Spearman

correlation of each gene’s expression with absorption probabilities

for each identified cell fate. Finally, a directed partitioned graph

abstraction was estimated and projected into the existing UMAP

embedding using the state probability and latent time estimates as

priors; these computations were performed using the partition-

based graph abstraction (PAGA) algorithm as implemented in

v1.9.3 of the Scanpy package (58, 59). In addition, an undirected

graph abstraction was used as the initialization for a force-directed

graph embedding of the cells, after which the graph abstraction was

recomputed on the resulting embedding. This layout of the cells was

used to display inter-cell type connectivities, which were estimated

as described previously using UMAP (60, 61).

Differences in the dynamical model parameters (state probabilities,

velocity length and pseudotime, cell stability index, and lineage

priming) were tested between septic groups within MDSC

subpopulations using a linear mixed model. Specifically, the nlme R

package v3.1-162 (62) was used to fit a model with fixed effects of cell

type, group, their interaction, and a random intercept for subject.

Pairwise testing was then obtained using contrasts of interest (across

groups within cell type) with the emmeans R package v1.8.7 (63).

2.3.7 Determination of sample size adequacy
for assays

For estimating power for scRNA-seq, assuming detection of 10%

in the proportion of MDSCs between cohorts with a 4% standard

deviation, at least 4 subjects are required in each group to reach 90%

power using a two sample t-test at the two-tailed 5% alpha level. This

was established on the pilot study (64). Considering flow cytometry,

this was not an endpoint of our analysis and therefore we reviewed

available data at the onset of the study in order to determine gating

for our cell subpopulation proportions. A power analysis was not

conducted. Regarding T-cell proliferation and T-cell cytokine

supernatant production, using a minimum of n=8 per group,

assuming a difference of means of 26 with standard deviation 14

(based on prior data from similar assays) achieves 93% power based

on a two sample t-test at the two-tailed 5% alpha level.
3 Results

3.1 MDSC subpopulations initially defined
by classical cell surface markers

We used CITE-seq to analyze single-cell transcriptomic profiles

of MDSCs in blood from healthy subjects (n=12) and surgical sepsis
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patients at 4 ± 1 (n=4) and 14-21 (n=9) days after sepsis onset (65).

Septic patients at 14-21 days were further divided based on their

clinical outcomes at time of sampling, defined as either ‘rapid

recovery’ (n=4) or development of CCI (n=5). Sex, age, and BMI

were similar between cohorts (Table 1).

Similar to flow cytometry phenotyping, CITE-seq employs

conventional cell surface markers for myeloid cell subpopulations

to define E-MDSCs (Lin−HLADRlow/− CD33+CD11b+

CD14−CD15−CD66b−), PMN-MDSCs (Lin−CD33+CD11b+CD14−

and CD15+ or CD66b+), and M-MDSCs (Lin−HLADRlow/

−CD33+CD11b+CD14+CD15−CD66b−), as well as CD14+CD16−

(classical) and CD14dimCD16+ (non-classical) monocytes (while

removing platelets, erythrocytes, HSPCs, gd T cells, and innate

lymphoid cells). This is consistent with the classical monolithic view

of myeloid differentiation described by Hegde (Figure 1A) (13).

Historically, flow cytometry classification of MDSCs is performed

directly on isolated PBMCs (4, 16) and our analysis revealed that

PMN-MDSCs made up the majority of MDSCs in isolated PBMCs

of representative septic patients, consistent with prior literature

(Table 2) (4, 16).

We then evaluated cell proportions using transcriptomics with

confirmation via flow cytometry. Myeloid cell enrichment was

necessary in this step in order to detect MDSCs in healthy subject

samples during CITE-seq as they are a relatively rare population

(see Methods Section entitled “Human Blood Collection and Sample
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Preparation”). Both single-cell transcriptomics and flow cytometry

revealed an overall increase in total MDSCs acutely after sepsis

(Figure 1B and Table 3). We plotted the cells via UMAP based on

timepoint after sepsis (Figure 1C) and myeloid cell subtype

(Figure 1D), which revealed heterogeneity of these cells when

analyzing their single cell transcriptomes. The classification of

MDSCs based on cell surface phenotypes is somewhat dependent

on the method of analysis, and as the myeloid enrichment kit

(STEMCELL) uses CD33 (and CD33 is expressed on all MDSCs),

this was our first inclination that an alternative method of

classifying cells by subpopulation would be necessary.

Next, we performed pseudobulk differential gene expression

between septic patients at day 4 and days 14-21 post-sepsis

diagnosis compared to healthy subjects to assess possible

differences among septic groups. Dramatic differences in gene

expression within MDSC subpopulations (specifically PMN- and

M-MDSCs, which were most abundant) were observed that varied

over time (Figure 2). Considering PMN-MDSCs, by comparing

each differential expression test performed against healthy subjects,

we found more extreme fold-changes in late sepsis patients who

developed CCI compared to acutely septic patients (Figure 2A, left

panel). Conversely, gene expression for late sepsis patients who

rapidly recovered returned towards that seen in healthy subjects

when compared to both acute sepsis and late sepsis with CCI. Gene

expression for rapid recovery and CCI patients compared to healthy
B

C D

A

FIGURE 1

Single-cell analysis of myeloid cells using surface protein makers. (A) Illustration representing the historical/classic/monolithic definition of MDSCs.
E-, PMN-, and M-MDSCs are the predominant subpopulations with distinct phenotypes and functions (modified from Hegde et al. (13)). Created with
BioRender.com. (B) Cell proportions of monocyte subtypes and MDSCs relative to overall monocytic cells are shown for healthy subjects (“Healthy”)
(n=12), septic patients 4 days following diagnosis (“Day 4 ± 1”) (n=4), and septic patients at days 14-21 (separated into those experiencing chronic
critical illness (“CCI”) (n=5) or those who rapidly recovered (“RAP”) (n=4)). (C) UMAP embedding of single-cell transcriptomes of peripheral blood
mononuclear cells (PBMCs). Cells are colored by the timepoint at which the samples were taken. Samples from day 4 and days 14-21 are from septic
patients. (D) Similar to (C), with cells colored by cell type. M, monocytic; PMN, granulocytic; E, early.
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subjects also tended to diverge (Figure 2A, middle and right panels).

Overall, 52 genes were differentially expressed in PMN-MDSCs

from acutely septic patients; however, only three of these genes were

also significantly differentially expressed in patients who rapidly

recovered and those who developed CCI (Figure 2B; Supplementary

File 1). The ontology of transcriptional differences among septic

patients at different time points also illustrated the heterogeneity of

the PMN-MDSC response over time (Figure 2C).

The greatest differences in the magnitude of M-MDSC gene

expression from healthy subjects compared to septic patients

occurred during acute sepsis (Figure 2D). In this cohort, 601

genes were differentially expressed in M-MDSCs, and only 31 of

these were also significantly differentially expressed in late sepsis

patients who rapidly recovered and those who developed CCI

(Figure 2E). Gene ontology analysis among M-MDSCs revealed

that patients experiencing rapid recovery had over-expression of
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kinase agents versus oxoacid metabolism when compared to sepsis

patients with CCI (Figure 2F).

In summary, transcriptomic analysis comparing healthy

subjects, patients day 4 post-sepsis, and patients at days 14-21

post-sepsis (combining those who rapidly recovered with those who

developed CCI) revealed significant heterogeneity in MDSC

transcriptomics. In addition, lymphocyte suppressive activity,

specifically suppression of T cell proliferation and T cell cytokine/

chemokine production, varied between cohorts (see below). MDSCs

from both time points after sepsis were dissimilar when comparing

their gene expression profiles and significantly enriched biological

processes from gene ontology.
3.2 Verifying the immunosuppressive
capacity of MDSCs present in sepsis

Our laboratory has previously used cell sorting and subsequent

T-cell suppression assays to demonstrate the immunosuppressive

capacity of total MDSCs from septic patients (4, 16). Thus, we set

out to verify that functionally active PMN- and M-MDSCs were

indeed present in the isolated PBMCs of septic individuals, as

defined by Gabrilovich et al. (11). Surprisingly, we discovered

unexpected cell types in our flow cytometry samples that were

supported by single-cell analysis. Historically in the cancer

literature, CD15 positivity is used to distinguish PMN-MDSCs

from M-MDSCs (13). However, in representative septic patients,

after identifying CD11b+CD33+ cells (Figure S1A) and isolating

HLA-DR-/low cells to obtain the total MDSC population (Figure

S1B), CD15 was unable to clearly separate MDSC subpopulations

(Figure S1C, bottom panel). Alternatively, CD66b (CEACAM8; a

granulocytic marker) was able to better delineate MDSC

subpopulations (Figure S1C, top panel) and, thus, was selected to

distinguish PMN-MDSCs from PBMCs for functional analysis

(Figure S1D) (10, 11, 19, 20, 66). We undertook bulk CD66b+ cell

isolation (STEMCELL Technologies, Vancouver); however,

although CD14-CD15+ PMN-MDSCs enrichment was achieved,

further analysis of the CD66b+-isolated cells demonstrated distinct

CD66blow and CD66bhigh populations (Figure S2A). Thus, we had

enriched CD66blowCD14+CD15- M-MDSCs in our gating strategy

which was meant to only contain PMN-MDSCs (CD66bhigh)

(Figure S2B).

Functionally, the CD66b+ cells isolated from septic patient

PBMCs suppressed either CD4+/CD8+ T-lymphocyte cytokine/

chemokine production (Figure S3) or lymphocyte proliferation of

host CD8+ T-lymphocytes (Figure S4), thereby meeting the criteria

of MDSCs. CD66b+ MDSCs from septic but not healthy subjects

altered T-cell cytokine production in response to anti-CD3/CD28

treatment, including IFN-g, IL-2, IL-4, IL-10, and IL-17 (Figure S3).
Cytokines which were analyzed which did not exhibit CD66b+

inhibition in acutely septic patients include IL-12, IL-23, and TGF-

b. CD66b+ cells isolated from sepsis patients 14-21 days after

infection were capable of significantly suppressing CD8+ T-

lymphocyte proliferation in response to CD3/CD28 stimulation

(Figure S4). Although we did not see suppression of CD4+ T

lymphocyte proliferation by CD66b+ cells, we did see a
TABLE 2 Percentage of total MDSCs and MDSC subpopulations from
PBMCs via flow cytometry.

MDSC
Subpopulation

Healthy
Subjects
(n=6)

Sepsis Day
4 ± 1 (n=7)

Sepsis Days
14-21 (n=3)

% Total MDSCs 15.1 (8.1, 16.6) 39.2
(25.2, 55.6)

44.8 (35.6, 56.3)

% E-MDSC 68.1 (49.8, 78.7) 1.4 (0.7, 5.9) 2.3 (2.2, 9.0)

% PMN-MDSC 14.6 (7.4, 36.9) 79.5
(64.4, 89.0)

80.7 (52.0, 85.1)

% M-MDSC 9.2 (4.9, 12.7) 9.1 (8.1, 12.7) 11.5 (9.7, 35.9)

% Ungated 2.0 (1.4, 3.2) 0.7 (0.5, 1.3) 0.7 (0.7, 3.1)
Percentages of MDSC populations in representative septic patients. Blood was collected from
healthy subjects (n=6), day 4 ± 1 septic patients (n=7), and late sepsis patients at days 14-21
(n=3)). PBMCs were isolated and prepared for flow cytometry. Viable cells determined
followed by gating of CD11b+ and CD33+ cells. HLA-DRlow cells selected to capture total
MDSCs. CD11b+ CD33+ HLA-DRlow cells outside the gating of the three MDSC
subpopulations are classified as “% Ungated.” Results reported as median (Q1, Q3). E,
early; PMN, granulocytic; M, monocytic.
TABLE 3 Percentage of total MDSCs and MDSC subpopulations from
PBMCs and enriched myeloid cells via flow cytometry.

MDSC
Subpopulation

Healthy
Subjects
(n=9)

Sepsis Day
4 ± 1 (n=3)

Sepsis Days
14-21 (n=6)

% Total MDSCs 0.3 (0.1, 0.3) 3.1 (1.8, 3.6) 0.8 (0.5, 1.3)

% E-MDSC 1.3 (1.1, 5.3) 0.7 (0.5, 1.2) 1.0 (0.5, 6.0)

% PMN-MDSC 22.9
(11.6, 30.3)

26.7
(16.5, 34.5)

23.5 (16.0, 39.9)

% M-MDSC 67.1
(64.6, 83.1)

71.0
(64.0, 81.4)

68.2 (57.2, 80.6)

% Ungated 0.3 (0.0, 0.5) 0.6 (0.3, 1.6) 0.5 (0.3, 0.7)
Percentages of MDSC populations in representative septic patients. Peripheral blood
mononuclear cells and myeloid cells were collected from the same septic cohorts (n=3 for
acute sepsis and n=6 for late sepsis patients) and healthy subjects (n=9). A 3:1 mixture of
myeloid cells: enriched PBMCs were prepared for flow cytometry. Cells outside the gating of
the three MDSC subpopulations are classified as “% Ungated.” Results reported as median
(Q1, Q3). E, early; PMN, granulocytic; M, monocytic.
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significant decrease in stimulated T-lymphocyte production of

IFN-gamma at days 14-21 compared to day 4 (Figure S5). This

indicates that T lymphocytes are incapable of maintaining IFN-

gamma production 2-3 weeks after sepsis (similar to what has been

previously reported) (67), and that MDSCs at this time point may

not be able to further suppress this aspect of CD4+ T lymphocyte

function (22, 67).
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3.3 Emergent view of MDSCs and
transcriptomic analysis of a novel
MDSC subpopulation

After our initial steps demonstrated that identification of MDSC

subsets based on cell surface markers was potentially problematic in

sepsis, we transitioned to cell classification via gene expression for
B C

D

E F

A

FIGURE 2

Analysis via CITE-seq of differential gene expression of PMN- and M-MDSC subpopulations at different time points relative to healthy subjects.
(A) Within PMN-MDSCs, gene expression of twelve healthy subjects (baseline) was compared with septic patients at day 4 (“Day 4 ± 1”) (n=4) and
septic patients at days 14-21 (subdivided into chronic critical illness (“CCI”) (n=5) and rapid recovery (“RAP”) (n=4)). Differential expression results
relative to healthy subjects were compared for each pair of septic time points (left panel: day 4 vs CCI, middle panel: day 4 vs RAP, right panel: RAP
vs CCI). The x-axis is the absolute difference in the p-value per gene (|D p-value|) and the y-axis is the difference in log fold-change (D logFC). The
colored points represent genes that were differentially expressed in a single group or for both groups (p-value < 0.01). (B) Venn diagram of genes
with overlapping significant differential expression (p-value < 0.01). (C) Enrichment results of significant genes representing the gene ontology
biological processes. The y-axis is the negative log (base 10) of the p-value (-log10(pvalue)). (D-F) Similar to (A-C) for M-MDSCs. PMN, granulocytic;
M, monocytic.
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the remainder of our analysis. All cells were clustered based on their

transcriptomic profiles (visualized via UMAP (Figure 3A) with

relative percentages of each cell type depicted in Figure 3B). The

broad cell types were compared via expression of cell-surface

marker genes (Figure 3C) as well as percentage of spliced mRNA

between patient groups (Figure 3D). This was followed by careful

manual annotation and inspection of canonical marker genes with

identification of myeloid cells via differential expression of genes

(Figure 4). As explained by Hegde et al. (13), there is substantial

plasticity within MDSC subpopulations during sepsis which

informs the relationship between MDSCs and terminally
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differentiated effector cells (Figure 5A). Additional marker genes

were used to obtain fine-level annotation of myeloid cell types

(Figure 5B). Importantly, four distinct populations of MDSCs were

identified via this approach (Figure 5C), three of which were

consistent with classically defined E-, PMN-, and M-MDSCs (11).

A novel fourth population was identified in 60% of the late

sepsis patients who developed CCI, as well as both of the acutely

septic patients who progressed to CCI (Table 4, Figure 6A). This

MDSC subpopulation exhibited gene expression patterns that were

partially consistent with both M- and PMN-MDSCs. We thus

labeled these cells “hybrid” (H)-MDSCs. Although one of the
B
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A

FIGURE 3

UMAP embeddings of peripheral blood mononuclear cells (PBMCs). (A) Clusters are colored according to cell type. Samples from acutely septic
patients (“Day 4 ± 1”) and late sepsis patients who either developed chronic critical illness (“CCI”) or experienced rapid recovery (“RAP”). (B) Relative
proportions of cell types are depicted with respect to the each septic cohort. (C) Expression of surface markers on subtypes of PBMCs. (D) The left
panel denotes percentages of spliced mRNA in different cell types separated by patient cohort. The right panel denotes overall unspliced mRNA
across cell types by patient cohort. B, B cells; NK, natural killer cells; HSPC, hematopoietic stem and progenitor cells; pDC, plasmacytoid dendritic
cells; Day 4+/-1, acutely septic patients; CCI, chronic critical illness; RAP, rapid recovery.
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patients with CCI had a much greater number of H-MDSCs than

other patients, it should be noted no H-MDSCs were observed in

late sepsis patients who had rapidly recovered, or acutely septic

patients who progressed to rapid recovery (Table 4). One of our

acutely septic patients died within 14 days, giving us an acute sepsis

mortality rate of 25%. This is similar to previously reported

literature in septic ICU patients (68). The patient that

experienced an early death had similar proportions of MDSC

subpopulations compared to the other acutely septic patients (M-

MDSCs: 61% vs 51 ± 13%, PMN-MDSCs: 0.2% vs 0.7 ± 0.6%, E-

MDSCs: 0.08% vs 2 ± 3%, H: 0% vs 0.2 ± 0.5%).

The majority of MDSC-specific genes in septic patients were

shared by at least two of the four subpopulations (66%, n=270

genes), with 36% (n=147 genes) significantly expressed by all four

(Figure 6B, Supplementary File 2). Although the MDSC

subpopulations were fairly similar in terms of overlapping genetic

expression, we identified seven genes uniquely expressed by H-
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MDSCs: RGDP5, TBL1X, MBNL1, SERF2, ATP5F1E, MT-ND1, and

MT-ATP6 (Figure 6C). Gene expression was downregulated in

RANBP2-like and GRIP domain-containing protein 5 (RGDP5),

transducin (beta)-like 1X-linked (TBL1X), and muscleblind-like

splicing regulator 1 (MBNL1) (69, 70). TBL1X regulates

transcriptomic pathways and is upregulated in malignancy (69).

MBNL1 regulates alternative splicing and can be up- or

downregulated depending on the type of cancer (71). Genes with

upregulated expression included small EDRK-rich factor 2 (SERF2),

ATP synthase F1 subunit epsilon (ATP5F1E), NADH-ubiquinone

oxidoreductase chain 1 (MT-ND1), and mitochondrially encoded

ATP synthase membrane subunit 6 (MT-ATP6). The latter three

genes encode proteins involved in mitochondrial metabolism and

function (72).

We next sought to identify differential genetic expression

between our septic cohorts, specifically looking at differences

between MDSCs in late sepsis patients who rapidly recovered
FIGURE 4

Marker gene expression across myeloid cell types in septic patients. A dot plot shows scaled mean expression of the top seven most significant
differentially expressed genes (DEGs) in each myeloid cell type prior to fine-level annotation for MDSC subpopulations. Point radius indicates the
percentage of cells with nonzero expression, and color denotes relatively higher or lower mean expression across cell types. Testing was performed
with the Wilcoxon test, and genes were ranked by adj. p-value after Bonferroni correction. CD14+: classical monocyte, CD16+: non-classical
monocyte, MK, megakaryocyte; cDC, conventional dendritic cells; infl., inflammatory; M, monocytic; E, early; PMN, granulocytic.
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compared to those who developed CCI. For differential

expression across sepsis groups, only M-MDSCs were

sufficiently present per group for fitting a linear mixed model

with multiple subjects, as MDSCs are a relatively rare population

overall. We identified four differentially expressed genes in M-

MSDCs using this method: CD163, IER2, CTSZ, and SNX3

(Figure 6D). Expression of CD163 (73), a gene responsible for

controlling inflammation, was significantly lower in M-MDSCs in

late sepsis patients with CCI versus acutely septic patients. SNX3
Frontiers in Immunology 11
has been identified as a potential septic biomarker (74), and was

significantly upregulated in patients with CCI compared to

acutely septic patients. IER2 was significantly higher expressed

in late sepsis patients who rapidly recovered compared to acutely

septic patients. IER2 is known to be upregulated in response to

external stimuli including infection (75, 76). CTSZ expression

was significantly higher in patients with CCI compared to

patients who rapidly recovered after sepsis, and has been

previously identified as a septic marker in mice (77).
B C

A

FIGURE 5

“Emergent” view and annotation of myeloid cell subpopulations in septic patients. (A) Illustration representing the “emergent” definition of MDSCs,
incorporating the plasticity and heterogeneity of the myeloid compartment (modified from Hegde et al. (13)). Created with BioRender.com. (B) Fine
cell type annotations within cells from septic patients that were broadly annotated as monocytes. The x-axis includes the different myeloid cell
subtypes. The y-axis includes genes which were most highly expressed by each cell subtype. The scaled mean expression is denoted by the color of
the dots, and the percentages of cells expressing the genes are represented by the size of the dots. (C) UMAP plots of cells of the four distinct
subpopulations of MDSCs stratified by acutely septic patients (“Day 4 ± 1”) (n=4) and late sepsis, late sepsis patients who developed chronic critical
illness (“CCI”) (n=5) or experienced rapid recovery (“RAP”) (n=4). This includes cells consistent with early (E-) MDSCs, granulocytic (PMN-) MDSCs,
monocytic (M-) MDSCs, and a population of cells with characteristics of both M- and PMN-MDSCs, labeled hybrid (H-) MDSCs. MK, megakaryocyte;
cDC, conventional dendritic cell; infl., inflammatory.
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TABLE 4 H-MDSC cell counts by patient and associated outcome after sepsis.

Patient # Patient Classification Eventual classification if acute sepsis H-MDSC Cell Counts

1 Acute Sepsis Early death 0

2 Acute Sepsis Rapid recovery 0

3 Acute Sepsis CCI 1

4 Acute Sepsis CCI 8

5 Rapid recovery 0

6 Rapid recovery 0

7 Rapid recovery 0

8 Rapid recovery 0

9 CCI 552

10 CCI 6

11 CCI 1

12 CCI 0

13 CCI 0
F
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H-MDSC cell counts as determined by manual annotation. If blood samples were taken from acutely septic patients at day 4, then their eventual sepsis classification has been recorded. H, hybrid;
CCI, chronic critical illness.
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FIGURE 6

Characterizing data-driven subpopulations of MDSCs. (A) Relative frequencies of MDSCs by subpopulation. Percent of cells defined by
transcriptomic analysis and gene expression, rather than cell surface markers. Grouped by acutely septic patients (“Day 4 ± 1”) (n=4) and late sepsis
patients who developed chronic critical illness (“CCI”) (n=5) or experienced rapid recovery (“RAP”) (n=4). (B) Diagram of significant marker genes for
each MDSC subpopulation were determined in the pooled septic patients. (C) UMAP plots of all MDSCs are shown for the seven genes that were
unique markers of gene expression in the H-MDSC subpopulation compared to all other MDSCs. Scaled expression represented by heat map of
each gene. (D) Differential expression testing between septic groups in M-MDSCs revealed four genes that were significant. y-axis is log (expression
+1). * = p<0.05, *** = p<0.001, obtained from the mixed model analysis. M, monocytic; PMN, granulocytic; E, early; H, hybrid.
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The plasticity of the H-MDSC subpopulation is evident in the

increased per-cell proportion of unspliced mRNA, indicating more

active transcription. Only E-MDSCs had a higher proportion of

unspliced mRNA in the myeloid compartment (Figure 7A). To

examine factors driving cellular activities, we identified genes with a

high average proportion of unspliced mRNA within each cell

subpopulation and performed enrichment analysis to identify
Frontiers in Immunology 13
relevant biological processes. Rather than focusing on individual

ontologies, we used a network-based approach to cluster similar

significantly enriched biological functions for each MDSC

subpopulation (Figures 7B-E) (52). Not surprisingly, actively

transcribed genes in all MDSC subpopulations were enriched for

activities pertaining to ‘immune activation.’ While PMN- and M-

MDSCs had more biologically distinct functions, H-MDSCs shared
B
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FIGURE 7

Larger proportions of unspliced mRNA in E- and H- MDSCs. (A) Distribution of unspliced mRNA percent across myeloid cell types. (B-E) Gene-set
enrichment analysis of genes having high proportions of unspliced mRNA within each MDSC subpopulation. The left panel shows the gene-set
network and clustering of significantly enriched biological processes. The right panels show word clouds for each biologically similar cluster (a
general cluster of high-level biological processes was present for each cell-type and omitted). E, early; H, hybrid; M, monocytic; PMN, granulocytic;
CD16+, non-classical monocyte; CD14+, classical monocyte; MK, megakaryocyte; cDC, conventional dendritic cell; infl., inflammatory.
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enrichment with both cell types, specifically pertaining to

pathophysiological septic-related processes including

‘organonitrogen’ and phosphorus-related processes.
3.4 Determination of differentiation
pathways and cell lineage in septic cohorts

Having described the MDSC subpopulations, we next set out to

incorporate these findings into differentiation pathways of the

myeloid compartment in septic patients. Quantifying

transcriptional kinetics via RNA velocity estimation revealed

complex, fluid relationships between MDSC phenotypes

(Figure 8A). As expected, M-MDSCs appeared to serve as the

bridge between early immunosuppressive cell types and mature

myeloid cells such as monocytes and cDCs (Figure 8B). As our

analysis was based on PBMCs, it was not possible to compare the

transition from MDSCs to mature granulocytes (PMNs).

Estimating the graph connectivity between monocyte-lineage cell

types allowed us to quantify the strength of each undirected

relationship, and showed that MDSC subpopulations are both

highly interconnected and much more internally similar to each

other than they are to populations of terminally-differentiated

myeloid cells (Figures 8B, C).

After analyzing velocity-inferred cell state transitions

performed with CellRank, all E-, PMN-, and the vast majority of

M-MDSCs cell states were classified as progenitor-like or

transitioning-like (Figure 8D). Only H-MDSCs contained a

significant proportion of cells in a plasticity-like state with high
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probabilities for both initial and terminal cell states (in which cells

remain H-MDSCs) (Figure 8E) (57). Supporting this, significant

variation was observed in the likelihood of an H-MDSC staying an

H-MDSC when estimated by absorption probabilities from

CellRank, with a mean (SD) probability of 0.33 (0.29) (Figure 8F).

No other cell types were likely to end up as H-MDSCs. To better

characterize the biology underlying commitment to the H-MDSC

cell fate, lineage driver genes (genes significantly correlated with the

probability of becoming an H-MDSC) were identified by computing

Spearman correlations of expression with absorption probabilities.

Highly correlated genes were diverse in function and included

inflammation-associated genes such as S100A8, -9, and -12, along

with immunoregulatory genes ALOX5A, RETN, and IL1R2.

Next, we investigated differences in cell states across sepsis

groups for each MDSC subpopulation. As H-MDSCs were not

observed in sepsis patients who experienced rapid recovery, they

were not included for this analysis. M-MDSCs were highly

consistent between septic patients at day 4 and days 14-21 in

terms of their cell states and kinetics (Figure 9A). Interestingly,

PMN-MDSCs displayed the most heterogeneity, specifically in late

sepsis patients with CCI compared to both day 4 septic patients and

late sepsis patients who rapidly recovered. PMN-MDSCs in late

sepsis patients who developed CCI had significantly slower

differentiation speed, higher cell state stability, and lower initial

state probabilities (Figure 9B). This is consistent with PMN-MDSCs

persisting in CCI compared to patients who rapidly recover after

sepsis. E-MDSCs in late sepsis patients with CCI also showed

significantly lower differentiation progression than acutely septic

patients or late sepsis patients who rapidly recovered, along with a
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FIGURE 8

Topology of myeloid differentiation and plasticity in septic patients. (A) Myeloid cell smoothed RNA velocity estimates projected onto UMAP. Arrows
represent differentiation potential. (B) Undirected partition-based graph abstraction (PAGA) of myeloid cell types. Line width/color between cell types
denote relationship strength. Nodes colored by cell type. (C) Arrow directions represent differentiation potential. Arrow widths denote strength of
connectivities between cell types. Arrow manually added indicating PMN-MDSC differentiation into granulocytes. (D) Cell state probabilities shown
together for M-, PMN-, and E-MDSCs with all other cells in gray. (E) Similar to (D) with H-MDSCs in red. (F) H-MDSC cell fate absorption
probabilities. cDC, conventional dendritic cell; infl., inflammatory; CD16+, non-classical monocyte; CD14+, classical monocyte; M, monocytic; H,
hybrid; PMN, granulocytic; E, early.
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higher degree of cell commitment along the differentiation

trajectory compared to acutely septic patients (Figure 9C).

As previously stated, CD66b+-isolated PBMCs met the criteria

of MDSCs in their ability to suppress either T-lymphocyte cytokine/

chemokine production or T-lymphocyte proliferation ex vivo

(Figures 5, 6) (4, 16), although CD66b+-isolated PBMCs were not

identical in their suppressive activity from acutely septic patients or

late time periods after severe infection. Interestingly, whether using

cell-surface markers or transcriptomic analysis of the current

dataset, differential expression of several key MDSC genes

published in the cancer literature did not reach significance and/

or were modestly expressed in septic individuals (Figure 10). For

example, although there was upregulation of genes in the S100A and

MMP superfamilies, differential expression of ARG1, IL-10, NOS2,

and TGFB1 did not reach significance (although transcripts from all

genes were detected).
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Since their delineation by Gabrilovich in 2007 (78), MDSCs

have been reported in multiple inflammatory diseases in addition to

cancer (79). Recently, Hedge et al. described significant

heterogeneity among these immune suppressive cells in the

myeloid compartment (13). They stated that historically we have

had a ‘monolithic view’ or definition of MDSCs, and that a more

complex ‘emergent view’ is required to better understand these

leukocytes (13). In this report, we have taken both conceptual

approaches (monolithic and emergent) to analyze MDSCs in one of

the first cohorts to compare patients with poor (CCI) versus good

(rapid recovery) clinical outcomes after surgical sepsis. Importantly,

all analyses revealed significant alterations in the evolution of

MDSCs after sepsis (i.e., time points) as well as significant

differences in the MDSC subpopulations taken from sepsis
B

C

A

FIGURE 9

Differences in PMN-, E-, and M-MDSCs across septic time-points. (A) Cell dynamic parameters estimated from CellRank were compared across cells
from septic patients at Day 4 ± 1 (acute sepsis) (n=4), patients at day 14-21 who rapidly recovered (“RAP”) (n=4), and patients at day 14-21 who
developed chronic critical illness (“CCI”) (n=5) in M-MDSCs. (B, C) Similar to (A) for PMN-MDSCs and E-MDSCs, respectively. Significant p-values (<
0.05) were obtained from fitting a linear mixed model. E, early; PMN, granulocytic; H, hybrid; M, monocytic.
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survivors who rapidly recovered or developed CCI. In classifying

MDSCs via gene expression and transcriptomic analysis, we have

also identified a novel MDSC subpopulation (H-MDSCs) present

only in sepsis survivors with CCI and acutely septic patients who

progressed to CCI. Finally, even though we have demonstrated in

this work and previously (16) that these cells suppressed

lymphocyte proliferation to antigenic stimulation (similar to

oncologic processes), the MDSCs identified after sepsis do not

significantly express many of the well-described genes key to

MDSC immunosuppression in other pathologies, most commonly

cancer (80).

The study of MDSCs has expanded dramatically over the past

decade. However, the overwhelming majority of these studies

performed using blood samples are from cancer patients; only

five studies focus on systemic infection and sepsis (8, 14, 81–83).

Although MDSCs are commonly detected in different inflammatory

pathologies, there is a gap in research regarding this cell type in the

infected or post-infected host. Data are increasingly illustrating the

impact of a dysregulated myeloid compartment in patients with

poor long-term outcomes, including COVID-19 (84). MDSCs have

been identified in these patients, especially those with more severe

disease or poor outcomes (85, 86), and are being considered as a

target for immunotherapy (87).

MDSCs are challenging to define and characterize. As such, cell

surface markers and genes historically used to identify MDSC

subpopulations were amassed from multiple different resources,

predominantly from the cancer literature. Surface markers differ

between humans and other species, so only human studies could be
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considered (88, 89). Based on previous work, we began by isolating

CD66b+ PBMCs as a means to obtain PMN-MDSCs for functional

analysis in septic patients and healthy subjects (10). Interestingly,

although we found that the purity of the isolation of CD66b+

leukocytes (Figure S1) was very good, and even though CD66b is

considered a marker for granulocytes (90), we identified that the

CD66b+ population consisted of a mixture of PMN- and M-MDSCs

(Figure S2). Although there can be populations of MDSCs that have

different levels of both CD14 or CD15 cell surface expression (91),

these positively isolated CD66b+ PBMCs were a combination of

CD14+CD15-CD66blow (M-MDSC) and CD15+CD66bhigh (PMN-

MDSC) cells. Our CITE-seq data confirmed that CEACAM8

expression was present in multiple myeloid cell populations. This

variable MDSC cell surface expression of CD66b in septic patients

appears similar to a cell type described in 1998 to define

asynchronous myelopoiesis in malignant myeloid disorders (92).

This highlights some of the difficulty regarding the use of cell

surface phenotypes to classify MDSC subtypes after sepsis.

Of note, MDSCs are continuing to be described in certain

patient populations, including sepsis, through cell surface markers

only (93, 94). Although these data may be valid, our analysis would

indicate that the traditional “monolithic” definition of MDSCs may

not adequately define these plastic, transitory cell populations in

critically ill patients with sepsis. Our results do not refute any

currently accepted definitions of human MDSCs (including by cell

marker phenotype) (10), but rather illustrate the complexity of

the myelodysplasia that occurs after human sepsis, and

the shortcomings of cell surface markers alone to identify
FIGURE 10

Canonical MDSC genes in immunosuppressive cell subpopulations in septic patients. Heatmap of scaled expression of canonical genes identified in
the current MDSC literature. Cells in the four identified MDSC subpopulations are denoted in the colored key. Genes were arranged using
hierarchical clustering with complete linkage. Patient groups include acutely septic patients (“Day 4 ± 1”) (n=4) and late sepsis patients who
developed chronic critical illness (“CCI”) (n=5) or experienced rapid recovery (“RAP”) (n=4). M, monocytic; PMN, granulocytic; E, early; H, hybrid.
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myeloidcell types after severe infection. In addition, other

immunosuppressive cells exist in the PBMCs of whole blood from

septic human patients, specifically low-density PMNs and

exhausted monocytes (95, 96). This work, and our current results,

indicate an immediate compelling need for more refined and

nuanced descriptions and definitions of the myeloid compartment

after sepsis.

Veglia et al. previously described transcriptomic differences

between MDSCs and terminally differentiated monocytes and

neutrophils (10). Additional guidelines for characterization and

nomenclature of MDSCs based on cell surface phenotypes have

been proposed, although the same central resource does not appear

to exist for single-cell transcriptomic signatures of different MDSC

subpopulations (11, 97). However, specific genes have been

described in the literature. In cancer, STAT3 is important for the

T-cell suppression exerted by MDSCs (98). STAT1, -5, and -6 are

also important in the regulation of arginase activity, although this

may be more pertinent for cancer than sepsis based on the subdued

level of ARG1 expression in MDSCs identified from our septic

patients (Figure 10) (98). It should also be noted that different

subpopulations than the canonical PMN- and M-MDSCs have been

previously described, including Eo-MDSCs (with eosinophilic

characteristics) and fibrocystic MDSCs (99, 100).

A population of H-MDSCs was found when using the

“emergent” classification system of MDSCs via genetic expression

in order to classify cell types (Figure 5C). All four MDSC

subpopulations appeared strongly interrelated and our data

indicated that these cells are likely plastic in their myeloid state

after sepsis (Figure 6B) (13). As to why we classified these cells as

unique from previously defined MDSC subpopulations, H-MDSCs

express many similar genes as PMN-MDSCs, although the average

expression of these genes tends to be lower, such as with IL1R2,

CST7 and MMP8/9. H-MDSCs also share substantial overlap with

M-MDSCs, with higher expression in sepsis of genes like S100A8/9

and DNAH17 (Figure 10). H-MDSCs may be an intermediary

between MDSC subpopulations, and their presence in CCI

further reveals the plasticity of myeloid differentiation in sepsis

(Figure 8). Although MDSC subpopulations share a similar

phenotype after sepsis, their function and transcriptomic patterns

are distinct. Thus, after sepsis, ‘a MDSC is not a MDSC,’ and there is

a unique expression of myelodysplasia after severe infection

depending on both host and outcome. These data support the

concept that targeted therapeutic strategies will be required within

these sepsis phenotypes given the heterogenic response of the

myeloid compartment to sepsis.

This study was limited by the number of patients in each study

arm; however, our sample size estimates were similar to past

publications in the field (14, 64). This is also a single-institution

study in which treatment of sepsis is standardized but may differ

compared to other institutions. Additionally, we did not stratify

septic patients by septic source. Future directions include

stratification of our patient cohorts by infection source and

demographic information such as age, sex, and ethnicity/race to

determine confounding factors which may have affected our

analysis by different clinical outcomes after sepsis.
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In summary, we have determined that the post-septic myeloid

compartment is complex and includes a unique MDSC

subpopulation that has not been previously described.

Importantly, the heterogeneous response of the blood myeloid

compartment to sepsis varies based on time and clinical outcome

(CCI vs rapid recovery) and demonstrates that cell surface markers

may not be a reliable indicator of circulating myeloid cell types after

sepsis. Sepsis, like many other pathologies, requires a precision/

personalized medical approach in order to improve host outcomes

(22). Our work reveals specific cell types and pathways that could be

modified in patients at risk of poor outcomes after sepsis (CCI) to

convert them to a phenotype of rapid recovery.
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