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The secretome of macrophages
has a differential impact
on spinal cord injury
recovery according to
the polarization protocol
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Inês M. Pereira1,2, Nı́dia de Sousa1,2, Jorge R. Cibrão1,2,
Aline M. Fernandes1,2, Sofia C. Serra1,2, Luı́s A. Rocha1,2,
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Bruno Manadas3, António J. Salgado1,2, Ramiro D. Almeida3,4

and Nuno A. Silva1,2*

1Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho,
Braga, Portugal, 2ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal, 3CNC—
Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal, 4iBiMED-
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Introduction: The inflammatory response after spinal cord injury (SCI) is an

important contributor to secondary damage. Infiltrating macrophages can

acquire a spectrum of activation states, however, the microenvironment at the

SCI site favors macrophage polarization into a pro-inflammatory phenotype,

which is one of the reasons why macrophage transplantation has failed.

Methods: In this study, we investigated the therapeutic potential of the

macrophage secretome for SCI recovery. We investigated the effect of the

secretome in vitro using peripheral and CNS-derived neurons and human

neural stem cells. Moreover, we perform a pre-clinical trial using a SCI

compression mice model and analyzed the recovery of motor, sensory and

autonomic functions. Instead of transplanting the cells, we injected the paracrine

factors and extracellular vesicles that they secrete, avoiding the loss of the

phenotype of the transplanted cells due to local environmental cues.

Results:We demonstrated that different macrophage phenotypes have a distinct

effect on neuronal growth and survival, namely, the alternative activation with IL-

10 and TGF-b1 (M(IL-10+TGF-b1)) promotes significant axonal regeneration. We

also observed that systemic injection of soluble factors and extracellular vesicles

derived from M(IL-10+TGF-b1) macrophages promotes significant functional

recovery after compressive SCI and leads to higher survival of spinal cord

neurons. Additionally, the M(IL-10+TGF-b1) secretome supported the recovery

of bladder function and decreased microglial activation, astrogliosis and fibrotic

scar in the spinal cord. Proteomic analysis of the M(IL-10+TGF-b1)-derived
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secretome identified clusters of proteins involved in axon extension, dendritic

spine maintenance, cell polarity establishment, and regulation of

astrocytic activation.

Discussion:Overall, our results demonstrated that macrophages-derived soluble

factors and extracellular vesicles might be a promising therapy for SCI with

possible clinical applications.
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Background

Spinal cord injury (SCI) is a devastating neurological disorder

that strongly affects the physiological, psychological, and social

behaviors of affected people. There is an urgent need to develop

new therapeutic strategies for SCI repair (1). The spinal cord

trauma, known as “primary injury”, triggers a cascade of events,

termed “secondary injury”, leading to further neurological damage

and contributing to regeneration failure after SCI (2). These include

glutamate excitotoxicity, a potent and dysfunctional inflammatory

response, release of molecules that inhibit axonal growth, and

formation of a glial scar. From all these events, the defective

immune response is one of the most important players in SCI

pathophysiology. Circulating monocytes infiltrate the spinal cord

and differentiate into macrophages in a multiphasic manner, where

they should perform multiple functions involved in the wound

healing process (3). It was recently demonstrated that the spleen

releases the first monocytes that infiltrate the injured spinal cord

(4). Moreover, Swirsky et al. characterized the splenic monocyte

reservoir as a major source of the pro-inflammatory subtype during

acute injury (5).

Macrophages can acquire a diverse spectrum of activation states

with various functionalities. Macrophage activation can range from

the most pro-inflammatory or classically activated phenotype to the

anti-inflammatory/pro-repair or alternatively activated phenotype.

Pro-inflammatory macrophages are important during the acute

response to trauma and facilitate innate immunity to remove

wound debris from the injury site. These macrophages release

reactive oxygen species (ROS) and pro-inflammatory cytokines,

such as IL-1b and TNF-a (6). Macrophages can acquire this

phenotype in vitro by stimulating naïve macrophages with

lipopolysaccharide (LPS) and IFN-g (commonly known as M1).

In contrast, alternatively activated macrophages secrete

immunosuppressive cytokines, growth factors, and upregulate

ECM components (e.g., IL-10, TGF-b1, and IGF-1) (7, 8). These

macrophages exhibit tissue repair properties by promoting cell

proliferation and maturation, tissue remodeling and stabilization,

and adjusting and resolving inflammatory processes. These tasks are

not performed by a single type of alternatively activated
02
macrophage. Instead, they are subdivided into four distinct

subtypes (commonly known as M2a, M2b, M2c, and M2d) that

differ in cell surface markers, secreted cytokines, and biological

functions (6). Herein, we focus on two alternatively activated

macrophages, the M2a and M2c. The first can be obtained in vitro

by stimulating naïve macrophages with IL-4 and IL-13, and their

function is associated with a decrease in the inflammatory response,

promotion of cell proliferation and migration, and facilitation of

apoptosis. After SCI these cells fail to activate an appropriate pro-

regenerative response (6). Whereas, the M2c macrophages have

functions related to resolving inflammation, ECM synthesis, and

promoting tissue maturation/repair. These cells can be obtained by

activating naïve macrophages with TGF-b1 and IL-10. The

significance of M2c cells in SCI repair remains largely unexplored

because these cells do not populate the lesion site, impeding the

initiation of the remodeling phase (6). Overall, the immune

response at the initial stages after SCI resembles that in non-CNS

injured tissues (9). However, pro-inflammatory macrophages

quickly become the predominant cell type at the injury site (10),

and pro-repair macrophages are unable to populate the injured

tissue. The pro-inflammatory response is associated with fibrosis,

oxidative damage, and neurodegeneration, contributing to wound

healing failure (11).

Previous studies transplanted alternatively activated

macrophages into the injured spinal cord to promote tissue repair

and regeneration (12, 13). This therapeutic approach reached

clinical testing, but failed to show any therapeutic effects (14).

The reason behind this clinical trial failure may lie in the spinal cord

microenvironment after injury. Indeed, a previous study reported

that bone marrow-derived macrophages polarized in vitro by IL-4

failed to retain their typical markers when transplanted into the

injured spinal cord (10). Moreover, it was demonstrated that

intracellular accumulation of iron by macrophages induces a

rapid switch from a pro-regenerative to a pro-inflammatory

phenotype in spinal cord tissue (15). Thus, it is important to find

alternative approaches for M2 macrophage transplantation. A

possible alternative is to administer the secretome of macrophages

instead of transplanting them into the SCI microenvironment. The

secretome can be defined as the soluble factors, lipids, and
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extracellular vesicles secreted by a cell, tissue, or organism into the

extracellular space under defined time and conditions (16).

Herein, we explored whether systemic injections of secretome

derived from different macrophage phenotypes have a therapeutic

effect after SCI.
Materials and methods

Macrophages isolation and culture

Macrophages were obtained by differentiating monocytes

extracted from the mouse spleens. C57BL/6 mice (~8 weeks old)

were sacrificed by cervical dislocation, and their spleen was

removed under aseptic conditions and kept on ice-cold VLE-

RPMI 1640 (Merck KGaA) with 1% (v/v) penicillin-streptomycin

(pen/strep, Gibco). The spleen was mechanically dissociated using

two microscope slides until no major fragments were observed. The

solution was centrifuged at 1200 rpm for 7 min and the supernatant

was discarded. Ammonium-chloride-potassium (ACK) lysis

solution was used to lyse erythrocytes (2mL/spleen). After adding

HBSS (8mL/spleen, Gibco), centrifugation was performed, and the

cell pellet was resuspended in RPMI for hematocytomer cell

counting. Cells were plated at a density of 1 million cells/cm2 in

RPMI medium 1% (v/v) pen/strep (Gibco) for 3 h. The monocytes

(≈10% of the total cells) are the first to adhere under serum

starvation. After this time, the non-adherent cells were discarded

and the medium was replaced by RPMI with 10% (v/v) fetal bovine

serum (FBS, Millipore), 1% (v/v) pen/strep, and 50 ng/mL of

macrophage colony-stimulating factor (M-CSF, Biolegend) to

differentiate monocytes into macrophages. The cells were

maintained at 37°C and 5% (v/v) CO2 for a minimum of 7 days,

with medium exchanges every 3/4 days. To achieve a pro-

inflammatory phenotype, macrophages were stimulated with IFN-

g (20 ng/mL, Peprotech) and LPS (100 ng/mL, Sigma) for 24 h. One

pro-regenerative phenotype was achieved by stimulation with IL-4

(20 ng/mL, Biolegend) and IL-13 (20 ng/mL, Peprotech), and the

other phenotype was obtained with IL-10 (20 ng/mL, Peprotech)

and TGF-b1 (20ng/mL, R&D Systems) stimulation. All

polarizations were performed in RPMI with 10% FBS, 1% (v/v)

pen/strep and 50 ng/mL of M-CSF.

The macrophage secretome was collected after each

polarization. Briefly, cells were washed five times with PBS

without Ca2+ and Mg2+ (Merck, KGaA), followed by two washes

with RPMI 1% (v/v) pen/strep. After a 12-hour incubation with 16

mL (213ul/cm2) of basal medium (RPMI) with 1% (v/v) pen/strep,

the medium was collected, centrifuged at 1200 rpm for 5 min, and

the supernatant was snap frozen with liquid nitrogen and stored at

-80°C.
qPCR

Macrophage mRNA levels were analyzed using qPCR by

extracting RNA from cells grown in T25 flasks. Briefly, 6 h after

polarization, TripleXtractor (Grisp) was added to the flasks for 5
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min. RNA was extracted and diluted in GRS PCR Grade Water

(Grisp) following the manufacturer’s instructions. cDNA was

synthesized from 1 μg of RNA using the Xpert cDNA Synthesis

Supermix (with gDNA eraser, Grisp) protocol. qPCR was

performed on these samples using Xpert Fast SYBR blue

mastermix (Grisp) with ROX reference dye. After mixing the

mastermix with the respective primers (500 nM) and the cDNA

on a PCR plate (Nerbe Plus), the reaction was performed on a 7500

Fast Real-Time PCR system (Applied Biosystems). The

amplification was performed by heating at 95°C for 2 minutes

succeeded by 40 cycles at 95°C for 5 s and 30 s at 60°C. Melt curve

analysis was used to assess the specificity of the gene amplification.

The primers used are listed in Table 1. The target genes were

normalized to three reference genes: Gadph, Hprt and 18s. Fold-

change levels were calculated using the 2-DDct method relative to

non-stimulated macrophages and normalized to the reference

genes (17).
Axonal growth assay – dorsal root ganglia

Dorsal root ganglia (DRG) explants were used to study the

impact of splenic macrophages on axonal growth. This assay was

accomplished following a well-established protocol (18, 19). Briefly,

DRG from thoracic regions of neonatal Wistar Han rat pups (P5-7)

were removed and placed on ice-cold HBSS with 1% (v/v) pen/strep.

Peripheral nerves attached to the DRG were removed, and the

cleaned DRG were used. Two assays were performed. The first

consisted of placing the DRG on top of a collagen extracellular

matrix gel (3D culture), which was on top of polarized macrophages.

Collagen gels were prepared by combining rat tail collagen type I

(Corning) at a final concentration of 89.6% (v/v) with 10% (v/v)

Dulbecco Modified Eagle Medium (DMEM, Gibco) 10x and 0.4%
TABLE 1 Primers for semi-quantitative Real Time-PCR.

Gene Forward Reverse

GAPDH GGG CCC ACT TGA AGG
GTG GA

TGG ACT GTG GTC ATG
AGC CCT T

HPRT GCT GGT GAA AAG GAC
CTC T

CAC AGG ACT AGA ACA
CCT GC

18s GTA ACC CGT TGA ACC
CCA TT

CCA TCC AAT CGG TAG
TAG CG

iNOS CTC GGA GGT TCA CCT
CAC TGT

GCT GGA AGC CAC TGA
CAC TT

TNF-a GCC ACC ACG CTC TTC
TGT CT

TGA GGG TCT GGG CCA
TAG AAC

EGR2 TTG ACC AGA TGA ACG
GAG TG

CCA GAG AGG AGG TGG
AAG TG

IRF4 ACA GGA GCT GGA GGG
ATT ATG

CTG TCA CCT GGC AAC
CAT TT

ARG1 GTG TAC ATT GGC TTG
CGA GA

GGT CTC TTC CAT CAC
CTT GC

HIF1-a GCA CTA GAC AAA GTT CAC
CTG AGA

CGC TAT CCA CAT CAA
AGC AA
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(v/v) of sodium bicarbonate (7.5% (w/v), Sigma). After forming 30

uL gel droplets at 37°C and 5% (v/v) CO2 for a minimum of 90 min,

the gels were transferred to the macrophages’ wells. The other assay

consisted of direct placement of the DRG on top of polarized

macrophages to study direct cellular interactions (2D culture).

Both assays were performed in Neurobasal (Gibco) medium

supplemented with 2% (v/v) B27 (Gibco), 2 mM L-glutamine

(Invitrogen), 6 mg/mL D-glucose (Sigma), 1% (v/v) pen/strep, and

50 ng/mL of M-CSF with medium changes every two days and

maintained at 37°C and 5% (v/v) CO2 for four (3D) or three (2D)

days. The cells were then fixed and immunocytochemistry was

performed. The area occupied by the axons in each dorsal root

ganglia explant was calculated using the ImageJ (NIH) plugin

Neurite-J. Using confocal microscopy, the entire area with

positive staining for Neurofilament was acquired. Then, the image

was automatically translated to 8 bits and a binary mask was created

with the aid of the “Analysis Particles” function which enables the

correct segmentation of axonal structures based on an intensity-

threshold image coupled with morphological parameters such as

structure size and area. The mask generated can then be added as an

input to the Neurite-J plugin.
Axonal growth assay –CNS-derived
neuronal culture

Cortical neurons were dissected and isolated from Wistar rats

E17 embryos as described previously (20). To physically and

fluidically separate distal axons from cell bodies, neurons were

plated in microfluidic chambers as described previously (21).

Microfluidic chambers were assembled onto an ibiTreat low wall

50 mm μ-Dish (ibidi) and coated with poly-D-lysine (PDL) 0.1 mg/

mL overnight at 37°C and 2 μg/mL laminin for 2 h at 37°C. Cortical

neurons were plated in the somal compartment of microfluidic

chambers at a density of 50,000 cells per chamber. Cells were

maintained in a humidified 5% CO2 incubator at 37°C and treated

with 10 μM 5-Fluoro-2′-deoxyuridine (5’-FDU) on day 4 to inhibit

glial cell proliferation.

On day 5, distal axons were submitted to a 20-hour starving and

after which axons were treated with M(IL-10+TGF-b1)-derived

secretome or control medium. 25 μl of secretome was locally

applied to the axonal compartment of the microfluidic chamber

for 14 h. Neurobasal medium with 1% penicillin/streptomycin was

used for control cultures. A higher volume of culture medium was

maintained in the somal compartment to ensure fluidic isolation of

the axonal compartment and, therefore, restrict the treatment to

distal axons. After 14 h of local treatment, population-wide axonal

growth was assessed by live-cell imaging microscopy.
Neurospheres derived from human
induced neural stem cells

Neurospheres were generated by culturing human induced

pluripotent stem cells (hiPSCs) in vitronectin XF™ treated plates

with mTeSR 1 (both from Stem Cell Technology). After 7 days,
Frontiers in Immunology 04
spontaneous differentiation was initiated by the generation of

Embryoid Bodies (EBs). For that, cells were detached by using

TrypLE™ Express Enzyme (ThermoFisher) and plate into low

attachment 96 well plate in Advanced DMEM/12 supplemented

with 15% (v/v) knockout serum replacement (KSR,

ThermoFischer), 1% (v/v) non-essential amino acids (NEAA,

ThermoFischer), 2% (v/v) glutamax (ThermoFischer), 2-

mercaptoethanol (55 mM, ThermoFischer), and Y-27632 (5 mM,

Rho-associated protein kinase inhibitor, StemCell Technology). The

hole medium was changed every other day. On day 6, 6-9 EBs were

transferred from 96 well plates to non-adherent plates (35 mm) and

were cultured in Advanced DMEM/12 supplemented with 1% (v/v)

non-essential amino acids, 1% (v/v) glutamax, 1% (v/v) of N2

supplement (ThermoFischer), and heparin (1mg/mL, Sigma-

Aldrich) to induce neural differentiation. After 5 days, 6-9

neurospheres were plated into 24 well plates, pre-treated with

poly-D-lysin/laminin (76 mg/mL, 20 mg/mL, respectively), and

cultured in differentiation media: DMEM/F12: Neurobasal (1:1,

both from ThermoFisher), 0.5% of N2 supplement, 1% (v/v)

NEAA, 1% (v/v) glutamax, 55 mM 2-mercaptoethanol, 2% (v/v)

B27 supplement (ThermoFischer), and insulin (2.5 mg/mL, Sigma).

After 2 days, the culture medium was replaced by 500 μl of

secretome. Cells were incubated for 2 days and fixed for further

analysis using immunofluorescence.
Immunocytochemistry

Cells/DRG/Neurospheres were first incubated with 4% (v/v) PFA

for 20 min, and then permeabilized with Triton-X100 0.2% diluted in

PBS (PBS-T) for 5 minutes, at room temperature (RT). 10% FBS

(Millipore) in PBS was used as a blocking solution for 1 h, followed by

the addition of the primary antibodies for 2 h. For macrophages was

used the rat anti-CD11b (1:100, BioLegend) and rabbit anti-iNOS

(1:100, Abcam), for DRGS the mouse anti-neurofilament (1:200,

Millipore) and for neurospheres the Anti-bIII Tubulin (1:100, mouse

– Millipore). After washing, Alexa Fluor 488 goat anti-rat (1:1000,

Invitrogen) and Alexa Fluor 594 goat anti-rabbit (1:1000, Invitrogen)

secondary antibodies were added for another hour, diluted in

blocking solution. Finally, the samples were counterstained with

40,6-diamidino-2-phenylindoledihydrochloride (DAPI) (1 μg/mL,

Sigma) for 10 min and in the case of DRGs with and Phalloidin

(1:500, Sigma) for 45 min at RT. Images were obtained using a

confocal microscope (Olympus FV1000) for 3D cultures and an

Olympus IX81 fluorescence microscope for 2D cultures. To calculate

the axonal area, maximum distance reached by axons, and axonal

arborization, ImageJ software was used, as previously described (22).
Live imaging of CNS-derived neurons

Live imaging was performed using a Zeiss LSM 880 microscope

with an Airyscan and a Plan-Apo Chromat 20x/0.8 Ph2 objective.

During live imaging cells were maintained in a 37°C and 5% CO2

environment. A tiled phase-contrast image was obtained for each
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condition immediately before treatment (t=0 h) and after 6, 10 and

14 hours of treatment.

Images were processed and quantified using ImageJ software

version 1.51n. A region of interest (ROI) was chosen to encompass

the entire length of the axonal compartment, and the same size ROI

was used for all samples. The Feature J Hessian plugin was applied

with the following settings: largest eigenvalue of the Hessian Tensor,

smoothing scale = 2.0). The Local Threshold was adjusted to

include all axons in the axonal network. A binary image was

generated, and the Skeletonize (2D/3D) plugin was used to obtain

a skeletonized image of the axonal network. Finally, the Analyze

Skeleton (2D/3D) was applied with the following settings: prune

cycle method=none, show detailed info. A Branch Information

table was generated using the software, and the sum of all branch

lengths was further calculated, giving the population-wide total

axonal length. The results were normalized for t=0 under the

respective treatment conditions.
Spinal cord injury surgery

All experiments were performed after obtaining consent from

the ethical Subcommittee in Life and Health Sciences (SECVS;

ID:018/2019, University of Minho) and were conducted in

accordance with the local regulations on animal care and

experimentation (European Union Directive 2010/63/EU). The

ARRIVE guidelines for reporting animal research have been

followed (23). C57BL/6J mice (Charles River) were maintained

under sterile conditions and in light, humidity, and temperature-

controlled rooms. Food and water were provided ad libitum.

Animals were handled for 1 week prior to SCI surgery.

Spinal cord surgery was performed as previously described (24).

Briefly, 42 C57BL/6J adult female mice (10-15 weeks age) were used

in this study. Anesthesia was delivered intraperitoneally (ip) using

Imalgene (ketamine, 75 mg/kg, Richter Pharma AG) and Dormitor

(medetomidine, 1 mg/kg, Pfizer). Mice were shaved and disinfected

with chlorohexidine. A dorsal midline incision was then made at the

thoracic level (T5-T12). The paravertebral muscles were retracted,

and the spinal process and laminar arc of T8-T9 were removed to

expose the spinal cord. The spinal cord was compressed using fine

forceps for 5 seconds. The wound was closed with 9 mm autoclip

(Braintree Scientific), and anesthesia was reverted with Antisedan

(atipamezole, Orion Corporation) applied subcutaneously. The

injured animals were randomly divided into four experimental

groups: 1) M(INF-g+LPS) secretome (n=10); 2) M(IL-4+IL-13)

secretome (n=11), 3) M(IL-10+TGF-b1) secretome (n=10), and 4)

vehicle (RPMI medium with 1% pen/strep, n=11). Treatment was

delivered by intraperitoneal injections (500 μl), and the first

injections were administered 3, 6, 9, 14 days post-injury and once

a week afterwards. Eight animals did not survive the

experimental protocol.

In a separate cohort of animals, we employed the same protocol

to induce spinal cord injury, and the same method and schedule to

deliver the treatment. However, this time, we utilized (C57BL/6J x

CBA)F1 mice expressing the Thy1-GFP transgene. Following spinal

cord compression, the injured animals were randomly assigned to
Frontiers in Immunology 05
two experimental groups: 1) M(IL-10+TGF-b1) secretome (n=3), and 2)

vehicle (RPMI medium with 1% pen/strep, n=3). Treatment was

delivered by intraperitoneal injections (500 μl) as described above.
Post-operative care

After surgery and throughout all in vivo experiments, animals

were closely monitored and cared for, as previously described (16).

A solution containing the antibiotic enrofloxacin (Baytril, 5 mg/mL,

Bayer), the analgesic buprenorphine (Bupaq, 0.05 mg/kg, Richer

Pharma AG), vitamins (Duphalyte, Pfizer), and saline (0.09% NaCl)

was administered subcutaneously twice a day until the animals

showed autonomy and no infections detected. Manual bladder

voiding was performed twice a day during the first week and once

every day until sacrifice or spontaneous restoration of bladder

control was achieved. Food pellets were provided on the cage

floor during the first few days to allow easy access. Animals were

also monitored for body temperature, correct scarring of the

surgical incision, and recovery of general activities (grooming and

nesting for example). Five days after surgery, the staples were

removed, and the animals were regrouped to promote

socialization and decrease anxiety and stress. Animals were

monitored during the experiment for humane endpoints: wounds,

autophagy behavior, or weight loss (>20% of their baseline weight).
Locomotor analysis

The BMS test was used to evaluate locomotor behavior (25), 3

days post-injury and once a week thereafter for 37 days. The mice

were placed in an open arena for 4 min, and their locomotor

function was evaluated by two independent observers who were

blinded to the experimental groups. Each animal was scored on a

scale ranging from 0 to 9. Animals presenting a BMS score greater

than 1 in the first BMS assessment (3 dpi) was excluded because of

incomplete spinal cord compression.
Bladder function

The bladders were manually voided and the animals were

placed in the cage with water provided ad libitum overnight.

Water weights in the cage bottles were measured before and after

the experiment to assess water intake. Bladders were then voided

into a beaker and the urine was weighed. The ratio between water

intake and urine was calculated to assess bladder control in the

different experimental groups. If the amount of urine was less than

0.1 g we considered that the animal regained total bladder control.
Von Frey

The Von Frey test was used to determine tactile sensitivity by

measuring how much force is required to elicit movement of the
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paw fingers, using the up-and-down method with Von Frey

monofilaments, as previously described (26). The experimental

setting consisted of placing the mice in an elevated mesh

restrained inside a standard perforated box. Before the test

started, each animal was habituated to the test conditions. A total

of 9 monofilaments were used, ranging from 0.008 to 1.4 g. Both

paws were stimulated with the central monofilament (0.16 g). If the

animal moved the fingers of the paw, a weaker monofilament was

used; otherwise, a stronger monofilament was applied. The test was

performed until: 1) observed response to the 0.008 g monofilament,

2) no response to 1.4 g monofilaments, or 3) after a total of five

measures around the threshold. 50% threshold was calculated using

the formula:

50%  threshold =
10(x _ f+kd )

10000

Where xf is the value of the final monofilament used (log units),

K is the tabular value for the pattern of positive/negative responses,

and d is the mean difference between stimuli (0.267).
Flow cytometry

Nine days post-injury, approximately 50 mL of blood was

collected from the tail vein of the animals. Erythrocytes were

depleted with ACK lysis solution. The cell pellet was then washed

with FACS buffer (PBS, 10% BSA, 0.1% azide). 1x106 cells were

stained. The Fc portion was blocked using anti-mouse CD16/CD32

(Biolegend). Cell staining was performed by incubating a cocktail of

antibodies for 30min at 4°C (Table 2). After washing, the cells were

re-suspended in 200 mL FACS buffer. Precision counting beads

(Biolegend) were added to the single-cell suspensions according to

the manufacturer’s instructions to calculate the final cell

concentrations. Cells were acquired using an LSRII Flow

Cytometer (BD Pharminogen) and analyzed using Flow Jo

software version 10.4. The gating strategy used can be found in

the Supplementary Data (Supplementary Figure S5).
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Spinal cord collection, processing
and immunohistochemistry

To understand the molecular and cellular effects of the different

treatments on the spinal cord injury environment, an

immunohistochemistry protocol to mark GFAP (astrocytes), Iba-

1 (macrophages/microglia), PDGFR (fibrosis), and NeuN (mature

neurons) was performed on mouse spinal cords. First, at 5 weeks

post-injury mice were anesthetized and perfused with 20 mL of cold

PBS and then with 4% PFA. A dorsal incision was made to remove

the spinal cord with the vertebral column. The isolated spinal cords

were then fixed with 4% PFA for 24h at 4°C. After, the tissue was

placed on 30% saccharose solution until reaching saturation point,

which was then cut into 1 cm fragments centered in the lesion site.

Next, the spinal cords were embedded in optimal cutting

temperature (OCT) solution and frozen in isopentane and liquid

nitrogen. Using a Leica CM 1900 cryostat, the spinal cords were cut

into transverse sections of 20 μm and mounted onto microscope

slides (SuperFrost Plus) that were stored at -20°C for further use.

On the day of immunohistochemistry, slides with frozen

sections were thawed at RT and cleaned with PBS to remove any

remaining cryopreservation solution. This was followed by

permeabilization with PBS-T 0.2% (v/v) for 10 min and a

blocking solution of 5% (v/v) FCS in PBS-T 0.2% (v/v) for 30

min. An overnight incubation at 4°C was then performed with the

following primary antibodies: rabbit anti-GFAP (1:200, DAKO),

rabbit anti-Iba-1 (1:200, Wako), PDGFR (1:1000, Abcam), and

rabbit anti-NeuN (1:200, D4G4O). The next day, after washing,

the samples were incubated with Alexa Fluor 594 goat anti-rabbit

(1:1000) (Abcam) secondary antibody for 3 h at RT. Cells were then

counterstained with DAPI for 20 min before mounting the slides in

Immu-Mount® (Thermo Scientific) for subsequent image analysis.

A negative control (primary antibodies omitted) was performed to

discard any background as positive staining (Supplementary

Figure S6).

Imaging was performed using an Olympus Widefield Inverted

Microscope IX81. GFAP staining was evaluated by measuring the
TABLE 2 Flow cytometry analysis summary of markers expressed on different cell populations.

Marker Fluorochrome Company Target Dilution

CD86 PerCpCy5.5 Biolegend Myeloid cells 1/100

CD11b PE Biolegend Myeloid cells 1/200

CD11c BV 605 Biolegend Mostly dendritic cells 1/100

NK 1.1 BV 510 Biolegend Natural killer 1/100

CD19 FITC Biolegend B lymphocytes 1/200

CD3 APC Biolegend T lymphocytes 1/100

CD45 PeCy7 Biolegend Leukocytes 1/200

Ly6C BV711 Biolegend Monocytes 1/100

Ly6G BV650 Biolegend Granulocytes 1/100

CD16/32 None Biolegend Fc Block 1/25
fr
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area of astrogliosis morphology, normalized to the total GFAP area.

IBA-1 was evaluated by assessing the area of ramified macrophages/

total microglia. Fibrosis was evaluated by assessing the area of

PDGFR+ area normalized for total spinal cord area. The location of

the spinocerebellar (SCT), rubrospinal (RST) and the corticospinal

tracts (CST) were identified using the spinal cord atlas developed by

Paxinos, Watson and Kayalioglu (27). The positive area for Thy1-

GFP was calculated and divided for the total area of the tract in each

spinal section. Positive Thy1-GFP and total areas were calculated

using the plugin Neurite-J from the ImageJ (NIH) software as

described above. NeuN staining was measured by counting the

number of positive cells in laminae VIII and IX of both

ventral horns.
Proteomics analysis

The secretome was first concentrated (×100) using

ultracentrifugation with falcons with 5 kDa cut-off filter

(Vivaspin, GE Healthcare). A protein precipitation step using

TCA to a final concentration of 20% was performed, and protein

pellets were re-suspended in 35mL of Laemmli sample buffer.

Protein extracts from each sample were separated by SDS-PAGE

for approximately 16 min at 110 V (Short-GeLC Approach) (1) and

stained with Coomassie Brilliant Blue G-250. Each lane was divided

into three separate gel fractions for a destaining step using a

solution of 50 mM ammonium bicarbonate with 30% acetonitrile,

followed by overnight protein digestion with trypsin. Peptide

extraction from the gel was performed using solutions containing

different percentages of acetonitrile (30, 50, and 98%) with 1% of

formic acid. For protein identification, each fraction was analyzed

separately, and for protein quantification, fractions from each

sample were combined, and a single analysis per sample was

performed by LC-MS/MS.

Samples were analyzed on a NanoLC™ 425 System (Eksigent)

coupled to a Triple TOF™ 6600 mass spectrometer (Sciex) and the

ionization source (ESI DuoSpray™ Source). The chromatographic

separation was performed on a Triart C18 Capillary Column 1/32”

(12 nm, S-3mm, 150 x 0.3 mm, YMC) and using a Triart C18

Capillary Guard Column (0.5 × 5 mm, 3 mm, 12nm, YMC) at 50°C.

The flow rate was set to 5 mL/min, and mobile phases A and B were

5% DMSO plus 0.1% formic acid in water and 5% DMSO plus 0.1%

formic acid in acetonitrile, respectively. The LC program was

performed as follows: 5 – 30% of B (0 - 50 min), 30 – 98% of B

(50 - 52 min), 98% of B (52 - 54 min), 98 - 5% of B (54 - 56 min),

and 5% of B (56 - 65 min). The ionization source was operated in

the positive mode set to an ion spray voltage of 5500 V, 25 psi for

nebulizer gas 1 (GS1), 10 psi for nebulizer gas 2 (GS2), 25 psi for the

curtain gas (CUR), and source temperature (TEM) at 100°C. For

data-dependent acquisition (DDA) experiments, the mass

spectrometer was set to scanning full spectra (m/z 350-2250) for

250 ms, followed by up to 100 MS/MS scans (m/z 100 – 1500).

Candidate ions with a charge state between +1 and +5 and counts

above the minimum threshold of 10 counts per second were isolated
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for fragmentation, and one MS/MS spectrum was collected before

adding those ions to the exclusion list for 15 s (mass spectrometer

operated by Analyst® TF 1.8.1, Sciex®). The rolling collision enErgy

was used with a collision enErgy spread of 5. For SWATH

experiments, the mass spectrometer was operated in a looped

product ion mode and specifically tuned to a set of 42

overlapping windows, covering the precursor mass range of 350-

1400 m/z. A 50 ms survey scan (350-2250 m/z) was acquired at the

beginning of each cycle, and SWATH-MS/MS spectra were

collected from 100-2250 m/z for 50 ms, resulting in a cycle time

of 2.2 seconds.

Protein identification was performed using the ProteinPilot™

software (v5.0.2, Sciex) for each sample. The paragon method

parameters were as follows: searched against the reviewed Mus

musculus database from SwissProt, cysteine alkylation by

acrylamide, digestion by trypsin, and gel-based ID. An independent

False Discovery Rate (FDR) analysis using the target-decoy approach

provided by Protein Pilot™, was performed to assess the quality of

the identifications. SWATH data processing was performed using

SWATH™ processing plug-in for PeakView™ (v2.0.01, Sciex®).

Relative protein quantification was performed in all samples using

information from the Ion-Library search. Quantification results were

obtained for peptides with less than 1% of FDR for at least one of the

samples by calculating the sum of up to five fragments/peptides.

Relative peptide peak areas were normalized to the internal standard

peak areas. Protein quantities were obtained by the sum of up to 15

peptides/proteins. Protein–protein interactions and network analysis

was constructed using the online STRING database (https://string-

db.org) version 11.5, depicting both functional and physical protein

associations with a medium confidence level (0.4), and organized into

clusters through k means clustering method. All identified proteins

were then subjected to an over-representation analysis using the

ConsensusPathDB. From a total of 368 proteins identified using LC-

MS/MS, we focused the analysis on those that presented higher

concentrations (fold changes of 2 or higher) between the two groups.

These proteins were then grouped by function using the UniProt

database and a heat map of their concentration was plotted with a cut

off of 5 (ratios higher than 5 were color-expressed as 5). The mass

spectrometry proteomics data have been deposited to the

ProteomeXchange Consortium via the PRIDE (28) partner

repository with the dataset identifier PXD048453.
LEGENDplex

The concentration of relevant cytokines was evaluated in the

secretomes of polarized macrophages using the LEGENDplex™

Mouse Macrophage/Microgl ia Panel kit according to

manufacturer’s instructions. The secretome was first concentrated

(×10) using ultracentrifugation with falcons with 5 kDa cut-off filter

(Vivaspin, GE Healthcare). Then, reagents were prepared from the

stocks provided, and standard serial dilutions were prepared to

generate a standard curve. Assay buffer (25μL) was added to

standard and sample wells in a 1:1 ratio. 25μL of mixed beads
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were added to each well, and the plate was incubated for 2 hours at

RT with continuous agitation at 800 rpm. After a centrifugation of

250g for 5min, beads were washed with 1x wash buffer for 1min.

25μL of detection antibodies was added to each well, followed by 1

hour of incubation at RT with agitation at 800 rpm. 25μL of

Streptavidin-phycoerythrin (SA-PE) was added directly to the

previous solution, and the plate was incubated for 30 minutes at

RT with agitation at 800 rpm. After a wash step with 150μL of 1x

wash buffer, the samples were ready to read on the flow cytometer.

For that, samples were vortexed, and 300 beads per analyte were

acquired in a BD LSRII Flow Cytometer (BD, Pharminogen). The

FCS files were analyzed using Biolegend’s LEGENDplex™ data

analysis software site. Concentration values were subsequently

divided by 10 to account for the concentration step, providing an

accurate representation of the actual cytokine concentration present

in the secretome.
Statistical analysis

Statistical analyses were performed using GraphPad Prism

software, version 8.0.1. The normality of the data was evaluated

using the Shapiro-Wilk normality test. Gene expression, axonal

regeneration in vitro, weight loss, bladder function, chronic pain,

LEGENDplex, and flow cytometry data were analyzed using One-

Way ANOVA followed by Tukey’s multiple comparison test. Data

from the BMS score, astrogliosis, fibrosis, spinal tracts area, axonal

arborization, and ramified microglia were assessed by two-way

ANOVA followed by Tukey’s multiple comparison test. Live
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imaging data were assessed by unpaired, non-parametric t-test

(Mann-Whitney test). Statistical significance was defined as p<

0.05 (95% confidence level). Data are presented as mean ±

standard error (SEM).
Results

Monocytes isolation, differentiation
and polarization

To successfully culture spleen-derived macrophages (Sp-MФ),

we isolated monocytes from the spleen and cultured them in the

presence of macrophage colony-stimulating factor (M-CSF) to

stimulate the survival, proliferation, and differentiation of

monocytes into macrophages (Figure 1A). Using our protocol, we

were able to obtain a highly enriched culture (97% purity) of Sp-

MФ (Figure 1B). Without M-CSF, it was impossible to establish and

maintain the cells (Supplementary Figure S1A), indicating that M-

CSF is essential for the Sp-MФ culture.

To polarize macrophages into different phenotypes, we

stimulated macrophages for 24h with 20 ng/mL of IFN-g plus 100
ng/mL of LPS (classical activation) or with 20 ng/mL of IL-4 plus 20

ng/mL of IL-13 or 20 ng/mL of IL-10 plus 20 ng/mL of TGF-b1
(alternative activation). With immunocytochemistry it was possible

to confirm that the classical activation leads to the polarization of

89% of the macrophages (Supplementary Figure S1B). Moreover,

proteomics analysis of the secreted proteins of each macrophage

population revealed that out of 487 proteins identified, 81 were
B

C

A

FIGURE 1

Isolation, differentiation, and polarization of macrophages. (A) Splenic monocytes cultured with macrophage colony-stimulating factor (M-CSF) for 7
days differentiated into macrophages; (B) with a culture purity of 97%. (C) Macrophages stimulated for 6 h with INF-g and LPS significantly
overexpressed iNOS (2, 7 df, p<0.0001) and TNF-a (2, 7 df, p<0.0001). Macrophages stimulated with IL-4 and IL-13 significantly overexpressed EGR2
(2, 6 df, p<0.0001), IRF4 (2, 6 df, p=0.0216), and Arg-1 (p=0.0020); and Macrophages stimulated with IL-10 and TGF-b1 significantly overexpressed
ARG1 (p=0.0357), and HIF-1a.(2, 8 df, p=0.0032). Target genes were normalized to three reference genes: GADPH, HPRT and 18s. Fold-change
levels were calculated by the 2-DDct method related to non-stimulated macrophages. In immunocytochemistry photomicrographs macrophages
were quantified using the anti-CD11b antibody (green) and nuclei were stained with DAPI (blue). One Way ANOVA followed with Tukey post-hoc test
was used for statistical analysis. Arg-1 data were analyzed using the Mann Whitney test because normality was not achieved using the Shapiro-Wilk
test. Data is presented as mean ± standard error (SEM). df= degrees of freedom, * or #- p< 0.05; **- p< 0.01; ***- p< 0.001. Scale bar =50 µm. n=3.
2 independent experiments were performed.
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exclusive secreted by M(INF-g+LPS) macrophages, 35 by M(IL-4+IL-13),

and 90 by M(IL-10+TGF-b1) macrophages (Supplementary Figure

S1C). Using the Protein Analysis Through Evolutionary

Relationships (PANTHER) tool, we further demonstrated

distinctions in the protein classes among these populations of

proteins (Supplementary Figure S1D). Metabolite interconversion

enzymes were identified as a common protein class between the

different macrophage populations, but as can be observed by the pie

charts, the protein class or the percentage of proteins in different

classes varied considerably among each cell phenotype

(Supplementary Figure S1D). Additionally, the phenotypes of

each macrophage population was also confirmed by gene

expression analysis. qPCR revealed that Sp-MФ are easily

polarized in vitro; namely, when macrophages were stimulated

with IL-4+IL-13, they significantly overexpressed EGR2 and IRF4,

and these genes were not overexpressed when macrophages were

stimulated with IL-10+TGF-b1 (Figure 1C). The ARG1 gene was

significantly overexpressed in the two populations of macrophages

with alternative activation, however more overexpressed in the M

(IL-4+IL-13) phenotype than in the M(IL-10+TGF-b1) macrophages. In

contrast, the IL-10+TGF-b1 stimulation protocol led to a significant

increase in HIF-1a expression, and these gene was not

overexpressed with the IL-4+IL-13 stimuli. Using gene expression,

we also confirm that macrophages under classic activation stimuli

significantly overexpressed iNOS and TNF-a genes (Figure 1C). All

these genes are known to be specifically overexpressed in these
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phenotypes (29). These results showed that we were able to obtain

three different subsets of macrophages, one with classical activation

(M(INF-g+LPS)) and two with alternative activation (M(IL-10+TGF-b1);

M(IL-4+IL-13)).
IL-10 and TGF-b1 activation promotes
higher axonal growth

The effects of each macrophage subtype on axonal growth were

then investigated. Spleen-derived macrophages polarized into M

(INF-g+LPS), M(IL-10+TGF-b1) or M(IL-4+IL-13) were co-cultured with

DRGs growing in three dimensions (Figure 2). DRGs cultured

without macrophages were used as baseline. The results showed

that DRGs co-cultured with M(IL-10+TGF-b1) and M(IL-4+IL-13)

macrophages had significantly higher axonal arborization than

those co-cultured with M(INF-g+LPS) or than basal levels

(Figure 2A). DRGs co-cultured with M(IL-10+TGF-b1) and M(IL-4

+IL-13) macrophages also presented significantly longer axons

(Figure 2B) than those co-cultured with M(INF-g+LPS). Concerning

the total axonal area, only M(IL-10+TGF-b1) condition showed

significant differences from baseline (Figure 2C). We also

performed a similar experiment with DRGs growing in two

dimensions, which did not allow axonal growth in depth, but

enabled direct contact between macrophages and DRGs
B

C

A

FIGURE 2

Classical (M(INF-g+LPS)) or alternative (M(IL-4+IL-13); M(IL-10+TGF-b1)) activated macrophages co-cultured with dorsal root ganglia (DRGs) in 3D collagen
hydrogels. DRGs were stained with Neurofilament (green), Macrophages and DRGs stained with Phalloidin (red) and nuclei counterstained with DAPI
(blue). (A) DRGs co-cultured with M(IL-4+IL-13) and M(IL-10+TGF-b1) macrophages had significantly higher axonal arborization (3, 12 df, p<0.0001) and (B)
significantly longer axons (3, 14 df, p=0.0172) than M(INF-g+LPS) group and basal levels. (C) M(IL-10+TGF-b1) condition also showed significant higher
axonal area than basal levels (3, 14 df, p= 0.0292). Statistical analysis for axonal arborization employed two-way ANOVA followed by Tukey’s multiple
comparisons test, while total area and distance were analyzed using one-way ANOVA followed by Tukey’s test. Data is presented as mean ±
standard error (SEM). df= degrees of freedom, *- p< 0.05; ***- p< 0.001. Scale bar =100 µm; M(IFN-g+LPS) n= 3; M(IL-4+IL-13) n=5; M(IL-10+TGF-b1) n=5. 2
independent experiments were performed.
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(Supplementary Figure S2). Interestingly, under these conditions,

only the DRGs co-cultured with M(IL-10+TGF-b1) macrophages

presented significantly higher axonal arborization (Supplementary

Figure S2A) than those co-cultured with the other subtypes of

macrophages, these DRGs also have significantly longest neurite

(Supplementary Figure S2B), and higher axonal area

(Supplementary Figure S2C) than M(IL-4+IL-13) macrophages. It is

important to point out that without the collagen matrix, axonal

growth is significantly reduced, and not even the direct contact of

the macrophages compensates for the absence of the 3D matrix.

The neuronal effects of the molecules and extracellular vesicles

secreted by the different subtypes of splenic macrophages were also

tested using human-derived neurospheres obtained from iPSCs.

Neurospheres were allowed to differentiate into neurons for two

days and then cultured with the secretome derived from each

macrophage subtype (Figure 3A). It proved challenging to

establish the baseline level of neuronal growth devoid of secreted

factors as attempts to culture human neurospheres solely in basal

medium were unsuccessful, leading to detachment from the culture

plates and rendering meaningful analysis unfeasible. Nonetheless,

we conducted a positive control using the regular culture medium

to provide a comparative reference point. The total axonal area

divided by the number of neurospheres was analyzed as described

for the DRGs (see materials and methods section). As expected, the

positive control group presented an overall neuronal area higher

than all the groups, but notably it was only significantly different

when compared with the M(INF-g+LPS) and M(IL-4+IL-13) groups, but

not with the M(IL-10+TGF-b1)-derived secretome (Figure 3B). Results

also demonstrated that the M(IL-10+TGF-b1) secretome significantly

promoted more axon preservation/regeneration than M(IL-4+IL-13)

secretome (Figure 3B). Both subtypes are pro-regenerative;

however, our in vitro results showed that the M(IL-10+TGF-b1)-

derived secretome has higher regenerative capabilities. For this

reason, we then tested only the secretome derived from this sub-

population in CNS-derived neurons. Primary cortical neurons were

plated in the soma compartment of microfluidic chambers

(Figures 4A, B), and neuronal growth was live imaged

(Supplementary Video 1) in the axonal compartment for 14h

(Figures 4C, D). The results demonstrated that M(IL-10+TGF-b1)-

derived secretome promoted significant axonal regeneration

compared with the control medium (Figure 4E).
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M(IL-10+TGF-b1) derived secretome promotes
functional recovery in vivo

In vitro experiments demonstrated that the soluble factors and

extracellular vesicles secreted by macrophages may have therapeutic

potential for neural repair. Therefore, we tested whether

intraperitoneal injections (500 μL) of macrophage-derived

secretome could be used as a therapy for spinal cord injury. Forty-

two mice were subjected to compression SCI and 3, 6, 9, and 14 days

post-injury (and then once a week up to 28 dpi) were treated with

secretome derived from different macrophage subtypes (Figure 5A).

During the experimental protocol, all animals lost weight without

significant differences between groups (Figure 5B). To evaluate motor

function, we performed the BMS test, in which a higher score

indicates higher motor recovery. We found that mice treated with

M(IL-10+TGF-b1) secretome had significantly higher BMS scores than

those treated with the vehicle or M(IL-4+IL-13) (Figure 5C). Only

animals treated with this pro-regenerative cocktail (M(IL-10+TGF-b1)

secretome) were able to perform weight-supported plantar stepping,

while the other treatment regimens only led to extensive ankle

movement recovery without weight support. Interestingly, in the

first 2/3 weeks post-injury, mice treated with the pro-inflammatory

cocktail (M(INF-g+LPS) secretome) presented a functional recovery very

close to those treated with the M(IL-10+TGF-b1) secretome, indicating

that this pro-inflammatory cocktail may be beneficial in the early

phase. However, continuing with M(INF-g+LPS) secretome treatment,

the functional recovery stabilized, and the therapeutic effect

disappeared (Figure 5C), indicating that the non-resolving nature of

chronic exposure to this pro-inflammatory cocktail is detrimental.

Four weeks post-injury, we performed the von Frey filament test to

assess the mechanical sensitivity function of the animals. We did not

detect any statistical differences; however, mice treated with the pro-

inflammatory cocktail (M(INF-g+LPS) secretome) had lower values,

indicating that this treatment may lead to hypersensitivity. In

contrast, the vehicle and M(IL-10+TGF-b1) secretome groups showed

higher values in the von Frey filament test (Figure 5D), indicating less

hypersensitivity. We also analyzed mouse autonomic function,

namely bladder function, using the ration between water intake and

amount of urine in the bladder. Bladder recovery is an important

priority for people living with SCI (30). Our results showed that mice

treated with the M(IL-10+TGF-b1) secretome had a significant recovery
BA

FIGURE 3

Axonal area of differentiated Neural Stem Cells obtained from human induced Pluripotent Stem Cells. (A) Axonal area was stained using anti-bIII
tubulin antibody (green) and nuclei counterstained with DAPI (blue); (B) Statistical analysis demonstrated that the factors secreted by M(IL-10+TGF-b1)

macrophages are able to significantly preserve/regenerate the differentiated neurons (2, 18, p=0.0364) than the M(IL-4+IL-13)-secreted factors. One
Way ANOVA followed by Tukey post-hoc test was used for statistical analysis. Data is presented as mean ± standard error (SEM). *- p< 0.05; M(IFN-

g+LPS) n=6; M(IL-4+IL-13) n=9; M(IL-10+TGF-b1) n=6; +Ct n=9. Scale bar=1 mm. 2 independent experiments were performed.
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of bladder control compared to those treated with vehicle and M(INF-

g+LPS) secretome (Figure 5E). This preclinical trial demonstrated that

the therapeutic effect of the molecules and extracellular vesicles

secreted by the different subtypes of macrophages varies depending

on the phenotype, even when using two pro-regenerative phenotypes.
M(IL-10+TGF-b1) derived secretome
modulates pathophysiological events
leading to neuronal survival in vivo

To understand the effect of the secretome on the immune response,

we collected blood from all groups nine days post-injury and used

healthy mice as controls. Flow cytometry was used to verify the

inflammatory profile of leukocytes in circulation, which could

infiltrate the injured spinal cord. Analysis revealed that mice treated

with vehicle, M(INF-g+LPS) and M(IL-10+TGF-b1) secretome had a

significantly higher frequency of myeloid cells in circulation

(Figure 6A). Mice treated with the M(INF-g+LPS) secretome had a

significantly higher frequency of monocytes than the M(IL-10+TGF-b1)

secretome (Figure 6B). Mice treated with vehicle or M(INF-g+LPS)

secretome had a significantly higher frequency of Ly6Chigh

monocytes (Figure 6C). It is noteworthy that the Ly6Chigh monocytes

are prone to become pro-inflammatory macrophages (31). M(INF-g
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+LPS) also presented significantly more Ly6Clow-med monocytes in

circulation (Figure 6D). All animals with SCI had significantly more

circulating neutrophils (Figure 6E). Concerning the rest of myeloid

cells, M(INF-g+LPS) also presented significant increase (Figure 6F). No

differences were observed between the groups for B cells (Figure 6G).M

(INF-g+LPS) and vehicle-treated mice had a significantly lower frequency

of T cells (Figure 6H). Of note, the number of animals used in the flow

cytometry analysis varies from that used in functional recovery data

because we opted to spare some animals during this sub-acute phase

due to their weakened state. To conduct flow cytometry of circulating

leukocytes blood collection was necessary, we decide to prioritize the

well-being of the animals avoiding unnecessary risks of losing mice.

Thirty-eight days post-injury, the animals were sacrificed and the

spinal cords were collected for histological analysis. IBA-1antibody was

used to study the morphology of microglia and distinguish between

ramified and amoeboid microglia (Figure 7A). Rostral-caudal analysis

of the spinal cord showed that mice treated with the pro-regenerative

cocktail M(IL-10+TGF-b1) had a significantly higher percentage of

ramified microglia than mice treated with the pro-inflammatory

cocktail M(INF-g+LPS), or the M(IL-4+IL-13)-secreted factors (Figure 7B).

The GFAP antibody was used to analyze astrogliosis. Areas of

clustered GFAP overstaining were considered astrogliosis

(Figure 7C). The analysis revealed that mice treated with the pro-

regenerative cocktail, M(IL-10+TGF-b1) secretome, had significantly
B
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FIGURE 4

The effect of M(IL-10+TGF-b1)-derived secretome on the CNS neurons. (A) Schematic representation of the microfluidic chambers used. (B) Brightfield
images of the axonal and somal compartments of the microfluidic chambers. (C) Schematic representation of the workflow used. (D) Brightfield
images of axons growing under the effect of the soluble factors and extracellular vesicles secreted by M(IL-10+TGF-b1) macrophages or Vehicle
(Neurobasal Medium). In red is represented the length of the axon at baseline and in green after 14h of live imaging. (E) The secretome of M(IL-10

+TGF-b1) macrophages promotes significantly axonal regeneration (p= 0.0286). Statistical significance tested by unpaired, non-parametric t-test
(Mann-Whitney test). Data is presented as mean ± standard error (SEM). *- p< 0.05; n=4, DIV= days in vitro. 2 independent experiments
were performed.
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lower astrogliosis (Figure 7D), which indicate that these animals

presented diminished scar.

Neurons from the ventral horns, namely from lamina VIII and

IX, were counted using an anti-NeuN antibody (Supplementary

Figure S3A). Mice treated with M(IL-10+TGF-b1) secretome have

significantly more neurons than animals treated with the pro-

inflammatory-derived secretome (Supplementary Figure S3B).

Finally, concerning fibrosis, the rostral-caudal analysis did not

detect significant differences in the PDGFR+ area (Supplementary

Figure S3C) between the treated groups when all areas of the spinal

cord were analyzed (Supplementary Figure S3D); however, caudally

to the injury epicenter, mice treated with the M(IL-10+TGF-b1)

secretome have significantly less fibrosis than the other

treatments (Supplementary Figure S3E).
M(IL-10+TGF-b1) derived secretome preserved
ascending and descending spinal tracts
after SCI

Considering the functional and histological outcomes

obtained from our pre-clinical trial, we executed a subsequent in
Frontiers in Immunology 12
vivo protocol with a focused objective: to assess the therapeutic

efficacy of M(IL-10+TGF-b1) secretome specifically in the

preservation of spinal tracts critical for locomotion. These tracts

include the corticospinal tract (CST), rubrospinal tract (RST), and

spinocerebellar tract (SCT). Within this cohort of animals, we

employed mice harboring the Thy1-GFP transgene, and the

percentage of positive area for Thy1-GFP in each distinct spinal

tract was calculated (Figure 8A). The analysis encompassed a

range spanning 600 μm to 2000 μm in both rostral and caudal

directions from the epicenter. The vicinity of the epicenter was

excluded from the analysis due to challenges in pinpointing the

exact location of the spinal tracts. Results demonstrated that the

administration of M(IL-10+TGF-b1) secretome significantly

contributes to the preservation of the spinocerebellar tract

caudally to the epicenter (Figure 8B), both the rostral and

caudal portions of the rubrospinal tract (Figure 8C), and the

preservation of the corticospinal tract (Figure 8D) in the rostral

region. Significant differences were also observed between the

rostral and caudal regions, however, only in the motor tracts (RST

and CST). Specifically, the rostral regions exhibited a markedly

higher extent of neuronal preservation in comparison to the

caudal regions (Figures 8C, D).
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FIGURE 5

Pre-clinical evaluation of macrophages derived secretome using a SCI compression model. (A) Schematic layout of the in vivo testing. (B) The
treatment had no effect on weight of the animals 38 dpi (3, 25 df, p=0.6013). (C) Animals treated with M(IL-10+TGF-b1)-derived secretome presented
significantly better functional scores than the other treatment groups, namely than the Vehicle (3, 25 df, p=0.0465) and M(IL-4+IL-13) group (3, 25 df,
p= 0.0047) at 28 days and the M(IL-4+IL-13) at 37 days (3, 25 df, p= 0.0359). (D) No significantly differences were observed on the hypersensitivity of
the animals 38 dpi, however, M(INF-g+LPS)-treated mice presented a tendency to be more hypersensitive (3, 25 df, p=0.5097). (E) Animals treated with
M(IL-10+TGF-b1)-derived secretome presented significant recovery of the bladder function when assessed 38 dpi (3, 22 df, p= 0.0137). Two-way
repeated measure ANOVA was used to analyze statistical differences on the BMS data and One-Way ANOVA was used to analyze statistical
differences on the other functional tests followed by the multiple comparison test Tukey. Data is presented as mean ± standard error (SEM). * or #-
p< 0.05; ##- p< 0.01; df= degrees of freedom, Vehicle n=8; M(INF-g+LPS) n=7; M(IL-4+IL-13) n=8; M(IL-10+TGF-b1) n=6. 1 independent experiment
was performed.
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M(IL-10+TGF-b1) secretome present
molecules involve with anti-inflammatory,
phagocytosis and tissue repair/
remodeling processes

In order to understand which proteins secreted by the different

phenotypes of macrophages could be important for the differences

observed both in vitro and in vivo, we identified and quantified the

proteins produced by the macrophages using both the bead-based

immunoassay LEGENDplex and liquid chromatography with mass

spectrometry (LC-MS/MS). LC-MS/MS allows a broader and non-

target analysis; however, it may not detect small and low-

concentrated proteins, such as cytokines and chemokines. For this

reason, we complemented LC-MS/MS analysis with the

immunoassay LEGENDplex. The results demonstrated that pro-

inflammatory cytokines such as TNF-a, G-CSF and IL12p40 were

present almost only in the secretome of M(INF-g+LPS) and were

significantly different from the other groups (Supplementary Figure

S4). These results were expected because these cytokines are

characteristic of proinflammatory macrophages. Additionally, the

cytokine/hormone G-CSF was also significantly elevated in the M

(INF-g+LPS) secretome (Supplementary Figure S4). In turn, TGF-b1, a
cytokine with anti-inflammatory properties, was present in higher

quantities in the M(IL-10+TGF-b1) and M(IL-4+IL-13) subsets; however,

only in the pro-regenerative phenotype M(IL-10+TGF-b1) that this

cytokine reached significant differences (Supplementary Figure S4).
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The macrophage subsets that presented interesting results both in

vivo and in the LegendPlex assay were the M(IL-10+TGF-b1) and M

(INF-g+LPS) phenotypes, and therefore, a detailed proteomics analysis

was only performed in the secretome derived from these two

populations. From a total of 452 proteins identified, we focused

the analysis on those that presented higher concentrations (fold

changes of 2 or higher) between the two groups. These proteins

were grouped by function using the UniProt database, and the

results revealed that 14 out of 17 pro-inflammatory proteins were

overconcentrated in the M(INF-g+LPS) secretome, and 3 out of 4 anti-

inflammatory proteins were overconcentrated in the M(IL-10+TGF-b1)

secretome (Figure 9A). Moreover, the M(IL-10+TGF-b1) secretome was

also enriched in proteins involved in phagocytosis (9 out of 10) and

in proteins involved in tissue repair/remodeling (7 out of 8)

(Figure 9A). These results were expected because the M(INF-g+LPS)

and M(IL-10+TGF-b1) subsets are classified as pro-inflammatory and

anti-inflammatory/repairing, respectively. Finally, protein–protein

interaction network analysis was constructed using the online

STRING database depicting both functional and physical protein

associations and the results revealed that the secretome of M(INF-

g+LPS) contains proteins from just one cluster, which can be

considered a cluster related to the inflammatory process, since

these proteins are involved in antigen processing and presentation

of peptide antigen, T cell-mediated cytotoxicity, and complement

activation (Figure 9B). In contrast, the M(IL-10+TGF-b1) secretome

contained proteins from three different clusters, a cluster of proteins
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FIGURE 6

Leukocytes in circulation 9 days post injury. Blood was collected from the tail vein and process for analysis using flow cytometry. (A) Animals treated with
vehicle, M(INF-g+LPS) and M(IL-10+TGF-b1)-derived secretome had significantly higher myeloid cells than control mice (4, 17 df, p=0.0240). (B) Animals treated
with M(INF-g+LPS)-derived secretome had significantly higher frequency of monocytes than M(IL-10+TGF-b1) secretome group and control (4, 17 df, p=0.0457).
(C) Animals treated with vehicle or M(INF-g+LPS)-derived secretome had a significantly higher frequency of Ly6Chigh monocytes (4, 17 df, p=0.0282) than
control mice. (D) M(INF-g+LPS) group also had significantly more Ly6Cmed+low monocytes than M(IL-4+IL-13)-treated mice (4, 17 df, p=0.0457). (E) Animals
without a SCI had significantly lower frequency of Neutrophils (4, 17 df, p=0.0055). (F) M(IL-4+IL-13)-treated mice had significantly less other myeloid cells
than vehicle and M(INF-g+LPS)-treated animals (4, 17 df, p=0.0358). (G) No differences were observed for B Cells (4, 17 df, p=0.8721) and (H) M(INF-g+LPS) and
vehicle-treated mice had significantly lower frequency of T cells (4, 17 df, p=0.0011) than control mice. One-Way ANOVA was used to analyze statistical
differences followed by the multiple comparison test Tukey. Data is presented as mean ± standard error (SEM). *- p< 0.05; **- p< 0.01; df= degrees of
freedom, Control n= 5; Vehicle n=5; M(INF-g+LPS) n=4; M(IL-4+IL-13) n=5; M(IL-10+TGF-b1) n=4. 1 independent experiment was performed.
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more related to metabolic processes (Cluster 1), with proteins that

participate in Ganglioside and Glycosphingolipid catabolic

processes (Figure 9B). Two other clusters were identified, with

proteins that participate in relevant biological and cellular

processes, such as astrocyte activation involved in immune

response, regulation of dendritic spine maintenance, and

regulation of response to wounding (Cluster 2), and proteins that

play a role in axon extension and central nervous system neuron

development (Cluster 3), some of which may be responsible for the

improvements observed in vivo (Figure 9B).
Discussion

After injury, the immune system is fundamental for promoting

adequate tissue repair and regeneration. However, it is well known

that the immune response after SCI is dysfunctional and is an

important contributor to the secondary damage observed after

primary injury. Several therapeutic approaches have been

designed to shut down the immune response after SCI; however,

more important than shutting it down is to transform a

dysfunctional response into a regenerative one. After SCI, splenic

and bone marrow-derived monocytes infiltrate the lesion site and

differentiate into macrophages (4). There is abundant literature

exploring bone marrow-derived monocytes in an SCI context (10,

32–34), however, less is known about splenic monocytes. The spleen

is not just important for erythrocyte recycling and immune

response to pathogens. After injury, immune cells in the spleen
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become rapidly activated and mobilize to sites of damaged tissue.

This activation and mobilization was first observed after myocardial

ischemia and also demonstrated after SCI (5, 24). Splenic

monocytes infiltrated the spinal cord in the acute phase of the

injury, peaking at 7 days, whereas bone marrow-derived monocytes

only infiltrated the cord 1 week after injury (4). Although the spleen

has been characterized as the major source of pro-inflammatory

monocytes after SCI (4), in ischemic brain injury models, splenic

monocytes have been demonstrated to be key effector cells that

modulate meningeal and parenchymal immune responses and limit

ischemic injury, leading to improved functional outcomes (35). This

indicates a complex interplay between the recruited splenic

monocytes and the tissue microenvironment that finally

determines the macrophage phenotype.

For these reasons, in this work, we aimed to study and further

characterize splenic-derived macrophages in an SCI context, as this

cell population may play a key role in tissue repair.

In this study, we used a protocol that led to a highly pure (97%)

culture of primary splenic macrophages without the need to use cell

sorting or magnetic beads separation kits. It is difficult to compare

our purity with other protocols in the literature because the vast

majority of studies do not disclaim this value (36–38) or use

macrophage cell lines instead of primary cells (39). We

demonstrated that splenic monocytes are similar to monocytes

from other origins in terms of plasticity and are easily polarized

into pro-inflammatory or pro-regenerative phenotypes. Moreover,

we demonstrated that different splenic macrophage phenotypes

have distinct effects on axonal growth and neuroprotection.
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FIGURE 7

Histological analysis of the spinal cord 38 dpi. (A) Representative image of microglia from M(IL-10+TGF-b1)-treated group, cells were stained using the
antibody anti-IBA1 (red) and the area of the ramified microglia was analyzed. (B) Rostral-caudal analysis demonstrated that the animals treated with
M(IL-10+TGF-b1)-derived secretome presented overall significantly more ramified microglia than M(IL-4+IL-13) group (3, 239 df, p=0.0058) and presented
more ramified microglia than the M(INF-g+LPS) group at 800 µm caudal to the injury (3, 239 df, p=0.0469). (C) Representative image of astrocytes
from vehicle-treated group, cells were stained with anti-GFAP antibody (red) and astrogliosis were analyzed by quantification of the area of clustered
GFAP overstaining (areas impossible to distinguish individual astrocytes). (D) Rostral-caudal analysis demonstrated that mice treated with M(IL-10+TGF-

b1)-derived secretome had significantly less astrogliosis than the animals treated with M(IL-4+IL-13) or M(INF-g+LPS) secretome (3, 231 df p<0.0001).
Differences in both microglia and astrocytes analysis were detected using two-way ANOVA followed by Tukey’s multiple comparisons test. A total of
284 spinal cord slices were observed to analyze astrogliosis and 301 slices to microglia. Data is presented as mean ± standard error (SEM). * or #- p<
0.05; **- p< 0.01; Vehicle n=7; M(INF-g+LPS) n=6; M(IL-4+IL-13) n=8; M(IL-10+TGF-b1) n=6. 1 independent experiment was performed.
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Namely, classical activation (pro-inflammatory) has a detrimental

impact, whereas alternative activation promotes axonal

regeneration and neuroprotection. To the best of our knowledge,

these biological effects were first described in our work for spleen-

derived macrophages; however, these effects were also previously

demonstrated in bone marrow-derived macrophages (10, 40). It is

important to point out that the vast majority of the research in the

literature only studied one type of alternative activation of

macrophages (using IL-4); herein, we showed that activation with

TGF-b1 and IL-10 has significantly superior biological effects than

activation with IL-4 and IL-13, not only in vitro but also in an in

vivo SCI model.

As previously mentioned, the microenvironment at the SCI site

favors predominant and sustained macrophage polarization into a

pro-inflammatory phenotype, which is detrimental to tissue repair

(15). Some authors have investigated the therapeutic effect of

transplanting alternatively activated macrophages into the

damaged spinal cord to balance the ratio between pro- and anti-

inflammatory macrophages at the injury site (12, 32). However,

clinical trials have failed to demonstrate a significant therapeutic
Frontiers in Immunology 15
effect. Clinical results did not support the treatment of acute SCI

with autologous incubated macrophage therapy (14). The reason

behind this disappointing result may be that transplanted

macrophages fail to retain their pro-regenerative phenotype when

transplanted into the injured spinal cord (10). Kroner and

colleagues demonstrated that intracellular accumulation of iron

by macrophages induces a rapid switch from a pro-regenerative to a

pro-inflammatory phenotype in the spinal cord tissue (15).

Therefore, in this study, we decided to inject the soluble factors

and extracellular vesicles produced by macrophages (secretome)

instead of transplanting the cells. Herein, we explored whether

systemic injections of secretomes derived from different

macrophage phenotypes have a therapeutic effect after SCI. We

tested the complete secretome rather than separating the soluble

and vesicular fractions, because our previous evidence

demonstrated that for SCI repair, the secretome as a whole is

advantageous over the individual fractions (41). The local

immune response after SCI is known to be dysfunctional;

however, SCI also leads to the systemic dysregulation of the

immune response. For instance, it was demonstrated that SCI
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FIGURE 8

Histological analysis of ascending and descending spinal tracts 38 dpi. (A) Representative images of Thy1-GFP animals from M(IL-10+TGF-b1) and
Vehicle-treated group. The positive area for Thy1-GFP (green) was calculated and divided for the total area of the tract in each spinal section. The
analysis encompassed a range spanning 600 µm to 2000 µm in both rostral and caudal directions from the epicenter. (B) The secretome derived
from M(IL-10+TGF-b1) macrophages significantly promoted higher neuronal preservation of spinocerebellar tract (SCT) in the caudal region (3, 65 df,
p=0.0007) when compared with vehicle treatment. (C) Animals treated with M(IL-10+TGF-b1) secretome also revealed a higher preservation of the
rubrospinal tract (RST) both in the rostral (3, 64 df, p<0.0001) and in the caudal region (3, 64 df, p=0.0010). Moreover, the treatment effect was
significantly higher in the rostral region than in the caudal (3, 64 df,<0.0001). (D) Likewise, the M(IL-10+TGF-b1) secretome significantly preserved the
corticospinal tract (CST) descending axons, namely rostrally from the epicenter (3, 74 df, p<0.0001), and this preservation was significantly higher in
the rostral than in the caudal region (3, 74 df, p<0.0001). Two-way ANOVA followed by Tukey’s multiple comparisons test was used to analyze
statistical differences. A total of 163 spinal cord slices were analyzed. Data is presented as mean ± standard error (SEM). ***- p< 0.001. Vehicle n=3;
M(IL-10+TGF-b1) n=3. 1 independent experiment was performed.
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could promote pro-inflammatory responses that damage peripheral

organs (42, 43). Moreover, our group previously demonstrated that

the infiltration of neutrophils into the injured spinal cord is affected

by neural communication between the spinal cord and the spleen

(24). The combined factors of local environment and systemic

dysregulation of the immune response led us to choose the

systemic administration of secretome instead of local

administration or local transplantation of macrophages. In this

way, we not only avoided losing the phenotype of the transplanted

cells due to local environmental cues, but we are also able to

modulate/prime immune cells even before they infiltrate the

spinal cord. Notably, in our experimental animal model, the

blood-spinal cord barrier (BSCB) is disrupted due to the

mechanical compression, allowing the systemic-injected molecules

to reach the spinal cord tissue. However, it is crucial to acknowledge

that, even with this scenario, the majority of systemically delivered

secretome is directed towards peripheral organs such as the liver,

lungs, and spleen (44–46). Moreover, in some clinical scenarios, the

BSCB may remain intact, in these situations intrathecal

administration may be necessary.

In this study, we observed that the M(IL-10+TGF-b1)-derived

secretome is the most effective treatment in promoting functional

recovery after compressive SCI. Additionally, factors and

extracellular vesicles secreted by M(IL-10+TGF-b1) also supported

the recovery of bladder function. Regain of bladder control is an

important functional priority for persons living with SCI (30, 47).

Interestingly, up to 3 weeks post-injury, treatment with the pro-

inflammatory secretome, M(INF-g+LPS), had a similar therapeutic

effect to the M(IL-10+TGF-b1) secretome; however, the continued
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injection of molecules derived from the pro-inflammatory

phenotype was shown to be detrimental in the long term. In line

with this observation, previous research performed by Freria and

colleagues demonstrated that preconditioning microglia with LPS

injection before ischemic SCI elicits reactive spinal cord microglia

and confers neuroprotection, leading to functional recovery (48).

Indeed, a pro-inflammatory response seems to be necessary, at least

in the acute phase or before injury; however, our results show that if

this pro-inflammatory stimulus continues over time, the

therapeutic effect ceases and becomes disadvantageous. We also

observed that animals treated with the pro-inflammatory secretome

tend to have more neuropathic pain. This data is in accordance with

the current literature demonstrating that inflammation in the spinal

cord leads to mechanical allodynia (49, 50). Microglia activation in

the spinal cord is critical for developing pain hypersensitivity

through the production of pro-inflammatory cytokines,

chemokines and extracellular proteases (51). Activated microglia

directly interacts with nociceptors and interneurons by modulating

cell surface receptors and ion channels (52).

The identification and quantification of the molecules on the

secretome were studied using flow cytometry, through the

Legendplex immunoassay kit, and proteomic analysis using LC-

MS/MS. Proteomics data were further examined using the STRING

database, a web-based open resource that analyzes all known and

predicted associations between proteins, including physical and

functional interactions (53). Cluster analysis of the M(INF-g+LPS)-

derived secretome revealed that only one class of proteins was

functionally enriched. Namely, proteins associated with a pro-

inflammatory response, such as molecules related to positive
BA

FIGURE 9

Proteomic analysis by LC-MS/MS focused on the proteins that presented higher concentration in the secretome. (A) 14 out of 17 pro-inflammatory
proteins were overconcentrated in M(INF-g+LPS)-derived secretome; 3 out of 4 anti-inflammatory proteins were overconcentrated in M(IL-10+TGF-b1)

secretome; M(IL-10+TGF-b1) secretome was enriched in proteins involved on phagocytosis (9 out of 10) and in proteins involved in tissue repair/
remodeling (7 out of 8). (B) Cluster analysis using the STRING database revealed that the secretome of M(INF-g+LPS) macrophages only presented
proteins related to the inflammatory process (antigen processing and presentation of peptide antigen, T cell mediated cytotoxicity and complement
activation); M(IL-10+TGF-b1) macrophages secreted proteins were classified into three main clusters: Cluster 1 - proteins related with metabolic
process; Cluster 2 - proteins that participate in biological processes, such as, astrocyte activation, involved in immune response, regulation of
dendritic spine maintenance and regulation of response to wounding; and Cluster 3 - proteins that play a role in cellular processes such as axon
extension and central nervous system neuron development. Proteins were identified using the KEGG Orthology database. 1 independent experiment
was performed.
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regulation of T cells cytotoxicity and lymphocytes, mediate

immunity, as well as complement activation molecules and

proteins involved in antigen processing and presentation of

peptide antigen. The immunoassay also revealed that the

cytokines TNF-a, IL-12p40, and G-CSF were enriched in the M

(INF-g+LPS) secretome. On the other hand, analysis of the M(IL-10

+TGF-b1)-derived secretome showed that these macrophages secrete

a wide variety of proteins structured in three main functional

clusters: 1) proteins involved in phagocytosis; 2) proteins involved

in tissue remodeling/response to wounding; and 3) proteins with

anti-inflammatory properties. Moreover, STRING analysis

identified clusters of proteins on the M(IL-10+TGF-b1) secretome

involved in axon extension, dendritic spine maintenance,

establishment of cell polarity, and regulation of astrocytic

activation. Looking for individual proteins enriched in the M(IL-10

+TGF-b1) secretome, it is possible to find some proteins with a known

effect after SCI. For instance, it was demonstrated that Anexinn 1a

administration decreased caspase-3 and IL-1b expression, reduced

tissue damage, and protected axons of long descending pathways in

vivo (54). In this context, the presence of Anexinn 1a within the

secretome likely contributed to the preservation of long descending

and ascending spinal tract. Our findings underscore the capacity of

the M(IL-10+TGF-b1) secretome to significantly support the structural

integrity of crucial neuronal tracts, including the ascending

spinocerebellar tract (SCT) and the descending rubrospinal (RST)

and corticospinal tracts (CST). Notably, these tracts assume pivotal

roles in locomotion. For instance, the significance of SCT neurons

in orchestrating the genesis and perpetuation of locomotor behavior

in both neonatal and adult mice has been previously described (55).

SCT neurons exhibit inherent rhythmogenic attributes and intricate

circuit connectivity with spinal interneurons within the locomotor

central pattern generator (55). Moreover, the indispensability of this

neuronal pathway for motor function restoration in human

individuals afflicted with spinal cord injuries has been well

documented (56–58).

Likewise, the RST plays a multifaceted role in various

components of dexterous motor functions. Disruptions within the

RST give rise to deficits in intricate motor tasks such as reaching

and grasping, as well as stepping movements (59). Evidently, the

structural soundness of the RST is indispensable for limb

coordination during activities encompassing food retrieval and

ambulation. Equally pivotal, the contribution of CST neurons to

voluntary movement has been extensively elucidated (60, 61), as has

the paramount importance of this spinal tract in effecting motor

recovery in SCI patients (62, 63). It is important to note that a

higher degree of neuronal preservation was observed within regions

that continue to receive afferent neuronal input. Consequently, the

rostral portions of the descending tract demonstrate a superior level

of neuronal preservation compared to their caudal counterparts due

to the enduring reception of supraspinal information. In contrast,

the ascending tract exhibits an inverse relationship, wherein higher

preservation is evident in caudal regions due to the persistence of

afferent input.

Progranulin is another protein enriched in the M(IL-10+TGF-b1)

secretome, which may play a key role in repairing the injured spinal

cord. Progranulin deficiency has been demonstrated to promote
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neuroinflammation and apoptosis and exacerbate damage (64).

Moreover, progranulin protects lysosomal function and enhances

the autophagic flux of microglia, allowing these cells to acquire an

anti-inflammatory phenotype (65) and modulate the expression of

GFAP, thereby decreasing the pro-inflammatory activation of

astrocytes (66, 67). Indeed, previous studies have demonstrated

that microglia respond rapidly to pathological stimuli, influencing

then the fate of astrocytes (68, 69). Additional, using single-cell

RNA sequencing, Brennan and colleagues revealed that microglia

play a pivotal role in controlling stereotypical astrocyte-specific

functions triggered by SCI, including upregulation of inflammatory

genes, lipid processing, cell adhesion, and proliferation (70). Pro-

inflammatory microglia release IL-1b, TNF-a, and complement

component 1 subcomponent q (C1q), inducing the formation of

inflammatory reactive astrocytes, commonly referred to as A1.

Conversely, anti-inflammatory microglia promote the induction

of pro-regenerative astrocytes, known as A2, thereby mitigating

inflammation and exerting neuroprotective effects (68). Our

histological analysis revealed that systemic injections of M(IL-10

+TGF-b1) secretome resulted in fewer amoeboid microglia and

reduced astrogliosis in the spinal cord tissue 5 weeks post-injury.

The factors present in the secretome likely influenced the microglial

phenotype, leading to decreased astrogliosis.

TGF-b1 is elevated in the M(IL-10+TGF-b1) secretome; however,

its role after SCI is more controversial. Some studies have stated that

TGF-b1 might have a detrimental role after SCI (71, 72), while

others have shown that it may have a therapeutic role (73, 74). One

study described TGF-b1 as an inducer and promoter of fibroblasts

distribution and fibrotic scar formation (72). However, in this study

we specifically analyzed the fibrotic scar and observed a significantly

reduction of fibrosis on M(IL-10+TGF-b1)-treated animals; therefore,

the systemic administration or the presence of other molecules on

the secretome seems to inhibit this effect of TGF-b1 on fibrosis. One
possible explanation for this finding is that it may be an indirect

effect mediated by the modified microglia, similar to the mechanism

observed in astrogliosis. It was demonstrated that microglia

activated with anti-inflammatory factors can attenuate

neuroinflammation-induced scarring by rescuing the expression

of Arf and Rho GAP adapter protein 3 (75). Additionally,

transplantation of neonatal microglia and single-cell RNA

sequencing studies have highlighted the crucial role of microglia

in scar-free healing (76). It is also important to point out that

PDGFR+ cells may play a multifaceted role after spinal cord injury,

with conflicting findings reported in the literature. As a major

pericyte marker, PDGFRb has been associated with the

proliferation of scar-forming cells (77). Studies suggest that

inhibiting the proliferation of PDGFRb+ pericytes reduces fibrotic

scar formation by fibroblasts, thereby promoting axon regeneration

and functional recovery following SCI (78). On the contrary,

evidence also indicates a positive role for PDGFRb+ pericytes in

sealing the lesion core after SCI, aiding in injury containment and

protecting neural tissue (77, 79). However, it was demonstrated that

PDGFR+ cells that contribute to normal tissue healing and

regeneration return to their physiological niche, and that their

prolonged presence in the tissue resulted in tissue fibrosis and

aberrant healing (80). Our analysis was performed 38 days after
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injury, which may indicate that these cells are contributing to tissue

fibrosis instead of tissue healing.

Finally, Dihydropyrimidinase-related protein 2, also known as

Collapsin Response Mediator Protein-2 (CRMP2), is recognized for

its affinity for tubulin heterodimers and functions in regulating the

microtubule network, playing an important role in neuronal

polarity establishment and axonal guidance (81). Several authors

have identified CRMP2 as a crucial molecule for axonal

regeneration (82, 83). The presence of this protein in the M(IL-10

+TGF-b1) secretome may be crucial for explaining the regeneration

observed when using DRGs. In vivo CRMP2 was also identified as a

contributor to the maintenance of spinal-cord regenerative ability

(84), playing a key role in promoting axonal regeneration and

leading to functional motor improvements (85). Recently, the

function of CRMP2 was also described in human cells. The

GADD45G/p38 MAPK/CDC25B signaling pathway promotes

dephosphorylation of phosphorylated CRMP2 which in turn

facilitates microtubule polymerization and leads to neurite

outgrowth in human neurons (86).

Identifying the mechanism of action of our therapeutic

approach is challenging; most likely, several proteins and

extracellular vesicles have a distinct therapeutic action over time.

Nonetheless, future experiments will focus on blocking some of the

most promising candidates to understand whether the beneficial

effects of the M(IL-10+TGF-b1) secretome have one or several origins.

In the first week after SCI, most of the monocytes circulating in the

blood will be derived from the spleen reservoir (4), so in a putative

clinical situation there is no need to obtain monocytes from the

spleen of the person with SCI, a sample of blood will work.

However, in future experiments, we will also have to test whether

the M(IL-10+TGF-b1) secretome obtained from monocytes isolated

from blood has the same therapeutic action as those obtained

directly from the spleen. Finally, in this study, we started the

treatment 3 days after injury, which means that in a clinical

scenario patients need to receive injections of the allogeneic-

derived secretome. For autologous treatment, we will need to

assess whether the M(IL-10+TGF-b1) secretome maintains its

therapeutic effect when administered at least 10 days post-injury.
Conclusions

In this study, we demonstrated that different splenic

macrophage phenotypes secrete factors and extracellular vesicles

with distinct therapeutic effects. We conclude that systemic

injection of the M(IL-10+TGF-b1) secretome is the most effective

treatment in promoting functional motor recovery after

compressive SCI. Additionally, the M(IL-10+TGF-b1) secretome

supported the recovery of bladder function. Proteomic analysis

showed that these macrophages secrete a wide variety of proteins

involved in axon extension, dendritic spine maintenance,

establishment of cell polarity, and regulation of astrocytic

activation. The results presented herein are promising, and

additional research is needed to optimize and characterize this

therapy so that it can be translated to clinical use.
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SUPPLEMENTARY FIGURE 1

Splenic macrophages characterization. (A) MCS-F is essential for the survival

and proliferation and differentiation of splenic monocytes into macrophages.
(B) After 24h of polarization with the pro-inflammatory molecules LPS and

INF-g, 89% of the macrophages expressed iNOS. (C) A total of 487 proteins
identified, 81 were exclusive to the secretome of M(INF-g+LPS) macrophages,

35 to M(IL-4+IL-13), and 90 to M(IL-10+TGF-b1). (D) Using the PANTHER tool was

possible to identified metabolite interconversion enzymes (dark blue) as a
common protein class between the different macrophage populations, but as

can be observed by the pie charts, the protein class and the percentage of
proteins in different classes varied considerably among each cell phenotype.

Anti-CD11b antibody was used to identify macrophages (green), anti-iNOS
antibody was used to confirm the polarization (red) and nuclei was
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counterstained with DAPI (blue). Scale bar =50 µm. 2 independent
experiments were performed for the in vitro data and 1 independent

experiment for proteomics analysis.

SUPPLEMENTARY FIGURE 2

Classical (M(INF-g+LPS)) or alternative (M(IL-4+IL-13); M(IL-10+TGF-b1)) activated
macrophages co-cultured with dorsal root ganglia (DRGs) in 2D. DRGs

stained with Neurofilament (green), Macrophages and DRGs stained with
Phalloidin (red) and nuclei counterstained with DAPI (blue). (A) DRGs co-

cultured with M(IL-10+TGF-b1) macrophages had significantly higher axonal

arborization (3, 17 df, p<0.0001) and (B) significantly longer axons
(p=0.0247) than the than M(IL-4+IL-13). (C) M(IL-10+TGF-b1) also had significant

more axonal area (0.0240) than the M(IL-4+IL-13). Two way ANOVA followed by
Tukey post-hoc test was used for axonal arborization analysis and Kruskal-

Wallis test followed by Dunn’s multiple comparisons test was used for longer
distance and axonal area analysis. Data is presented as mean ± standard error

(SEM). *- p< 0.05; ***- p< 0.001. Scale bar =200 µm; M(INF-g+LPS) n=5; M(IL-4

+IL-13) n=4; M(IL-10+TGF-b1) n=5. 2 independent experiments were performed.

SUPPLEMENTARY FIGURE 3

Histological analysis of the spinal cord. (A) Representative image of gray

matter neurons from M(IL-10+TGF-b1)-treated group, cell bodies were
measured by counting the number of positive NeuN cells (red) in laminae

VIII and IX of both ventral horns. (B) Rostral-caudal analysis demonstrated that

the secretome derived from M(IL-10+TGF-b1) cells significantly promoted
neuronal survival at the ventral horns (3, 253 df, p= 0.0438) when

compared with M(IFN-g+LPS). (C) Representative image of fibrotic scar from
vehicle-treated group, anti-PDGFRb antibody (red) was used to analyze

fibrosis in the spinal cord. (D) Although there are not significant differences
in PDGFRb+ total area between treated groups, (E) rostral caudal analysis
show that mice treated with M(IL-10+TGF-b1)-derived secretome had

significantly less fibrosis caudally to the injury area (3, 49 df, p= 0.0370).
ANOVA followed by the Tukey post-hoc test was used to analyze statistical

differences. A total of 312 spinal cord slices were observed to analyze
neuronal survival and 134 slices (53 for the caudal calculation) for fibrosis.

Data is presented as mean ± standard error (SEM). *- p< 0.05. Vehicle n=7; M

(INF-g+LPS) n=6; M(IL-4+IL-13) n=8; M(IL-10+TGF-b1) n=6. 1 independent experiment

was performed.

SUPPLEMENTARY FIGURE 4

LEGENDplex immunoassay. The pro-inflammatory cytokines TNF-a, G-CSF
and IL12p40 were significantly concentrated on the secretome of M(INF-g+LPS).

The cytokine/hormone G-CSF was also significantly concentrated on the M

(INF-g+LPS)-derived secretome. TGF-b1, a cytokine with anti-inflammatory

properties was significantly concentrated in the M(IL-10+TGF-b1)-derived

secretome. Data was analyzed using the two-way ANOVA (2, 130 df,
p<0.0001) followed by the Tukey’s multiple comparisons test. Data is

presented as mean ± standard error (SEM). *- p< 0.05; ***- p< 0.001, M(IFN-

g+LPS) n=4; M(IL-4+IL-13) n=6; M(IL-10+TGF-b1) n=6. Concentration values plotted

in the graph were divided by 10 to account for the concentration step
performed before the analysis. The values for CXCL-1, IL-12p70, and IL-10

were below the limit of detection and were consequently excluded from the

analysis. 1 independent experiment was performed.

SUPPLEMENTARY FIGURE 5

Gating strategy used for flow cytometry analysis of mice blood cells. Doublets

were excluded by FSC-A vs FSC-H scatter. Blood total cells were gated by
SSC-A vs FSC-A scatter. Leukocytes were gated by CD45+ cells and on this

population lymphocytes and myeloid cells were distinguished by CD11b

expression. In lymphocytes population, CD3+CD19- cells were defined as T
cells and CD3-CD19+ cells were defined as B cells. Inmyeloid cell population,

Ly6G vs Ly6C allowed the selection of neutrophils (Ly6G+Ly6C+) and
monocytes (Ly6G-Ly6C+). The selection of eosinophils vs monocytes Ly6C

intermediate vs monocytes Ly6C high was made based on Ly6C vs SSC-
A gating.

SUPPLEMENTARY FIGURE 6

Negative control fluorescence images of the Alexa Fluor 594 goat anti-rabbit

antibody (red) both at the injury site and 800mm from the injury site. DAPI
(blue) was used as structural marker.
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