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Background: Systemic lupus erythematosus (SLE) is a multi-organ chronic

autoimmune disease. Inflammatory bowel disease (IBD) is a common chronic

inflammatory disease of the gastrointestinal tract. Previous studies have shown

that SLE and IBD share common pathogenic pathways and genetic susceptibility,

but the specific pathogenic mechanisms remain unclear.

Methods: The datasets of SLE and IBD were downloaded from the Gene

Expression Omnibus (GEO). Differentially expressed genes (DEGs) were

identified using the Limma package. Weighted gene coexpression network

analysis (WGCNA) was used to determine co-expression modules related to

SLE and IBD. Pathway enrichment was performed using GeneOntology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis for co-driver genes.

Using the Least AbsoluteShrinkage and Selection Operator (Lasso) regressionand

Support Vector Machine-Recursive Feature Elimination (SVM-RFE), common

diagnostic markers for both diseases were further evaluated. Then, we

utilizedthe CIBERSORT method to assess the abundance of immune cell

infiltration. Finally,we used the single-cell analysis to obtain the location of

common diagnostic markers.

Results: 71 common driver genes were identified in the SLE and IBD cohorts

based on the DEGs andmodule genes. KEGG and GO enrichment results showed

that these genes were closely associated with positive regulation of programmed

cell death and inflammatory responses. By using LASSO regression and SVM, five

hub genes (KLRF1, GZMK, KLRB1, CD40LG, and IL-7R) were ultimately

determined as common diagnostic markers for SLE and IBD. ROC curve

analysis also showed good diagnostic performance. The outcomes of immune

cell infiltration demonstrated that SLE and IBD shared almost identical immune

infiltration patterns. Furthermore, the majority of the hub genes were commonly

expressed in NK cells by single-cell analysis.
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Conclusion: This study demonstrates that SLE and IBD share common diagnostic

markers and pathogenic pathways. In addition, SLE and IBD show similar immune

cellinfiltration microenvironments which provides newperspectives for

future treatment.
KEYWORDS

bioinformatic analysis, hub genes, immune cells infiltration, inflammatory bowel
disease, systemic lupus erythematosus
1 Background

Inflammatory bowel disease (IBD) is a chronic, recurrent

inflammatory disease of the gastrointestinal tract, which mainly

includes ulcerative colitis (UC) and Crohn’s disease (CD). The most

prevalent clinical manifestations of IBD include bloody stool,

diarrhea, and recurrent stomach pain (1). At the same time,

parenteral comorbidities like uveitis, arthritis, erythema nodosum,

and systemic lupus erythematosus (SLE) may occur in patients with

IBD (2, 3). Currently, IBD is mainly considered to be an idiopathic

disease caused by a combination of genetic susceptibility, dysbiosis

of the intestinal flora, and abnormal mucosal immune response (4),

but the exact pathogenesis is still unclear.

SLE is an autoimmune disease that involves multiple organs

throughout the body, is prevalent in women of childbearing age,

and can lead to death and disability (5). Patients with SLE

most commonly die from infections, lupus nephritis, lupus

encephalopathy, and cardiovascular events (6). The pathogenesis of

SLE is complex and consists of genetic and environmental factors,

activation of cytokines and complement, and deposition of

circulating immune complexes (7, 8). Their interaction ultimately

leads to inflammation and systemic multi-organ damage. SLE may

manifest independently or in conjunction with IBD (9, 10). In 1956,

Brown et al. reported the first case of SLE in combination with UC

(11). Previous studies indicated that the overall prevalence of UC was

0.4% in the SLE population, which is higher than in the general

population (12). In a multicenter study conducted in Israel, 5018

patients with SLE were matched with 25090 normal people, and it

was discovered that the SLE population had double the prevalence of

CD as the control group (9). This suggests that SLE and IBD may

share a common pathogenesis. Although autoimmune diseases are

recognized as distinct entities, Noel Rose’s hypothesis of “common

threads” indicates that there is a broad overlap in the pathophysiology

and therapeutic strategies of autoimmune disorders (13). Patients

with both SLE and IBD have been shown to have positive anti-

neutrophil cytoplasmic antibodies, anti-lymphocytotoxic antibodies,

anti-nuclear antibodies, and anti-ds-DNA antibodies (10, 14–16). It

has also been demonstrated the positivity rate of anti-nuclear

antibodies and anti-ds-DNA antibodies is as high as 100% in

patients with both disorders, whereas the latter rate is only 49% in

patients with SLE alone (10). In addition, HLA status is highly
02
correlated with these two autoimmune diseases with a hereditary

basis (17, 18). It is challenging to make a clinical diagnosis of IBD

complicated with idiopathic SLE because patients with SLE or IBD

have similar clinical manifestations and laboratory results (9).

Meanwhile, medications used to treat IBD, such as sulfasalazine

and infliximab, cause drug-induced lupus, and SLE patients with

lupus vasculitis have IBD-like gastrointestinal reactions such as

abdominal pain and diarrhea (10). Therefore, the identification of

new diagnostic markers and therapeutic targets for the disease

is crucial.

In recent years, with the development of bioinformatics

technology, we can comprehensively analyze the potential

relationship between SLE and IBD. In this paper, based on the

sequencing data of the two diseases in the database, we used

WGCNA to confirm the co-expression modules between IBD and

SLE. Then we screened out candidate common driver genes of the

two diseases and analyzed them by GO and KEGG to explore

common biological pathways. Hub genes were identified using

LASSO regression analysis and SVM-RFE and their predictive

value was assessed. Furthermore, the hub gene expression profiles

in various immune cells in the SLE population were investigated by

using single-cell analysis.
2 Methods

2.1 Bulk transcriptome data preprocessing

According to the selection strategy based on previous literature

(19–22), we ultimately identified four relatively large transcriptome

datasets originating from peripheral blood samples: GSE72326,

GSE81622, GSE3365, and GSE126124. For SLE, we included 157

SLE samples and 20 healthy control samples from GSE72326, as

well as 15 SLE samples and 25 healthy control samples from

GSE81622. For IBD, we included 85 IBD samples and 42 healthy

control samples from GSE3365, along with 57 IBD samples and 32

healthy control samples from GSE126124. The datasets utilized in

our research consisted of peripheral blood mononuclear cells

(PBMCs). For the transcriptome data mentioned above, we

conducted GeneSymbol mapping according to their respective

platforms. In cases of multiple matches, we took the median
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value. The final expression matrix was obtained by normalizing

using the log2(X+1) method. During preprocessing, after initial

quality control checks, the ‘normalizeBetweenArrays’ function from

the ‘limma’ package was utilized to perform quantile normalization.

This method adjusts the expression values so that each sample has

the same empirical distribution of expression values, effectively

minimizing technical variation among samples. Subsequently, we

included 11,350 genes that overlapped across the four datasets for

further bioinformatics analysis (Supplementary Figure S1).
2.2 Single-cell transcriptome data

Due to the absence of PBMC sequencing data in IBD samples, we

downloaded only the adult SLE dataset from GSE135779, which

includes PBMC data from 7 adult SLE patients and PBMC data

from 5 healthy adults as controls. The preprocessing of single-cell

transcriptome data followed the methodology described in previous

literature using the Seurat package (23). In brief, quality control was

performed by filtering cells with nFeature_RNA > 200, nFeature_RNA

< 2500, and percent.MT < 5. After normalization, analysis was

conducted on the top 2000 highly variable genes in each sample

following variance-stabilizing transformation. Data integration was

carried out using the IntegrateData function, scaling with the

ScaleData function, and dimension reduction with the RunPCA

function. Finally, cell clustering was performed using the

FindNeighbors and FindClusters functions. The AverageExpression

function was used to obtain mRNA expression at the pseudo-bulk level

for different samples and t-tests were performed to compare the

differences in expression of key genes.
2.3 Preselection of diagnostic biomarkers

Differential gene expression (DEGs) analysis was conducted in

the GSE72326 and GSE3365 datasets using the limma package

(limma powers differential expression analyses for RNA-sequencing

and microarray studies), with the cutoff criteria of P.adj.value < 0.05

and |LogFC| > 0.5. We utilized the Benjamini-Hochberg procedure to

adjust the p-values for multiple testing. In the WGCNA analysis (24),

all genes from the GSE72326 and GSE3365 datasets were used to

construct an input matrix. Topological calculations were performed

with soft thresholding ranging from 1 to 20, and the optimal soft

threshold was determined. The relationship matrix was transformed

into an adjacency matrix, then further transformed into a topological

overlap matrix (TOM). Average linkage hierarchical clustering was

applied to classify modules based on TOM, with each module

containing no fewer than 100 genes. Similar modules were

subsequently merged. Finally, Pearson’s method was used to

calculate the correlation between the merged modules and disease

occurrence, and the modules with the strongest positive and negative

correlations with the disease were selected as core modules.

Moreover, we defined gene significance (GS) as a measure of the

association of individual genes with the trait of interest, and module

membership (MM) as the measure of the correlation of gene

expression profiles with the principal component of a given module.
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2.4 GO and KEGG enrichment analysis

GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes

and Genomes) enrichment analyses of common driver genes were

performed using the clusterProfiler package (an R package for

comparing biological themes among gene clusters). GO is used to

annotate the biological processes, molecular functions, and cellular

components of genes. Gene pathways were annotated using the

KEGG. Enrichment was statistically significant when P < 0.05.
2.5 Construction of PPI networks

71 candidate common driver genes were entered into the String

platform (https://string-db.org/) and independent genes were

removed. Cytoscape was used to screen key genes and make a

visual network. The above genes were used in Cytoscape software to

calculate the TOP10 genes within the PPI network using the MCC

algorithm (Identifying hub objects and sub-networks from

complex interactome).
2.6 Machine learning selection of
diagnostic biomarkers

Support Vector Machine (SVM) (25) and LASSO (26) were

utilized as machine learning methods to identify core genes by

removing feature vectors generated by the SVM. LASSO is a

shrinkage estimator that refines the model by constructing a

penalty function, compressing some regression coefficients, and

handling biased estimates in the presence of multicollinearity.

Seventy-one intersecting genes, after deduplication, underwent

PPI network analysis. The top ten genes based on MCC were

used as input for the expression profile. Disease occurrence was

used as the classification variable, and SVM and LASSO were

applied for biomarker selection.
2.7 Immune infiltration analysis

The CIBERSORT algorithm (27) was used to calculate the

proportions of different immune cell types based on the expression

levels of immune cell-related genes. The outputs of 22 infiltrating

immune cell types were integrated to generate an immune cell

composition matrix for analysis. Additionally, the Spearman method

was employed to analyze the correlation between core biomarkers and

the expression levels of infiltrating immune cells. The p-values have

also been adjusted using the same Benjamini-Hochberg method.
2.8 Identification of drug candidates

The common hub genes of SLE and IBD were entered into the

Enrichr platform (https://maayanlab.cloud/Enrichr/) (28). Then,

we screen the drug candidates related to hub genes using Drug

Signatures Database (DSigDB) (29).
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3 Results

3.1 Identification of differentially expressed
genes in SLE and IBD

A total of 798 differential genes were identified based on the IBD

dataset (GSE3365), and the heatmap demonstrated the top 20 genes
Frontiers in Immunology 04
with the most significant up-regulation and down-regulation

(Figure 1A), and the volcano plot showed the identified differential

genes including 417 up-regulated and 381 down-regulated genes,

among which SERPINB2 was the most significant up-regulation gene

in the IBD samples. (Figure 1B). In addition, 262 differential genes

were obtained from the SLE dataset (GSE72326), comprising 179 up-

regulation genes and 83 down-regulation genes (Figures 1C, D).
A B
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D

FIGURE 1

Identification of differentially expressed genes (DEGs). (A) Heatmap of the top 20 genes with the most prominent differential expression in the
IBD-GSE3365 cohort. (B) Volcano plot showing the distribution of DEGs in IBD. Green color represents down-regulated genes and yellow color
represents up-regulated genes. (C) Heatmap of the top 20 genes with the most pronounced expression difference in the SLE-GSE72326 cohort.
(D) Volcano plot showing the distribution of DEGs in SLE. Green color represents down-regulated genes and yellow color represents up-regulated
genes. (E) Venn diagram of overlapping DEGs in SLE versus IBD.
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Finally, a total of 51 overlapping DEGs were established in the SLE

and IBD datasets. The list of specific differential and common genes is

shown in Supplementary File 1.
3.2 Weighted gene coexpression network
analysis of SLE and IBD

We performed WGCNA on the IBD dataset GSE3365 and the

SLE dataset GSE72326 to explore correlations between clinical traits
Frontiers in Immunology 05
and genes. There were no significant outlier samples in the SLE

dataset and IBD dataset. According to the WGCNA method, the

best soft threshold in the IBD dataset was 6, and the best soft

threshold in the SLE dataset was 8 (Figures 2A, B). Based on the

similarity between modules, 25 modules were finally determined in

the IBD dataset as well as 16 modules were determined in the SLE

dataset (Figure 2C, D). Then, the correlations between modules and

traits were calculated, and we found that the greenyellow module

had the strongest positive correlation with IBD (r=0.6) (Figure 2E),

while the green module had the strongest positive correlation with
A B

C

E F

G

D

FIGURE 2

WCGNA analysis of SLE and IBD. (A, B) Mean connectivity for scale independence and soft threshold (b) in the IBD-GSE3365 cohort and the
SLE-GSE72326 cohort. (C, D) Clustering dendrograms of genes in SLE and IBD. (E, F) Heatmap of the correlation analysis of module eigengenes with
clinical phenotypes in SLE and IBD. Red color represents positive correlation and blue color represents negative correlation. (G) Venn diagram for
intersecting genes between greenyellow module in IBD and green module in SLE.
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SLE (r=0.53) (Figure 2F). More importantly, there was also a strong

association between gene significance (GS) and module

membership (MM) within the modules (the cor of IBD=0.82, the

cor of SLE=0.29), reconfirming that the module genes significantly

related to the occurrence of diseases. Ultimately, we discovered 21

overlapping genes by WGCNA that may drive the development of

IBD and SLE (Figure 2G).
3.3 Enrichment analysis of SLE and
IBD co-driver genes

There were 21 overlapping genes for the SLE and IBD modules

and 51 shared genes for the DEGs. Considering that the modules

screened from WGCNA contain a set of genes with analogous

expression profiles, which may not cover the full range of DEGs or

even be considerably distinct from the DEGs that may be crucial for

disease progression, we integrated the DEGs with module genes to

avoid omissions. After removing duplicates again, we acquired 71

candidate common driver genes (Supplementary File 2). These

genes may play an important role in common molecular

mechanisms involved in SLE and IBD. Therefore, we first

performed GO and KEGG enrichment analyses for these genes.

The results showed that these genes were substantially participating

in cytokine-cytokine receptor interaction, immune response-

regulating signaling pathway, myeloid cell differentiation and

other pathways (Figure 3A). In addition, in order to further

elucidate the enrichment pathways of the aforementioned

peripheral circulation marker-related genes, we found that

different genes in the metascape database may exhibit different

functional group distributions, among which the positive regulation

of programmed cell death and inflammatory responses is the most

prominent (Figure 3B). At the same time, enrichment analysis

based on the metascape database also showed a common role of

immunity and inflammation in the etiology of IBD and SLE

(Figure 3C). Finally, to further screen the genes into the same

functional group, we entered 71 candidate common driver genes

into the String database and deleted the independent genes.

Subsequently, the MCC algorithm in Cytoscape software was used

to determine the TOP 10 genes within the PPI network based on the

aforementioned genes (Figure 3D). Finally, GNLY, IL7R, CD40LG,

KLRB1, CD247, CD160, NCR3, GZMK, KLRF1, and IL2RB were

determined as candidate diagnostic markers and IL2RB was the

most significant within the group.
3.4 Identification and validation of
potential shared hub genes by SVM
and LASSO

To further screen the pivotal genes with the most diagnostic

value, we selected the most important features based on a machine

learning algorithm. Among the above 10 candidate genes, SVM and

LASSO regression analysis were performed successively. The

LASSO approach was used to screen 6 genes in the SLE dataset

(Figure 4A) and 8 genes in the IBD dataset (Figure 4B). Meanwhile,
Frontiers in Immunology 06
the SVM method was applied to filter out 8 genes from the SLE

dataset (Figure 4C), whereas the IBD dataset preserved all 10 genes

because irrelevant genes were not filtered out using SVM

(Figure 4D). The genes filtered by the above different methods in

different datasets were overlapped with each other, and five

common diagnostic markers (KLRF1, GZMK, KLRB1, CD40LG,

and IL7R) were finally identified (Figure 4E). Among them, IL7R,

CD40LG, KLRB1, and GZMK were derived from common

differential genes, while KLRF1 was derived from WGCNA.

Furthermore, we used ROC curves (Figures 4F, G) to assess the

diagnostic predictive value of Hub genes in different datasets

(Figures 4F, G). Of these, the AUC values of KLRF1

(AUC=0.868), GZMK (AUC=0.700), KLRB1 (AUC=0.902),

CD40LG (AUC= 0.822), KLRB1 (AUC=0.902), CD40LG

(AUC=0.782), and IL7R (AUC=0.782) in the SLE-GSE72326

dataset were all greater than 0.7 (Figure 4F). Similarly, the AUCs

of KLRF1 (AUC=0.834), GZMK (AUC=0.805), KLRB1

(AUC=0.861), CD40LG (AUC=0.710), and IL7R (AUC = 0.748)

in the IBD-GSE3365 dataset likewise showed their values more than

0.7 (Figure 4G). This indicates that these five genes have good

diagnostic performance and may become common diagnostic

markers for SLE and IBD.

In the validation set, the AUCs of different cohorts also

demonstrated good predictive efficacy (Figures 4H, I), in which the

AUCs of KLRF1, GZMK, KLRB1, CD40LG, and IL7R were 0.719,

0.828, 0.700, 0.834, and 0.891, respectively, in the IBD validation set

(GSE126124) (Figure 4H), and in the SLE validation set (GSE81622),

the AUCs of all diagnostic markers were greater than 0.8, except for

GZMK, whose AUC was less than 0.700 (Figure 4I). Subsequently,

the boxplots showed that all five diagnostic markers in the SLE and

IBD training set were significantly down-regulated in the disease

group (Figures 5A, B). More importantly, a consistent trend of

differences was shown in the SLE validation set as well as the IBD

validation set (Figures 5C, D).
3.5 Identification of candidate drugs based
on hub genes

Based on the DSigDB library in Enrichr, four drugs (choline/

aspirin/ARSENIC/Mustard gas) with significant P-values after

correction were screened by calculating P-values and the binding

scores to core hub genes. These potential small molecule compounds

could be applied as co-treatments for IBD and SLE (Table 1).
3.6 Immune cell infiltration and its
correlation with shared hub genes

Since enrichment analyses demonstrated that immunity is vital

for the development of both diseases, we investigated whether

different patterns of immune infiltration could be recognized by

the CIBERSORT method based on 22 types of immune cells. First,

we evaluated the SLE dataset and the IBD dataset. Differential

expression analysis showed that SLE and IBD showed consistent

differential trends compared to normal samples. More precisely,
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compared to healthy human blood samples, monocytes were

significantly higher in SLE and IBD, while resting NK cells were

significantly downregulated (Figures 6A, B). Interestingly, this

suggests that immune dysregulation and inflammatory responses

seem to occur in both SLE and IBD.

However, common differences in the proportion of immune cell

composition are only one aspect of the shared pathogenesis of SLE

and IBD. We still need to confirm whether these five shared pivotal

genes are associated with immune infiltration in the peripheral

blood, and if so, which immune cells they are in particular
Frontiers in Immunology 07
associated with, as well as to determine their commonality.

Correlation analysis, therefore, revealed that IL7R, KLRB1, and

KLRF1 were negatively linked with neurophils in the SLE dataset

(Figure 6C). Meanwhile, a similar result was seen in the IBD dataset,

where GZMK, CD40LG, KLRB1, and KLRF1 were negatively

related to neurophils, whereas the remaining four common

markers aside from IL7R were positively linked with resting NK

cells (Figure 6D). As most of the core genes are low-expressed in the

disease group (SLE or IBD), it also means that there will be more

neutrophils enriched in the disease. This again suggests that hub
A B

D

C

FIGURE 3

Functional enrichment and pathway enrichment of SLE and IBD co-driver genes. (A) GO analysis and KEGG analysis of common driver genes. (B,
C) Enrichment analysis of 71 candidate common driver genes using Metascape online tool. (D) PPI network analysis of common driver genes.
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genes may be involved in regulating autoimmunity by modulating

the expression of immune cells.
3.7 Single-cell analysis of hub
gene locations

All circulating cells were categorized into 18 clusters following

quality control on the 12 samples in the SLE dataset (Figure 7A).
Frontiers in Immunology 08
As previously described in the literature, the signatures of CD3E,

IL7R, CCR7, CD4, CD8A, and CCL5 were selected for T cell

annotation; the signatures of KLRB1, NKG7, and GNLY were

selected for NK cell annotation; the signatures of LYZ, CD14,

CD68, S100A9, CD16, FCGR3A and CD1C were selected for

monocyte annotation; and the signatures of MS4A1, CD19 and

CD79A were selected for B-cell annotation. Ultimately, we

identified six cell populations, which contained one undefined cell

population (Figure 7B). Subsequently, we performed localization
A B C
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FIGURE 4

Identification of shared hub genes by SVM and LASSO. (A, B) LASSO regression analysis of the SLE-GSE72326 cohort and the IBD-GSE3365 cohort.
(C, D) SVM analysis of the SLE and IBD cohorts. (E) Cross-identification of optimal shared hub genes using SVM and LASSO. (F) ROC curves for five
shared diagnostic markers in the IBD-GSE3365 cohort. (G) ROC curves for five shared diagnostic markers in the SLE-GSE72326 cohort. (H) ROC
curves for five shared diagnostic markers in the IBD-GSE126124 cohort. (I) ROC curves for five shared diagnostic markers in the SLE-
GSE81622 cohort.
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analysis of key diagnostic markers, and we found that the majority

of the markers were commonly expressed in NK cells (Figure 7C). A

reanalysis of the different samples revealed that, as illustrated by the

Bulk transcriptome data, KLRF1 (Figure 7D), KLRB1 (Figure 7E),

CD40LG (Figure 7F) and IL7R (Figure 7G) exhibited decreased

expression in SLE. Whereas, IL7R expression was not significantly

different among samples (Figure 7H). Moreover, pseudobulk
Frontiers in Immunology 09
comparison allows for a more appropriate comparison between

patient groups by averaging the gene expression data, thereby

minimizing the noise and variability inherent in single-cell data.

Therefore, we again performed a differential analysis based on

single-cell pseudo-bulk data to probe the expression of the five

genes mentioned above. Consistently, all genes except IL7R were

downregulated in expression in SLE samples (Figure 7I).
A

B

C

D

FIGURE 5

The expression of hub genes in SLE and IBD. (A, B) Expression of five hub genes in SLE-GSE72326 and IBD-GSE3365. (C, D) Expression of five hub
genes in SLE-GSE81622 and IBD-GSE126124. Green color represents normal people and yellow color represents SLE/IBD patients. *p< 0.05; **p<
0.01; ***p< 0.001; ****p< 0.0001.
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4 Discussion

SLE and IBD are both autoimmune diseases and can occur at the

same time. Usually, SLE is diagnosed before IBD (10). It has been

reported that persistent diarrhea caused by UC is associated with SLE

(30), indicating that one autoimmune disease may be comorbid with

other autoimmune diseases. Shared autoantibodies and HLA-

associated genetic susceptibility may be a common pathogenic

mechanism for SLE and IBD, but the latter remains controversial.

In a study with 1305 SLE patients, mutations in the risk allele for IBD,

CARD15, were found to have a strong effect on the risk of developing

SLE (31), but the opposite results were obtained in another study

(32). In addition, differential diagnosis of IBD combined with

idiopathic SLE is challenging because of the intersecting clinical

manifestations of the two diseases. patients with SLE often present

with gastrointestinal symptoms such as abdominal pain, diarrhea,

and black stools, which may be due to the patient’s concurrent

combination with IBD; however, it is necessary to rule out SLE-

caused conditions such as gastrointestinal vasculitis, intestinal

peristalsis, plasma membrane inflammation, and pancreatitis (33).

Musculoskeletal manifestations are also the most common

extraintestinal complications of IBD, with peripheral arthritis and

non-inflammatory arthralgia being the most common, and may be

accompanied by generalized fibromyalgia and dactylitis (34), which

further increases the difficulty of clinical differential diagnosis.

Therefore, identification of shared biomarkers and pathogenesis is

crucial for the diagnosis and treatment of the diseases.

Firstly, we identified 51 overlapping DEGs in the IBD and SLE

datasets and used WCGNA to determine the most strongly associated

modules. By integrating the WCGNA modules and DEGs, 71

candidate co-driver genes were finally screened. The enrichment

results of GO and KEGG showed significant up-regulation of

cytokine-cytokine receptor interactions, immune response

modulation signaling pathways, and myeloid differentiation signaling

pathways, suggesting that these genes are involved in the regulation of

immune responses. Immune system dysregulation could be a major

factor in the development of SLE and IBD. Subsequently, enrichment

analysis of common driver genes based on the metascape database

illustrated the same results, and these genes were most closely linked to

positive regulation of programmed cell death (PCD) and

inflammatory response.

PCD is the genetically controlled, autonomous and orderly

death of cells in order to maintain the stability of the intracellular
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environment (35). Apoptosis, necroptosis, autophagy, pyroptosis,

and necrosis are the main forms of cell death (36). Numerous

studies have shown that SLE may be an autoimmune disease caused

by cellular debris undergoing PCD (37). In SLE patients, there is a

defect in apoptosis, which then leads to secondary cell necrosis (38,

39). The former is thought to be immunologically silent, but

necrotic cellular debris is pro-inflammatory (40). Once cells are

fragmented, increased release of nucleosomes will lead to

autoantibody production as well as deposition of immune

circulating complexes (ICs), thus triggering an autoimmune

response (41). Miao et al. found that, besides dysregulated

apoptosis and necrotic cell death, cellular pyroptosis also plays an

important role in the pathogenic process of SLE. Neutrophils are

activated in SLE patients, and their release of nuclear DNA and

mitochondrial DNA (mtDNA) is increased. This leads to the

oligomerization of the pore-forming protein gasdermin D

(GSDMD) to form pore membranes, which releases extracellular

DNA and inflammatory mediators as well as promotes the

development of SLE (42). Besides, immune-inflammatory

mechanisms are essential in the pathogenesis of IBD. In patients

with IBD, T cells in the intestinal lamina propria are overactivated,

releasing increased proinflammatory cytokines, such as TNF-a.
This contributes to PCD of intestinal epithelial cells, disruption of

the mucosal barrier, and inflammatory responses to intestine (43–

45). Kaser et al. demonstrated that the endoplasmic reticulum

stress-induced unfolded protein response (UPR) may be an

additional reason for the onset and persistence of intestinal

inflammation in IBD. Defects in the UPR-related gene XBP1

directly lead to the activation of key pro-inflammatory pathways

in the intestine, making mice more susceptible to IBD (46).

Then, based on 71 common driver genes, we used Cytoscape

software to construct a PPI network to identify Hub genes and

finally selected 10 genes as candidate diagnostic markers. To further

screen the most diagnostic Hub genes, we used SVM and LASSO

regression analysis to identify the best diagnostic biomarkers.

Among them, five genes, KLRB1, KLRF1, GZMK, IL-7R and

CD40LG, showed good diagnostic performance which was

confirmed by ROC curves in the training and validation sets of

IBD and SLE cohorts, respectively. More significantly, all five genes

showed a consistent down-regulation trend in both IBD and SLE

patients compared to controls.

KLRB1 (killer cell lectin-like receptor B1) is a member of the KLR

gene family and encodes a C-type lectin receptor (CD161) to

recognize ligands (47). As an inhibitory immune receptor, KLRB1

is commonly expressed on CD4+, CD8+, NK cells, NKT cells, and

other T-cell subsets (48). Almost all inhibitory immunoreceptors

contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in

their cytoplasmic tails to dock downstream effectors that mediate cell

proliferation, differentiation, and cytotoxicity (49). For example,

KLRB1 can interact with the ligand Lectin-like transcript 1 (LLT1)

to inhibit NK cell toxicity (48, 50). Previous studies have

demonstrated that KLRB1 expression is downregulated in SLE (51–

53), which is also consistent with the results of this paper. Apart from

SLE, aberrant KLRB1 expression has been correlated with other

autoimmune diseases and inflammatory responses, including

rheumatoid arthritis (RA) (54, 55), multiple sclerosis (MS) (56),
TABLE 1 Identification of candidate drugs for the treatment of SLE and
IBD based on the hub genes.

Term P-value
Adjusted
P-value

Odds
Ratio

choline CTD 00005662 6.34E-05 0.007676057 271.3741497

aspirin CTD 00005447 2.10E-04 0.012732687 52.25

ARSENIC
CTD 00005442

7.25E-04 0.029230461 33.78529412

Mustard gas
CTD 00006356

0.00111561 0.033747216 62.21069182
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and sepsis (57). Nevertheless, the expression of KLRB1 is not entirely

consistent in these immunoinflammatory diseases. KLRB1 expression

is up-regulated in early RA (54) and MS (56) and down-regulated in

advanced RA (55) and sepsis (57). The exact mechanism remains

unclear, but KLRB1 may develop into a biological marker specific to

autoimmune diseases in the future. KLRF1 (killer cell lectin-like

receptor F1) is an activated homodimeric C-type lectin-like receptor

(CTLR) and a member of the KLR gene family (58). It is expressed in
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the vast majority of NK cells and is identified as a marker of mature

NK cells in secondary lymphoid tissue (59). KLRF1 suppresses NK

cells and monocytes by interacting with MHC class I ligands to

influence autoimmunity (60). A previous study showed that KLRF1

was able to inhibit the secretion of inflammatory mediators such as

TNF and IFN-g (61). Perhaps KLRF1 could serve as a potential

therapeutic target for IBD and SLE in the future. GZMK (Granzyme

K) is a granule-secreting enzyme of the serine protease family that
A

B

C D

FIGURE 6

Correlation of hub genes and immune cell infiltration in SLE and IBD. (A, B) Boxplots showing the pattern of immune cell infiltration in the SLE-
GSE72326 cohort and the IBD-GSE3365 cohort. Blue color represents SLE/IBD patients and yellow color represents normal people. (C, D) Heatmaps
showing the correlation between hub genes and immune cells. Green color represents positive correlation and red color represents negative
correlation. *p< 0.05; **p< 0.01; ***p< 0.001; ns, non-significant.
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induces cell death and regulates the inflammatory response (54, 62).

Although GZMK induces the secretion of several pro-inflammatory

factors, including IL-1b, IL-6, IL-8 and TNF-a, and secretes proteases
that degrade the extracellular matrix and amplify the inflammatory

response (63–67), GZMK also reduces mature dendritic cells and

antigen presentation to inhibit the body’s immune response (68),

which may be an important pathogenetic mechanism of SLE and IBD

caused by downregulation of GZMK. IL7R (interleukin 7 receptor) is

a heterodimeric complex composed of IL-7Ra and g chains (69) and
is involved in autoimmune diseases such as IBD (70, 71), RA (72),

and MS (73). It is also a risk factor for the development of

hyperimmune and inflammatory responses in the body (69). It has

been shown that IL7R plays a role in the pathogenesis of IBD, whose

polymorphisms affect the risk of UC (71, 74, 75). Vranova et al. found

that the IL-7/IL-7R pathway regulates tissue fluid homeostasis, body
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inflammation and autoimmunity. On the one hand, IL-7/IL-7R

promotes the proliferation of memory T cells and enhances the

cytotoxicity of CD8+ T cells, inducing excessive immune responses.

On the other hand, IL-7/IL-7R stimulates lymphangiogenesis,

promotes lymphatic return, and attenuates inflammatory responses

by removing excess tissue fluid and inflammatory mediators in mice

(76). Perhaps, activation of the IL-7R signaling pathway to reduce

tissue inflammation could be an emerging therapeutic strategy for

SLE and IBD. CD40LG, also known as CD40L, is a type II

transmembrane protein that is crucial for regulating autoimmunity

and cell death (77, 78). CD40L is subject to various types of genetic

mutations and is highly heterogeneous (79). In a prior case report, the

researcher found that downregulation of CD40L caused by missense

mutations might induce various autoimmune diseases including IBD

(80). Taken together, the five hub genes (KLRB1, KLRF1, GZMK,
A
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FIGURE 7

Single-cell analysis of hub gene expression profiles. (A) UMAP visualization of 18 circulating cells in SLE. (B) UMAP visualization of immune cells in
SLE. (C) Localization analysis of hub genes. (D–H) Cellular expression distribution of the five hub genes in controls and SLE patients. (I) Differential
analysis based on single-cell pseudo-bulk data. *:p< 0.05; **:p< 0.01; ***:p< 0.001; ns: non-significant.
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IL7R and CD40LG) all participate in the regulation of autoimmune

and inflammatory responses and may be potential biomarkers for

SLE with IBD.

Taking into account the important role of immune cells in the

pathogenesis of SLE and IBD, we analyzed the patterns of immune

cell infiltration in both diseases using CIBERSORT. The results

showed that SLE and IBD present a similar immune infiltration

landscape. More specifically, there was a significant increase in

monocytes and a significant decrease in resting NK cells in SLE

versus IBD. Previous studies have shown that patients with SLE

have a decreased total number of NK cells and suppressed

cytotoxicity, which may be correlated with IFN-a-mediated cell

death (81–84). The decrease of NK cells is an important risk factor

for the development of lupus nephritis and disease activity (85, 86).

Similarly, Bittencourt et al. discovered that NK cells in IBD patients

were functionally impaired, had diminished cytotoxicity, and

expressed different killer cell immunoglobulin-like receptors

(KIRs). Dysfunctional NK cells can release more pro-

inflammatory cytokines including IL-17A and TNF-a ,
exacerbating the inflammatory response in patients (87).

Monocytes can differentiate into macrophages and dendritic cells

(DCs) in the periphery. These innate immune cells play an

important role in the pathogenesis of SLE and IBD. Recently, it

has been shown that plasmacytoid dendritic cells (pDCs) from SLE

patients produce large amounts of IFN-a, which, upon binding to

the receptor, activates the JAK-STAT signaling pathway and

positively feedback stimulates the activation of pDCs and T cells

(88). Moreover, an imbalance of macrophage polarization and

aberrant activation underlie the development of SLE (89, 90).

Recently, Hegarty et al. put forward the idea that monocytes and

macrophages appear to be the drivers of intestinal inflammation in

IBD. Macrophages both secrete large amounts of pro-inflammatory

factors, such as IL-6, TNF, and IL-1b, and elicit abnormal mucosal

responses to intestinal flora (91). The above studies again

demonstrate the importance of immune dysregulation and

inflammatory response in SLE and IBD.

Moreover, as most of the core genes are low-expressed in the

disease group (SLE or IBD), it also means that there will be more

neutrophils enriched in the disease. Li et al. uncovered a novel

mechanism implicating the dysregulation of neutrophil ferroptosis

in the initiation and progression of systemic lupus erythematosus

(SLE), suggesting a pivotal role of innate immune cell abnormalities

in the disease (92). In parallel, a study by Knight et al. in the context

of neutrophil extracellular traps (NETs) highlighted their potential

as self-antigens that could mediate organ damage in autoimmune

diseases, thus providing a link between NETs and the pathogenesis

of conditions like SLE (93). This aligns with the observations made

by Pruchniak et al., who explored NET generation and degradation

in patients with granulomatosis with polyangiitis and SLE, further

elucidating the complex role of NETs in autoimmune diseases (93).

Adding to this, research conducted by Gottlieb et al. on neutrophil

extracellular traps in pediatric inflammatory bowel disease (IBD)

underscores the significance of NETs in the inflammatory processes

underlying IBD, pointing towards their potential as therapeutic

targets (94). These studies underscore the multifaceted role of

neutrophils and NETs in autoimmune and inflammatory diseases,
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targets for therapeutic intervention.

Finally, we downloaded single-cell datasets from SLE patients

and performed single-cell annotation analysis to detect cellular

heterogeneity and elucidate its underlying mechanisms. Four cell

populations including B cells, T cells, NK cells and monocytes, were

mainly identified, in which five hub genes were expressed on

immune cells to varying degrees, and the expression trends were

consistent with the previous analysis. This provides a direction for

further study on the mechanism behind the co-morbidity of SLE

and IBD.

In summary, this study explored and identified the hub genes of

IBD and SLE for the first time, and analyzed the possible

pathogenesis. Five key genes, KLRB1, KLRF1, GZMK, IL-7R and

CD40LG, may become potential biomarkers. However, this paper

had some limitations. Since the vast majority of SLE and IBD

patients in the clinic have been treated with hormones and

immunosuppressants for many years, this poses difficulties in the

validation of the key pivotal genes. In the future, we will collect

blood and tissue samples of patients with initial onset of disease to

verify the expression and potential function of the hub genes.
5 Conclusion

In this study, we found that positive regulation of programmed

cell death and inflammatory response may be the common

pathogenic mechanisms of SLE and IBD. Also, we established five

key genes (KLRB1, KLRF1, GZMK, IL7R and CD40LG) as

characteristic diagnostic markers. In addition, SLE and IBD

exhibit comparable patterns of immune cell infiltration, which

provides direction for future treatment.
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