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Formyl peptide receptor 2
regulates dendritic cell metabolism
and Th17 cell differentiation
during neuroinflammation
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and Triantafyllos Chavakis2‡

1Laboratory of Innate Immunity and Inflammation, Department of Basic and Translational Sciences,
Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States, 2Institute for Clinical
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Universität Dresden, Dresden, Germany, 3Laboratory of Adaptive Immunity, Institute of Molecular
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Formyl peptide receptor 2 (FPR2) is a receptor for formylated peptides and

specific pro-resolving mediators, and is involved in various inflammatory

processes. Here, we aimed to elucidate the role of FPR2 in dendritic cell (DC)

function and autoimmunity-related central nervous system (CNS) inflammation

by using the experimental autoimmune encephalomyelitis (EAE) model. EAE

induction was accompanied by increased Fpr2 mRNA expression in the spinal

cord. FPR2-deficient (Fpr2KO) mice displayed delayed onset of EAE compared to

wild-type (WT) mice, associated with reduced frequencies of Th17 cells in the

inflamed spinal cord at the early stage of the disease. However, FPR2 deficiency

did not affect EAE severity after the disease reached its peak. FPR2 deficiency in

mature DCs resulted in decreased expression of Th17 polarizing cytokines IL6,

IL23p19, IL1b, and thereby diminished the DC-mediated activation of Th17 cell

differentiation. LPS-activated FPR2-deficient DCs showed upregulated Nos2

expression and nitric oxide (NO) production, as well as reduced oxygen

consumption rate and impaired mitochondrial function, including decreased

mitochondrial superoxide levels, lower mitochondrial membrane potential and

diminished expression of genes related to the tricarboxylic acid cycle and genes

related to the electron transport chain, as compared to WT DCs. Treatment with
Abbreviations: DC, Dendritic cell; FPR2, Formyl peptide receptor 2; TLR, Toll-like receptor; Th17 cell, T helper 17

cell; NO, nitric oxide; EAE, Experimental autoimmune encephalomyelitis; MS, Multiple sclerosis; OCR, Oxygen

consumption rate; ECAR, Extracellular Acidification Rate; OXPHOS, Oxidative phosphorylation; LPS,

Lipopolysaccharide; dLN, draining lymph node; CNS, Central nervous system; SEITU, S−ethylisothiourea.

TMRE, tetramethylrhodamine ethyl ester; TCA, tricarboxylic acid; ETC, electron transport chain.
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a NO inhibitor reversed the reduced Th17 cell differentiation in the presence of

FPR2-deficient DCs. Together, by regulating DCmetabolism, FPR2 enhances the

production of DC-derived Th17-polarizing cytokines and hence Th17 cell

differentiation in the context of neuroinflammation.
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1 Introduction

Experimental autoimmune encephalomyelitis (EAE) is a well-

established animal model for studying multiple sclerosis (MS), a

chronic autoimmune disorder of the central nervous system (CNS)

(1, 2). In EAE, infiltration of autoreactive T cells into the CNS drives

inflammation, demyelination of neurons and neuroaxonal damage.

Key effector cells implicated in CNS pathology of EAE and MS

include IFNg-producing T cells (Th1) and IL17-producing T cells

(Th17) (3). EAE was initially thought to be driven by Th1-mediated

mechanisms; however, Th17 cells, i.e. CD4+ T cells expressing IL17,

are now considered the primary pathogenic subset of T cells in EAE

(4–7).

The initiation of EAE involves the interaction of antigen-

specific naïve CD4+ T cells with antigen-presenting dendritic cells

(DCs) during the priming phase. During the primary immune

response, immune cells such as DCs, B cells, and macrophages

play a role in EAE development by providing costimulatory signals

and secreting inflammatory cytokines (8–10). The functional

differentiation of CD4+ T cells into Th1 and Th17 cell lineages is

influenced by specific cytokines produced by activated antigen-

presenting cells (11). In the presence of IFNg and IL12, naïve CD4+

T cells differentiate into Th1 cells (12, 13), whereas TGFb, IL6, IL23,
and IL1b promote Th17 development (5, 14–16). Th1 and Th17 cell

subsets proliferate and migrate from lymph nodes to the CNS,

driving CNS inflammation, which involves recruitment of further

inflammatory cells (17). Therefore, the interaction between DCs

and T cells in lymphoid organs plays a crucial role in determining

the character and magnitude of the ensuing T cell response.

Upon encountering signals mostly mediated by pattern-

recognition receptors, immature DCs upregulate the expression of

major histocompatibility complex (MHC) II and co-stimulatory

molecules (CD80, CD86, and CD40), transitioning to a mature state

associated with changes in cellular metabolism and the ability to

secrete inflammatory cytokines (18). DCs undergo two rounds of

metabolic reprogramming upon activation. Within minutes after

Toll-like receptor (TLR) stimulation, the glycolytic rate of BMDCs

increases rapidly and remains elevated for several hours,

independent of inducible nitric oxide synthase (iNOS) signaling
02
(19, 20). In the later stage of DC activation, the sustained glycolytic

reprogramming of DCs is dependent on nitric oxide (NO), which

blocks mitochondrial oxidative phosphorylation (OXPHOS) and

promotes glycolysis as the energy source (20, 21). This finding

indicates that NO production in mature DCs is integral to their

metabolic reprogramming. Recent studies have reported an

inhibitory role of NO on DC-mediated inflammation. Inhibition

of iNOS enhances DC costimulatory molecule expression and

inflammatory cytokine production (22, 23). Consistently,

administration of a chemical NO-donor significantly reduces

costimulatory molecule expression and IL12, IL6, and TNFa
cytokine production in human DCs, thereby modulating CD4+ T

cell polarization (24, 25). Moreover, NO significantly suppresses

Th17 cell proliferation and differentiation; mice lacking iNOS

(NOS2) develop more severe EAE with increased Th17 cell

accumulation in the spinal cord, as compared to wild-type (WT)

controls (26, 27).

Formyl Peptide Receptor 2 (FPR2) is a transmembrane G

protein-coupled receptor primarily expressed in phagocytic

leukocytes, including DCs, macrophages, and neutrophils (28,

29). FPR2 displays a broad ligand promiscuity and recognizes

formylated peptides and lipid mediators derived from invading

pathogens, damaged tissues, or dead cells. FPR2 has been reported

to exert both pro-inflammatory and pro-resolution effects,

depending on the nature of the ligand (30, 31). The role of FPRs

in different inflammatory reactions has been studied (32). However,

the role of FPR2 in modulating T cell responses remains less clear. It

has been shown that FPR2 ligation inhibits the expansion of effector

pathogenic CD4+ T cells in two arthritis models, whereby FPR2

signaling enhances IL17 production in CD4+ T cells, while leaving

IFNg unchanged (33). Additionally, Fpr2KO mice displayed

attenuated disease severity in an allergic airway inflammation

model, associated with reduced recruitment of CD11c+ DCs into

airway mucosa and secondary lymphoid organs (34). Other studies

have suggested a potential role of FPRs in modulating brain

inflammation (32, 35).

Here, we sought to investigate the involvement of FPR2 in the

immune response and EAE development by utilizing FPR2-deficient

mice and focusing on the role of DCs. Our findings indicate that
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FPR2 deficiency in DCs leads to elevated NO production and

decreased production of Th17 polarizing cytokines by DCs,

thereby resulting in reduced Th17 differentiation and delayed EAE

disease onset.
2 Materials and methods

2.1 Mice and induction of EAE

Fpr2KO mice in C57BL/6 background were previously described

(34). All mice were maintained under specific pathogen-free

conditions. Animal experiments were approved by the

Landesdirektion Sachsen, Germany and by the Institutional

Animal Care and Use Committee of the University of

Pennsylvania. EAE was induced in eight to twelve-weeks-old

female mice, by using the myelin oligodendrocyte glycoprotein

35–55 (MOG35-55) peptide (American Peptide Company,

Sunyvale, CA, USA and Genemed Synthesis Inc., San Antonio,

TX, USA) model (36, 37). In the course of EAE, mice were scored

daily according to the following scale: 0, no clinical sign; 1, limp tail

or hind limb weakness; 2, limp tail and hind limb weakness; 3, limp

tail and unilateral hind limb paralysis; 4, limp tail and bilateral hind

limb paralysis; 5, four leg paralysis; and 6, moribund or dead. For

disease scoring, mice that maintained a clinical score of 1 or higher

for at least two consecutive days were included (38).
2.2 Hematoxylin & eosin staining

Spinal cords were collected from euthanized mice after systemic

perfusion and fixed in 4% paraformaldehyde overnight, followed by

immersion in 10% and 30% sucrose in PBS stepwise. The tissue was

embedded in Optimal Cutting Temperature (OCT) media. Ten mm
sections of the spinal cords were stained with hematoxylin and

eosin (H & E). Images of the sections were collected using a Nikon

Eclipse Ni-E microscope.
2.3 Isolation of leukocytes and flow
cytometry analysis

Spinal cord was collected from euthanized mice after systemic

perfusion and a single-cell suspension was prepared by passing

through a 100 µm cell strainer (39–41). In order to obtain a

leukocyte-enriched spinal cord fraction, myelin was removed

using Myelin Removal Beads II (Miltenyi Biotec, Bergisch

Gladbach, Germany). Spinal cord leukocytes were pre-incubated

with anti-mouse CD16/32 (Fc block; BD Biosciences, Heidelberg,

Germany) and stained with the following antibodies using separate

panels for myeloid and lymphoid cells: anti-CD45-PerCP

(Biolegend, clone 30-F11), anti-CD11b-PeCy7 (Biolegend, clone

M1/70), anti-Ly6G-PE (Biolegend, clone 1A8), anti-F4/80-AF488

(Biolegend, clone BM8), anti-CD11c-APC (Biolegend, clone N418),

anti-CD4-AF488 (Biolegend, clone GK1.5) and anti-TCRb-Pe-Cy7
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(Biolegend, clone H57–597). For the analysis of leukocytes at day 7

post-immunization, single cell suspensions were prepared from

inguinal draining lymph nodes (dLN) using a 70 µm strainer.

Following antibodies were used: anti-CD45-Pacific Blue

(Biolegend, clone 30-F11), anti-CD4-APC-Cy7 (Biolegend, clone

GK1.5), anti-CD8a-PerCP (Biolegend, clone 53–6.7), anti-CD11c-

APC (Biolegend, clone N418), anti-F4/80-FITC (Biolegend, clone

BM8), anti-CD19-PE (Biolegend, clone 6D5).
2.4 Ex vivo recall assay

Leukocytes isolated from inflamed spinal cords or dLNs from

EAE mice at different days post-immunization, as described in the

figure legends, were re-stimulated with MOG35-55 (25 µg/ml)

overnight at 37°C, and treated with Brefeldin A for the last 4 h.

To detect IL17A or IFNg secretion, culture supernatants were

collected prior to Brefeldin A treatment, and stored at -80°C until

analysis. The cells were stained with anti-CD4-eFluor 450

(Thermofisher, clone GK1.5) or anti-CD4-PE (Biolegend, clone

GK1.5) prior to fixation and permeabilization step using Foxp3

intracellular staining kit (eBioscience, Frankfurt, Germany). APC-

conjugated antibody to IL17A (Biolegend, Clone TC11–18H10.1)

or FITC-conjugated antibody to IL17A (Biolegend, Clone TC11–

18H10.1) and AF488-conjugated antibody to IFNg (Biolegend,

XMG1.2) or APC-conjugated antibody to IFNg (Biolegend,

XMG1.2) were used. Cell suspension from dLNs was stained with

Zombie aqua dye (Zombie Violet™ Fixable Viability kit, Biolegend)

to distinguish between live and dead cells.
2.5 Bone marrow-derived dendritic
cells (BMDCs)

Bone marrow cells were isolated from femurs of mice, and cells

were then incubated in complete RPMI1640 medium supplemented

with 20 ng/ml GM-CSF (PeproTech, Rock Hill, NJ, USA) and 20

ng/ml IL4 (PeproTech, Rock Hill, NJ, USA). Half of the culture

medium was refreshed every 3 days and on day 7–9, the non-

adherent cells were harvested and CD11c+ cells were isolated by

CD11c microbeads (Miltenyi Biotech) and seeded for subsequent

experiments. To stimulate BMDCs, 100 ng/ml LPS (Escherichia coli

serotype 0111:B4, Sigma-Aldrich) was added and incubated for

different time points (3 h, 6 h or overnight). For analysis of BMDC

activation, cells were treated with 100 ng/ml LPS for 3 hours, and

flow cytometry was conducted using the following antibodies: anti-

CD80-eFluor450 (eBioscience, Clone 16–10A1), anti-CD86-Pe-Cy7

(BD Bioscience, Clone GL1), anti-I-Ab-FITC (Biolegend, Clone

AF6–120.1), anti-CD11c-APC (Biolegend, Clone N418). To detect

mitochondrial superoxide levels, flow cytometry was performed

using MitoSOX Red superoxide indicator (Invitrogen) at a final

concentration of 5 mM, according to the manufacturer’s

instructions. The mitochondrial membrane potential was

quantified by flow cytometry using tetramethylrhodamine ethyl

ester (TMRE, Invitrogen) at a final concentration of 100 nM,
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according to the manufacturer’s instructions. For studies related to

involved signaling pathways, BMDCs were pre-treated for 30 mins

with MEK/ERK pathway inhibitor (U0126, 10 mM, Sigma-Aldrich)

or PI3K/Akt inhibitor (LY294002, 10 mM, EMD Millipore

Corporation), or vehicle control (DMSO), followed by LPS

treatment for 3 hours and downstream analysis.
2.6 In vitro Th17 cell differentiation

Naïve CD4+ T cells (CD4+CD62Lhigh) were isolated from WT

mice using a cell sorter (FACSAria, BD Biosciences). PE-conjugated

antibody to CD4 (eBioscience, GK1.5) or PerCP-conjugated

antibody to CD62L (Biolegend, MEL-14) were used. For DC-

mediated Th17 cell differentiation, BMDCs were co-cultured with

the naïve CD4+ T cells in the presence of purified anti-CD3

antibody (0.3 µg/ml) (145–2C11, Biolegend), human TGFb1 (3

ng/ml) (Biolegend), and LPS (100 ng/ml) (Escherichia coli serotype

0111:B4, Sigma-Aldrich) for 4 days. Cells were re-stimulated with

PMA (50 ng/ml) (Sigma-Aldrich) and Ionomycin (1 µg/ml)

(Sigma-Aldrich) for 4 hours in the presence of Brefeldin A

solution (eBioscience). Cells were harvested and blocked with 1

µg/ml of Fcg block (BD, Heidelberg, Germany) for 10 mins at 4°C in

FACS buffer (PBS containing 0.1% BSA and 0.1% NaN3). The cells

were stained with PE-conjugated CD4 for 30 mins at 4°C, washed

twice with permeabilization buffer, fixed, permeabilized in a

fixation/permeabilization buffer (eBioscience, Frankfurt,

Germany) for 40 mins at 4°C, stained with FITC-conjugated

IL17A (Biolegend, Clone TC11–18H10.1) for 30 min at 4°C and

then analyzed by flow cytometry. For NO inhibition assay, 500 µM

S−ethylisothiourea (SEITU) (Cayman Chemical) was added to the

co-culture plate.
2.7 Quantitative real-time PCR (qRT PCR)

Total RNA was extracted using a RNeasy plus kit (QIAGEN) or

Trizol (Invitrogen, Carlsbad, CA), and cDNAwas generated with an

oligo(dT) primer and the iScript cDNA kit and then the resulting

cDNAs were subjected to real-time PCR amplification with SsoFast

EvaGreen Supermix kit (Bio-Rad, Munich, Germany) by using Bio-

Rad CFX 384 Real-Time System (Bio-Rad, Munich, Germany) or

the Applied Biosystems 7500 Fast Real-Time PCR System according

to the manufacturer’s protocol (Life Technologies). Data were

analyzed using the comparative (DDCt) method. 18S or Gapdh

was used as an internal control. Primer sequences used are listed as

follows; Il23p19 (Forward: 5’-AGCGGGACATATGAATCTACTA

AGAGA-3’, Reverse: 5’-GTCCTAGTAGGGAGGTGTGAAGTTG-

3’), Nos2 (Forward- 5’-CCTGCTTTGTGCGAAGTGTC-3’,

Reverse: 5’-CCTCCTTTGAGCCCTTTGTG), Il1b (Forward: 5’-

ATCCCAAGCAATACCCAAAG-3’, Reverse: 5’-GTGCTGA

TGTACCAGTTGGG-3’), Il17a (Forward: 5’-CGCAAAAGTG

AGCTCCAGA-3’, Reverse: 5’-TGAGCTTCCCAGATCACAGA-

3’), 18S (Forward: GTTCCGACCATAAACGATGCC-3’, Reverse:

5’-TGGTGGTGCCCTTCCGTCAAT-3’), Fpr2 (Forward: 5’-

CTGAATGGATCAGAAGTGGTGG-3’, Reverse: 5’-CCCAAAT
Frontiers in Immunology 04
CACTAGTCCATTGCC-3’), Il6 (Forward: 5’- CCTTCCTA

CCCCAATTTCCAAT-3’, Reverse: 5’-AACGCACTAGGTTTGCC

GAGTA-3’). TaqMan probes and gene-specific primers for

detection and quantification of mouse genes investigated in

certain experiments were purchased from Thermo-Fisher

Scientific and included: Fpr2 (Mm00484464_s1), Nos2

(Mm00440502_m1) , Aco2 (Mm00475673_g1 ) , I dh1

(Mm00516030_m1), Idh3a (Mm00499674_m1), Suclg1

(Mm00451244_m1) , Dla t (Mm00455160_m1) , Ogdh

(Mm00803119_m1), Fh1 (Mm01321349_m1), Ndufa9

(Mm00481216_m1), Sdhb (Mm00458272_m1), Uqcrc2

(Mm00445961_m1) , Atp5b (Mm01160389_g1) , Cox2

(Mm03294838_g1), Gapdh (Mm99999915_g1).
2.8 Seahorse analysis

BMDCs (7x104) were plated in 50 ml XF Seahorse medium

(Agilent, Santa Clara, CA, USA) (pH 7.4) supplemented with 2 mM

glutamine, 10 mM glucose and 2 mM sodium pyruvate. Plates were

centrifuged at 200 g without break and cells were then incubated for

30 min at 37°C without CO2. Afterwards, 130 ml of the same XF

medium was added to each well. Real-time measurements of oxygen

consumption rate (OCR) were obtained as indicated by the

manufacturer’s instructions. OCR was measured at basal

conditions and after sequential stimulation of the cells with 1 mM
Oligomycin, 1 mM FCCP and 0.5 mM Rotenone/Antimycin (all

included in the Mitostress kit, Agilent, Waldbronn, Germany) in a

Seahorse XFe96 Analyzer (Agilent) using the Wave Software

(Agilent). The measurements were normalized by the DNA

content of the cells, assessed by using the CyQUANT cell

proliferation kit (Invitrogen).
2.9 Measurement of cytokines by ELISA

Analysis of IL6, IL1b, IL23, IFNg, IL17A in culture supernatants was

performedwith theDuoSet ELISA kit (R&D Systems) orMouseUncoated

ELISA kit (Invitrogen), according to manufacturer’s description.
2.10 Nitric oxide assay

BMDCs were incubated overnight post treatment with LPS at

37°C and 5% CO2 and total nitrite levels in the cell culture

supernatant were determined using Nitric oxide and Nitrate/

Nitrite Assay kit (R&D system).
2.11 Statistical analysis

Statistical analysis was performed with Prism software

(Graphpad, San Diego, CA). Unpaired Student’s t test was used for

comparisons between two groups. Two-way ANOVA with Sidak’s

multiple comparison test was used for clinical score analysis. One-

way ANOVA with Tukey’s multiple comparison test or Dunnett’s
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multiple comparison test was used for comparisons among multiple

groups. P < 0.05 was considered significant.
3 Results

3.1 Delayed EAE disease onset in
Fpr2KO mice

To investigate the role of FPR2 in CNS inflammation, we initially

monitored the expression of Fpr2 mRNA in the spinal cord during

EAE. We observed a significant upregulation of Fpr2 expression in

the spinal cord both at the early stage and the peak of EAE, as

compared to healthy mice (Supplementary Figure 1, Figure 1A). We

next assessed the role of FPR2 in EAE development. Compared to

WT littermate controls, Fpr2KO mice exhibited delayed EAE disease

onset, as illustrated by the significantly reduced severity at the early

stage of the disease (Figure 1B); however, no difference was observed

in EAE severity, after the disease reached its peak. Consistent with the

reduced disease severity at the early phase of EAE, Fpr2KO mice

exhibited higher body weight, compared to the WT controls

(Figure 1C). Together, these findings suggest that FPR2 plays a role

in the initiation phase of EAE.
3.2 FPR2-deficiency is associated with a
decreased Th17 response during
EAE development

Since the pathogenesis of EAE involves immune cell infiltration

into the CNS (2), we characterized leukocyte populations in the

spinal cords at the early effector phase of EAE (day 12 after

immunization). No obvious differences in the inflammatory cell

infiltrate were observed by H&E staining between the two

genotypes (Figure 2A). Consistently, flow cytometry analysis

revealed no significant difference in total number of CD45+
Frontiers in Immunology 05
leukocytes (Figure 2B). Moreover, no difference was found in the

frequency (percentage in singlets) of immune cell subpopulations,

including CD4+ T cells (defined as CD45+TCRb+CD4+), DCs
(CD45+CD11c+), macrophages (CD45hiCD11b+F4/80+), microglia

(CD45intCD11b+F4/80+), and neutrophils (CD45+CD11b+Ly6G+)

(42), in the spinal cords of Fpr2KO mice and littermate WT

controls (Figure 2C).

To further characterize the inflammatory response, we next

conducted ex vivo antigen recall assays. To this end, leukocytes

isolated from inflamed spinal cords were re-stimulated with

MOG35-55, as described in the Methods, and the two cardinal

cytokines involved in EAE-related inflammation, IL17A and

IFNg, were measured in culture supernatants. The release of both

IL17A and IFNg in recall assay cultures from Fpr2KO mice was

reduced as compared to cultures from WT mice (Supplementary

Figure 2). As IFNg and IL17 can be produced by different leukocytes

besides CD4+ T cells, we next determined the abundance of Th1 and

Th17 cells, the major effector CD4+ T cells during EAE

development (17, 43), in the antigen recall assay. To this end,

we studied whether the presence of IFNg- or IL17A-producing

CD4+ T cells was altered due to FPR2-deficiency in the antigen

recall assay. We found a decrease in the frequency of ex vivo re-

stimulated Th17 cells (IL17+ cells in CD4+ T cells) deriving from

the inflamed spinal cords of Fpr2KO mice, as compared to cells

fromWT controls (Figure 2C). In contrast, the frequency of ex vivo

re-stimulated Th1 cells (IFNg+ cells in CD4+ T cells) deriving

from the spinal cord was not changed between WT and Fpr2KO

mice (Figure 2D).

We subsequently studied the potential mechanism underlying

the delayed EAE disease onset in Fpr2KO mice by focusing on the

pre-onset phase of EAE development. Since the initiation of the T

cell-specific immune responses occurs in the draining lymph nodes

(dLN) (44, 45), and Fpr2 mRNA expression in dLN is enhanced

during EAE (Figure 3A), we examined whether FPR2 deficiency

affected the initial immune priming. To this end, we performed flow

cytometric analysis to examine different subsets of immune cells,
B CA

FIGURE 1

Delayed onset of experimental autoimmune encephalomyelitis (EAE) in Fpr2KO mice. EAE was induced in mice by MOG35-55 peptide immunization.
(A) Relative Fpr2 mRNA expression in the spinal cord of healthy WT mice or WT mice subjected to EAE (at the peak of disease; day 19 post-
immunization), as assessed by qRT-PCR. The mRNA expression was normalized to 18S and the gene expression of WT mice was set as 1 (n=5 mice
per group). (B) Clinical EAE score in WT and Fpr2KO mice (n=11 mice per group); D: day. (C) Body weight of WT and Fpr2KO mice at day 0 (healthy)
or upon EAE induction (day 12 post-immunization) (n=5 mice per group); D: day. Data are mean ± SEM. * p< 0.05, ** p<0.01, *** p<0.001;
ns, not significant.
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including CD4+ T cells (CD45+CD4+CD19-CD8-), CD8+ T cells

(CD45+CD8+CD19-CD4-), CD45+F4/80+ macrophages, as well as

CD45+CD11c+ DCs, in the draining lymph nodes at day 7 post-

immunization (pre-onset phase). Fpr2KO mice had significantly

lower absolute numbers but not frequencies of DCs (defined as
Frontiers in Immunology 06
CD45+CD11c+ cells) in the dLNs during the pre-onset phase of the

disease, whereas numbers and frequencies (as percentage in

singlets) of other cell populations, e.g., CD4+ or CD8+ T cells and

macrophages, were not significantly different between the two

groups (Figure 3B). By performing an ex vivo antigen recall assay,
B C

D

A

FIGURE 2

FPR2 deficiency was associated with decreased frequency of Th17 cells in spinal cords at the early stage of EAE. (A) Representative H&E staining
images from spinal cords of WT and Fpr2KO mice subjected to EAE (day 12 post immunization). Scale bar: 1 mm. (B-D) Leukocytes were isolated
from spinal cords of WT and Fpr2KO mice at day 12 after immunization and analyzed by flow cytometry. (B) The number of CD45+ leukocytes in
spinal cords is shown. (C) The percentage in singlets of CD45hiCD11b+F4/80+ macrophages, CD45intCD11b+F4/80+ microglia, CD45+CD11b+Ly6G+

neutrophils, CD45+TCRb+CD4+ T cells and CD45+CD11c+ DCs is shown. (D) Leukocytes from spinal cords were re-stimulated with MOG35-55 in
vitro, and stained for intracellular IL17 and IFNg, together with staining for CD4, and then analyzed by flow cytometry. The percentage of Th17 cells
(IL17+ cells in CD4+ T cells) and Th1 (IFNg+ cells in CD4+ T cells) is shown on the right; a representative flow cytometry plot is shown on the left.
Data are mean ± SEM (n=9–10 mice per group). * P<0.05; ns, not significant.
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we found a decrease in the number but not percentage (IL17+ cells

in live CD4+ cells) of dLN Th17 cells from Fpr2KO mice, as

compared to littermate WT mice (Figure 3C, left panels). In

contrast, there was no difference between WT and Fpr2KO mice

with regard to the numbers or percentage (IFNg+ cells in live CD4+

cells) of dLN Th1 cells (Figure 3C, right panels). Together, FPR2

deficiency is associated with a reduction in DCs and Th17 cells in

the dLNs during the pre-onset phase of EAE development, which

may underlie the reduced abundance of Th17 cells in the inflamed

spinal cords and thereby the delayed onset of EAE disease. These

findings suggest that FPR2 contributes to Th17 cell differentiation

in the course of EAE.
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3.3 Impaired Th17 polarization due to FPR2
deficiency in dendritic cells

Since FPR2 expression in DCs is much higher than in CD4+ T cells

in the dLNs analyzed at day 7 after immunization (Figure 4A), we

conducted mechanistic in vitro experiments to directly assess the

contribution of FPR2 to the functional properties of bone

marrow-derived dendritic cells (BMDCs). Fpr2 mRNA expression

was remarkably increased in mature BMDCs activated with

lipopolysaccharide (LPS), compared to immature BMDCs

(Figure 4B). We hypothesized that the lower Th17 differentiation

potential observed in the dLNs of Fpr2KO mice is connected to the
B

C

A

FIGURE 3

FPR2 deficiency resulted in decreased numbers of DCs and Th17 cells in draining lymph nodes at the pre-onset phase of EAE. (A) Relative Fpr2
mRNA expression in the draining lymph node of healthy mice (not subjected to EAE) and mice subjected to EAE (day 7 post immunization), as
assessed by qRT-PCR. The mRNA expression was normalized to 18S and the gene expression of WT was set as 1 (n=4 mice per group). (B, C)
Leukocytes were isolated from draining lymph nodes of WT and Fpr2KO mice on day 7 of the EAE model and analyzed by flow cytometry. The
number of CD45+ leukocytes (B, top), as well as the numbers (B, top) or the percentage in singlets (B, bottom) of CD4+ (CD45+CD4+CD19-CD8-) T
cells, CD8+ (CD45+CD8+CD19-CD4-) T cells, CD45+F4/80+ macrophages and CD45+CD11c+ DCs are shown (n=7–8 mice per group). (C) Isolated
leukocytes were re-stimulated with MOG35-55 in vitro, and stained for intracellular IL17 and IFNg, together with staining for CD4, and then analyzed
by flow cytometry. Shown is the number of Th17 or Th1 cells (C, top), and the percentage of Th17 (IL17+ cells in live CD4+ T cells) or Th1 cells (IFNg+

cells in live CD4+ T cells) (C, bottom) (n=7–8 mice per group). Data are mean ± SEM. * P<0.05; ns, not significant.
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FIGURE 4

Decreased Th17 differentiation due to FPR2 deficiency in DCs. (A) Relative Fpr2 mRNA expression in CD45+CD4+ T cells and CD45+CD11c+ DCs
sorted from the draining lymph nodes of EAE mice on day 7 post-immunization. The mRNA expression was normalized to 18S and the gene
expression of CD45+CD4+ T cells was set as 1 (n=3–5 mice per group). (B) Relative Fpr2 mRNA expression of BMDCs after overnight stimulation
without (-) or with LPS, as assessed by qRT-PCR. The mRNA expression was normalized to 18S and the gene expression of BMDCs in the absence of
LPS was set as 1 (n=3 cultures). (C) Representative FACS histograms (top) and mean fluorescence intensity (MFI) (bottom) of MHC II (stained with
anti-I-Ab), CD86 and CD80 expression in WT or Fpr2KO CD11c+ BMDCs, activated with LPS for 3 hours, was assessed by flow cytometry (n=3
cultures). (D) Relative Il6, Il1b, Il23p19 mRNA expression in WT or Fpr2KO BMDCs, activated with LPS for 3 hours, was assessed by qRT-PCR. The
mRNA expression was normalized to 18S and the gene expression in WT BMDCs was set as 1 (n=3 cultures). (E) IL6, IL1b, IL23 secretion in culture
supernatants of WT or Fpr2KO BMDCs, activated with LPS overnight, was assessed by ELISA (n=4–5 cultures). (F, G) Naïve CD4+ T cells and WT or
Fpr2KO BMDCs were co-cultured for 4 days in the presence of soluble anti-CD3, TGFb1 and LPS to assess Th17 cell differentiation, as described in
the Methods. The percentage of Th17 cells (IL17+ cells in CD4+ T cells) was studied by intracellular staining (F) and secreted IL17 production was
detected in the culture supernatants by ELISA (G) (n=4 co-cultures). Data are mean ± SEM. Data in (A, B, D, E) are from one experiment; data in C,F,
G are from one experiment representative of 2 experiments. *P<0.05, ** P<0.01, *** P<0.001.
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absence of FPR2 from DCs and hence a dysfunction of FPR2-deficient

DCs. Indeed, flow cytometry analysis of LPS-activated BMDCs

revealed reduced expression of both costimulatory molecules CD80

and CD86 as well as of MHC class II (MHC II) due to FPR2 deficiency

(Figure 4C), in accordance to a previous report (46). Notably,

moreover, mRNA expression of pro-inflammatory cytokines (Il6,

Il1b and Il23p19) as well as expression of the respective proteins was

reduced in FPR2-deficient mature DCs, as compared to WT mature

DCs (Figures 4D, E). To investigate whether these changes in antigen

presentation and cytokine production of DCs due to FPR2 deficiency

directly affected Th17 differentiation, we employed an in vitro T cell

differentiation system (47). Specifically, we co-cultured naïve CD4+ T

cells with BMDCs in the presence of anti-CD3, human TGFb1, and
LPS for Th17 differentiation analysis (47). We compared Th17 cell

development in the presence of FPR2-sufficient or -deficient BMDCs.

Flow cytometry analysis revealed reduced Th17 differentiation in the

presence of FPR2-deficient BMDCs, as compared to co-cultures with

FPR2-sufficient BMDCs (Figure 4F). Consistently, we detected

diminished IL17A secretion in the co-cultures with FPR2-deficient

BMDCs, as determined by ELISA (Figure 4G). Taken together, these

results demonstrate that FPR2-deficient BMDCs have impaired

capacity to promote Th17 polarization.
3.4 Decreased Th17 differentiation due to
FPR2 deficiency in DCs is mediated by
altered NO production

Nitric oxide (NO) production modulates DC maturation (22)

and suppresses Th17 cell polarization (26, 27). Interestingly, the

mRNA levels of nitric oxide synthase 2 (Nos2), encoding the

inducible NO synthase (iNOS), the primary NO-synthesizing

enzyme in DCs, were significantly increased in FPR2-deficient

mature DCs compared to WT counterparts (Figure 5A). This

finding was further confirmed by measuring the total nitrite levels

in culture supernatants, which suggested enhanced NO production

by FPR2-deficient DCs (Figure 5B). Additionally, we investigated

which signaling pathway is involved in the heightened Nos2

expression resulting from FRP2 deficiency in DCs. Since the ERK

(48, 49) and PI3K/Akt (50) pathways have been implicated in FPR2

signaling, we employed inhibitors of these pathways in LPS-treated

DCs. Intriguingly, inhibiting the ERK but not the PI3K/Akt pathway

abolished the increased Nos2 expression due to FPR2-deficiency

(Figures 5C, D). Therefore, the augmented Nos2 expression due to

FPR2-deficiency is mediated, at least in part, by the ERK pathway.

Next, we explored alterations in cellular metabolism, as NO is

known to modulate the metabolic switch during DC maturation (21).

Therefore, we performed Seahorse XF extracellular Flux analysis to

assess a role of FPR2 in oxygen consumption of DCs. Real-time

metabolic analysis revealed a significant reduction in the oxygen

consumption rate (OCR) in LPS-stimulated FPR2-deficient DCs, as

compared to WT DCs (Figures 5E, F). Although DC maturation in

response to LPS typically leads to a robust increase in glycolysis (51), we

observed no difference in the extracellular acidification rate (ECAR) or

mRNA levels of glycolytic genes including Hk2, Ldha and Pkm2,

between FPR2-deficient and WT DCs (data not shown). Given the
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impaired OCR in DCs due to FPR2 deficiency, we further investigated

mitochondria activity. Flow cytometry analysis revealed a significant

decrease in MitoSox Red staining, indicative of reduced mitochondrial

superoxide levels, in LPS-stimulated Fpr2KO DCs, compared to WT

DCs (Figure 6A). Furthermore, mitochondrial membrane potential

was impaired in LPS-stimulated FPR2-deficient DCs compared to WT

counterparts as shown by TMRE fluorescence staining and flow

cytometry analysis (Figure 6B). Additionally, the expression of genes

related to the tricarboxylic acid (TCA) cycle and the electron transport

chain (ETC) was diminished in LPS-stimulated FPR2-deficient DCs

compared toWTDCs (Figures 6C, D). These results suggest that FPR2

plays a role in maintaining mitochondrial function and oxidative

metabolism of DCs.

Next, to determine whether the diminished Th17 differentiation

observed in the presence of Fpr2KO DCs is linked to the higher NO

production, we inhibited iNOS using the potent inhibitor SEITU.

We found that inhibition of NO production effectively reversed the

inhibitory effect of FPR2 deficiency in DCs on Th17 cell

differentiation, which was thereby completely restored (Figure 7).

These findings suggest a key immunometabolic role of FPR2

signaling in DCs which, through decreased NO production, leads

to enhanced Th17 differentiation.
4 Discussion

The Th17 subset of CD4+ T cells within the inflamed CNS has

been widely implicated in both EAE and MS pathogenesis (52, 53).

During the immune priming phase of EAE, Th17 differentiation is

regulated by cytokines, primarily released by antigen-presenting

cells, such as DCs (10, 17). Consistently, modifying DC function

and their cytokine production influences EAE disease (54, 55). In

the present study, we demonstrated that FPR2 signaling in DCs,

through regulation of DC metabolism and inhibition of DC-derived

NO production, promotes Th17 differentiation, thereby influencing

the disease onset of EAE. Hence, FPR2 may act as a modifier of the

early phase of inflammation in EAE.

The expression of FPR2 increases in dLNs following

immunization, and the absence of FPR2 leads to a delayed onset of

EAE. However, the disease attenuation at the onset of EAE caused by

FPR2 deficiency is restored at later stages, suggesting that FPR2

primarily acts during the immune priming phase of EAE. Therefore,

FPR2 on DCs may predominantly act in the lymph nodes during the

initiation of the immune response in EAE. Accordingly, the reduced

presence of Th17 cells in dLNs of Fpr2KO mice likely explains their

lower frequency in inflamed spinal cords. However, a limitation of

our study is that we used whole-body Fpr2KO mice, hence not

allowing us to study exclusively the role of FPR2 on DCs in vivo.

Previous studies have demonstrated that the adoptive transfer of

MOG-loaded DCs before the onset of EAE leads to T regulatory cell-

mediated protection against disease development (56, 57). Although

our data suggest that FPR2 regulates DC function in the early phase

of EAE, future investigations utilizing mice with DC-specific deletion

of FPR2 would be required to further support this notion.

Recent research has shown that FPR2 is upregulated in the CNS

during neuroinflammatory/neurodegenerative diseases like Alzheimer’s
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(58, 59) and CNS injury (60). However, while our study suggests a

pro-inflammatory role for FPR2 at the initiation of EAE, FPR2 activation

may also lead to anti-inflammatory and/or neuroprotective effects (60).

In the EAEmodel, we conclude that the impact of FPR2 on disease onset

is primarily associated with the function of FPR2 in dLNs, rather than in

the inflamed CNS. These findings therefore highlight the diverse and

context-dependent (e.g., cell- and tissue-dependent) role of FPR2

signaling on the inflammatory response.

Activation of DCs leads to production of inflammatory cytokines,

and the initiation of adaptive immune responses. Deficiency of FPR2 in
Frontiers in Immunology 10
DCs was previously shown to lead to inadequate expression of

maturation markers like CD86 and MHC II, along with reduced

IL12 production (46), consistent with our study’s findings. In

addition to these earlier findings, we have uncovered that absence of

FPR2 signaling in DCs decreases the expression of cytokines, such as

IL6, IL1b and IL23, that are critical for the differentiation of Th17 cells

during the immune priming phase of EAE. This could be attributed to

the observed reduced NO production in FPR2-expressing DCs upon

LPS stimulation, compared to FPR2-deficient DCs, given that NO is

required to restrain DC maturation and cytokine production (22).
B C D
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FIGURE 5

Deficiency of FPR2 increased DC nitric oxide production and reduced oxidative phosphorylation. (A) Relative expression of mRNA of Nos2 (encoding
iNOS) in WT or Fpr2KO BMDCs treated with LPS for 3 hours was determined by qRT-PCR (n=3 cultures). The mRNA expression was normalized to
18S and the gene expression of WT BMDCs was set as 1. (B) Total nitrite level was determined in culture supernatants of WT or Fpr2KO BMDCs after
stimulation with LPS overnight (n=4 cultures). (C, D) Relative Nos2 mRNA expression in WT or Fpr2KO BMDCs, pre-treated with U0126 (C) or
LY294002 (D) or vehicle (DMSO) for 30 mins followed by LPS treatment for 3 hours, was assessed by qRT-PCR. The mRNA expression was
normalized to Gapdh and the gene expression of WT BMDCs pre-treated with vehicle was set as 1 (n=4–5 cultures). (E, F) Seahorse analysis was
performed for studying oxygen consumption rate (OCR) following the manufacturer’s instructions, at baseline and after the administration of
oligomycin (ATP synthase inhibitor), FCCP and Antimycin/Rotenone (Electron Transport Chain (ETC) inhibitor). In (E), OCR of LPS-stimulated (6
hours) BMDCs from WT or Fpr2KO mice is shown, as measured by Seahorse analysis (n=3 cultures). In (F), quantitative bar graphs of OCR for basal
respiration rate, maximal respiration, proton leak, ATP production and spare respiratory capacity are shown (n=3 cultures). Data are mean ± SEM.
Data in (A, C, D) are from one experiment; data in (B) are from one experiment representative of 3 experiments; data in (E, F) are from one
experiment representative of 2 experiments.* P<0.05, ** P<0.01, ***p<0.001; ns, not significant.
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Consistent with this notion is our observation that inhibition of NO

production effectively reversed the inhibitory effect of FPR2 deficiency

in DCs on Th17 cell differentiation. While DC-derived NO appears to

block Th17 differentiation, as shown in our study, NO produced by

other cell types has been shown to support the development of Th17

responses in different inflammatory settings (61). This context-
Frontiers in Immunology 11
dependent role of NO highlights the complexity of its impact on

immune regulation. Together, our study shows that FPR2 signaling in

DCs promotes a cytokine environment that is conducive for Th17

cell development.

Activation of DCs by Toll-like receptor (TLR) agonists is associated

with a progressive loss of mitochondrial activity (21). We found that
B

C

D

A

FIGURE 6

FPR2 deficiency diminished mitochondrial function. (A, B) Mean fluorescence intensity (MFI) of mitochondrial superoxide levels analyzed using
MitoSox Red (A) or mitochondrial membrane potential analyzed using TMRE (B) in WT or Fpr2KO BMDCs, activated with LPS for 3 hours, as assessed
by flow cytometry (n=4–5 cultures). The MFI was normalized and the MFI of WT BMDCs was set as 1. (C, D) Relative mRNA expression of TCA cycle
genes (Idh1, Idh3a, Suclg1, Aco2, Ogdh, Fh1, Dlat), or ETC genes (Uqcrc2, Ndufa9, Atp5b, Cox2, Sdhb) in WT or Fpr2KO BMDCs, treated with LPS for 3
hours, was assessed by qRT-PCR (n=4–5 cultures). The mRNA expression was normalized to Gapdh and the gene expression of WT BMDCs was set
as 1. * P<0.05, ** P<0.01, ***p<0.001.
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FPR2-deficient DCs displayed decreased oxidative phosphorylation

(OXPHOS) upon LPS stimulation. Although the inhibition of

OXPHOS may result in higher reliance on glycolysis (21), we did

not observe any differences in glycolysis between FPR2-deficient and

WT DCs (not shown). Mitochondrial metabolic reprogramming in

DCs depends on the specific DC subset and the context of stimulation

(18). For instance, human plasmacytoid DCs (pDCs) have higher

expression of the mitochondrial biogenesis regulator peroxisome

proliferator-activated receptor gamma coactivator 1-alpha (PGC1-a)
and the mitochondrial fusion promoter mitofusin 2, which support

enhanced mitochondrial metabolism upon stimulation with TLR7/8

agonists. Conversely, human myeloid CD1c+ DCs decrease OXPHOS

upon similar stimulation (62). Furthermore, the production of type I

interferon (IFN-I) by human pDCs, following TLR9 activation, relies

on glycolysis, while IFN-I production triggered by RIG-I-like receptor

activation depends on OXPHOS (63). Based on our present findings,

FPR2 appears to regulate mitochondrial metabolism inmouse BMDCs.
5 Conclusion

In conclusion, our study demonstrates that FPR2 signaling in

DCs modulates DCmetabolism and downregulates NO production,

thereby promoting Th17 cell differentiation in the context

of neuroinflammation.
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FIGURE 7

FPR2 in DCs promoted Th17 differentiation through inhibition of NO. Naïve CD4+ T cells and WT or Fpr2KO BMDCs were co-cultured for 4 days in
the presence of soluble anti-CD3, TGFb1 and LPS as well as in the presence or absence of the iNOS inhibitor SEITU. The percentage of Th17 cells
(IL17+ cells in CD4+ T cells) was determined by intracellular staining. Data are mean ± SEM (n=3 co-cultures). Data are from one experiment
representative of 2 experiments. ** P<0.01.
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