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with osteoarthritis
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Shutao Xu1, Liangming Zhang1, Shiyang Li1,2, Jifa Zhang1,
Zhongming Lai1, Yuping Lan1* and Jianhui Liu3*

1Department of Pharmacy, Panzhihua Central Hospital, Panzhihua, China, 2Department of Pharmacy,
Dali University, Dali, China, 3College of Pharmacy and Bioengineering, Chongqing University of
Technology, Chongqing, China
Background: Type 2 Diabetes Mellitus (T2D) and Osteoarthritis (OA) are both

prevalent diseases that significantly impact the health of patients. Increasing

evidence suggests that there is a big correlation between T2D and OA, but the

molecular mechanisms remain elusive. The aims of this study are to investigate

the shared biomarkers and potential molecular mechanisms in T2D combined

with OA.

Methods: T2D and OA-related differentially expressed genes (DEGs) were

identified via bioinformatic analysis on Gene Expression Omnibus (GEO)

datasets GSE26168 and GSE114007 respectively. Subsequently, extensive target

prediction and network analysis were finished with GeneOntology (GO), protein-

protein interaction (PPI), and pathway enrichment with DEGs. The transcription

factors (TFs) and miRNAs coupled in co-expressed DEGs involved in T2D and OA

were predicted as well. The key genes expressed both in the clinical tissues of

T2D and OA were detected with western blot and qRT-PCR assay. Finally, the

most promising candidate compounds were predicted with the Drug-Gene

Interaction Database (DGIdb) and molecular docking.

Results: In this study, 209 shared DEGs between T2D and OA were identified.

Functional analysis disclosed that these DEGs are predominantly related to

ossification, regulation of leukocyte migration, extracellular matrix (ECM)

structural constituents, PI3K/AKT, and Wnt signaling pathways. Further analysis

via Protein-Protein Interaction (PPI) analysis and validation with external datasets

emphasized MMP9 and ANGPTL4 as crucial genes in both T2D and OA. Our

findings were validated through qRT-PCR and Western blot analyses, which

indicated high expression levels of these pivotal genes in T2D, OA, and T2D

combined with OA cases. Additionally, the analysis of Transcription Factors (TFs)-

miRNA interactions identified 7 TFs and one miRNA that jointly regulate these

important genes. The Receiver Operating characteristic (ROC) analysis

demonstrated the significant diagnost ic potent ia l of MMP9 and

ANGPTL4.Moreover, we identified raloxifene, ezetimibe, and S-3304 as

promising agents for patients with both T2D and OA.
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Conclusion: This study uncovers the shared signaling pathways, biomarkers,

potential therapeutics, and diagnostic models for individuals suffering from both

T2D and OA. These findings not only present novel perspectives on the complex

interplay between T2D and OA but also hold significant promise for improving

the c l in ica l management and prognos i s o f pa t ien ts wi th th i s

concurrent condition.
KEYWORDS

type 2 diabetes mellitus, osteoarthritis, bioinformatics analysis, matrix
metalloproteinase-9 (MMP9), angiopoietin-like 4 (ANGPTL4)
Introduction

Diabetes mellitus is a prevalent chronic metabolic disorder,

mainly manifested as type 2 diabetes mellitus (T2D), which

accounts for more than 90% of adult cases of diabetes (1).

According to reports, approximately 537 million adults aged 20-

79 were diagnosed with diabetes globally in 2021, accounting for

10.5% of the world’s adult population (2, 3). Projections indicate

that this number will increase to 643 million by 2030 and further to

783 million by 2045. Additionally, there has been a rise in the

incidence of T2D among adolescents under 18 years old (4). The

pathogenesis of the disease involves insulin resistance, secretion

defects, genetics, and other factors. Research has also linked T2D

with inflammatory factors such as C-reactive protein, IL-6,

plasminogen activator inhibitor 1, TNF-a, and chemokines,

noting that adipokines from adipose tissue may aggravate insulin

resistance-associated inflammation (5–7).

Osteoarthritis (OA) is a chronic condition that primarily affects

weight-bearing joints such as the knees and hips, potentially

involving the entire joint tissue and impeding movement. It

significantly deteriorates the quality of life for patients and has an

adverse impact on mental health, including depression, sleep

disorders, and suicidal tendencies (8, 9). As a results, it imposes a

considerable economic burden on individuals and society. In 2019,

there were 528 million reported cases of OA globally, with a

prevalence rate of 6.8% (10). The fundamental pathological

change in OA is the deformation and destruction of articular

cartilage. Its complex etiology involves biomechanical factors,

pro-inflammatory mediators, obesity, proteases, aging, immunity,

genetics, and hormonal influences (11–13).

From 2019 to 2022, the department of orthopedics at Panzhihua

Central Hospital treated 458 inpatients with T2D combined with

OA, representing 8.25% of OA patients. Recent case reports and

studies suggest a significant increase in metabolic syndrome

incidence among OA patients, with T2D potentially being an

independent r i sk fac tor for OA deve lopment (14) .

Epidemiological surveys indicate that T2D patients are more

prone to OA, with a higher OA risk compared to controls (15,
02
16). An animal study using streptozotocin-induced diabetes in rats

showed resistance to insulin-like growth factors in cartilage and

significant synovial and collagen changes after 70 days, highlighting

the link between diabetes and OA (17). The concept of diabetic

osteoarthritis (DO) has emerged, with increasing research on its

common pathogenesis. However, the precise mechanisms remain

unclear, and specific effective treatments for DO are still lacking.

Further investigation into the pathogenesis and identification of key

targets is crucial for developing therapeutic drugs or methods,

significantly impacting disease prevention and treatment.

In this study, we constructed detailed process flow diagrams to

illustrate the critical steps involved (Figure 1). We utilized

bioinformatics to identify common differentially expressed genes

(DEGs) between T2D and OA. We conducted Protein-Protein

Interaction (PPI) network analysis and visualization for the

DEGs, and validated our findings with external datasets. Our

results identified angiopoietin-like 4 (ANGPTL4) and matrix

metalloproteinase 9 (MMP9) as pivotal genes in both T2D and

OA. Additionally, we assessed the accuracy of these genes as

biomarkers for disease prediction and diagnosis using receiver

operating characteristic curve (ROC). Furthermore, we explored

potential drugs targeting these key genes through molecular

docking.
Materials and methods

Data source

We obtained our data from the Gene Expression Omnibus

(GEO) database (http://www.ncbi.nlm.nih.gov/geo). Using “type 2

diabetes mellitus” and “osteoarthritis” as search keywords, we

selected the GSE26168 and GSE114007 datasets for our screening

analysis. The selected dataset which contains more samples and

comprehensive clinical information has good quality and meets the

requirements of research analysis. The GSE26168 dataset consists of

gene expression data from the blood tissue of nine patients with

type 2 diabetes mellitus (T2D) and eight healthy controls. The
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GSE114007 dataset includes gene expression information from the

cartilage tissue of 20 patients with osteoarthritis (OA) and 18

normal controls. To validate our findings, we also retrieved the

GSE20966 (T2D) and GSE51588 (OA) datasets from the

GEO database.
Screening of DEGs

We utilized RStudio software (version 4.2.1) and the “Limma” R

package to process the datasets and identify DEGs between the

disease and control groups (18, 19). To ensure accuracy, we

excluded probe sets without corresponding gene symbols and

calculated averages for genes represented by multiple probe sets.

Our significance threshold was set at p<0.05 and |logFC|>1.

Additionally, we used the Venn diagram online analysis tool

(http://bioinformatics.psb.ugent.be/webtools/Venn/) to identify

common DEGs between T2D and OA datasets.
Enrichment analysis of common DEGs

To analyze the functional characteristics of genes shared by

T2D and OA, we utilized RStudio software for Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis, using the “cluster Profiler” R package. GO is

an internationally recognized gene functional classification system

that provides a comprehensive and regularly updated vocabulary, as
Frontiers in Immunology 03
well as well-defined concepts for identifying genes and their

products (20). It consists of three ontologies: molecular function,

cellular component, and biological process. GO enrichment analysis

allows for the identification of significantly enriched GO terms

compared to the genome background, and associates DEGs with

specific biological functions. KEGG, a principal public database for

pathway-related information, enables the identification of pathways

that are significantly enriched in DEGs compared to the genome-

wide background (21).
PPI network

Using the STRING online tool (http://string-db.org), we

explored the interactions among common DEGs and constructed

a Protein-Protein Interaction (PPI) network with extensive

regulatory links (22). The STRING database facilitates the search

for relationships between proteins, encompassing direct binding

relationships and interconnected upstream and downstream

regulatory pathways. Interactions with a confidence value above

0.4 were deemed statistically significant, with all other parameters

set to default. We employed Cytoscape software (version 3.8.2) for

PPI network analysis and visualization and utilized the Cytoscape

plug-in, Molecular Complex Detection (MCODE), for identifying

primary functional modules (setting k-core=2, degree cutoff=2, max

depth=100, node score cutoff=0.2) (23, 24). Key genes were

identified using Cytoscape’s CytoHubba plugin (25), and an upset

diagram was used to filter and determine shared key genes.
FIGURE 1

The workflow diagram of this research. T2D, Type 2 Diabetes Mellitus. OA, Osteoarthritis. PPI, protein-protein interaction. DEGs, differentially
expressed genes.
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Additionally, we established a co-expression network for these key

genes using GeneMANIA (http://www.genemania.org/), a tool

renowned for uncovering the internal relationships within gene

sets (26).
Identification of key genes

We utilized the GSE20966 (T2D) and GSE51588 (OA) datasets

to validate the mRNA expression of key genes. This process aimed

to definitively identify the key genes for T2D and OA. The

GSE20966 dataset includes samples from 10 T2D patients and ten

controls, while the GSE51588 dataset comprises 40 OA patient

samples and ten control samples.
qRT-PCR

Quantitative real-time polymerase chain reaction (qRT-PCR)

was employed to assess the mRNA expression of key genes in T2D

(n=8, peripheral blood), OA (n=7, articular cartilage), T2D combined

with OA (T2D+OA) samples (n=4,articular cartilage), and normal

controls (n=9,peripheral blood). The inclusion and exclusion criteria

for the clinical study were listed in Supplementary Table 1. Clinical

tissue samples were acquired from Panzhihua Central Hospital. For

the study, we used TRIpure Total RNA Extraction Reagent (EP013,

ELK Biotechnology) to extract RNA from the samples. The isolated

total RNA was reverse-transcribed into complementary DNA

(cDNA) using the EntiLink™ 1st Strand cDNA Synthesis Super

Mix (EQ031, ELK Biotechnology). qRT-PCR was performed with the

QuantStudio 6 Flex System PCR instrument (Life Technologies) and

the EnTurbo™ SYBR Green PCR SuperMix kit. Each sample was

prepared in triplicate wells. b-actin served as the internal reference

gene, and the 2-DDCt method was used for calculating mRNA fold

changes and normalizing the data across all samples. The primer

sequences for PCR are listed in Supplementary Table 2.
Western blot

For protein extraction, we initially rinsed 3 samples each of T2D

peripheral blood, OA articular cartilage, T2D+OA articular

cartilage, and peripheral blood from healthy controls with pre-

chilled PBS buffer (ASPEN, AS1025). This process was repeated 2-3

times. Subsequently, RIPA total protein lysate (ASPEN, AS1004)

was added in volume 10-20 times that of the tissue samples. The

mixture was then centrifuged at 12,000 rpm at 4°C for 5 minutes,

and the supernatant was collected. Protein concentration in the

samples was determined using the BCA Protein Concentration

Assay Kit (ASPEN, AS1086). For western blot (WB), SDS-PAGE

electrophoresis was performed. An appropriate amount of

5×protein loading buffer (ASPEN, AS1011) was added to the

samples, which were then incubated in a boiling water bath at 95-

100°C for 5 minutes. Electrophoresis was conducted at 80V for the

stacking gel and 120V for the separation gel. A PVDF membrane
Frontiers in Immunology 04
(Millipore, IPVH00010) was activated with methanol for 3 minutes

before use. The transfer of proteins onto the membrane was carried

out at a constant flow of 300mA.The membranes were

immunoblotted with the diluted primary antibodies (ASPEN,

AS1061) for overnight at 4°C. The blots were washed thrice with

TBST. Afterward, the diluted secondary antibody was incubated at

room temperature for 30 minutes. Excess antibody was washed off

with TBST for 4 times. Immunoreactivity was detected using ECL

western blot reagent. Finally, the signal bands were quantified by

densitometry analysis using the AlphaEaseFC software processing

system after scanning the blotted membrane.
Diagnostic value of key genes

To ascertain the diagnostic value of pivotal genes in OA, we

utilized external datasets GSE20966 (T2D) and GSE51588 (OA) to

validate clinical diagnosis prediction models. Employing RStudio

software (version 4.2.1), we used the pROC package to generate

Receiver Operating Characteristic (ROC) curves. Additionally,

logistic regression analysis was conducted to evaluate the role of

key genes in distinguishing between T2D, OA, and healthy

individuals. This analysis facilitated the establishment of a clinical

diagnosis prediction model based on the identified key genes.
Prediction of transcription factors

Transcription factors (TFs) are proteins that bind to specific

DNA sequences, forming complex regulatory systems to control

gene expression. We utilized Network Analyst 3.0 (https://

www.networkanalyst.ca/) to examine the interactions between key

genes and transcription factors in T2D and OA (27). This analysis

aimed to evaluate the impact of TFs on the expression and

functional pathways of key genes. The transcription factor and

gene target data were sourced from the ENCODE ChIP-seq

database (28). We applied a peak intensity signal threshold of

<500 and a regulatory potential score of <1 point, as predicted

using the BETA negative algorithm. Furthermore, we employed

Cytoscape to visually represent the TFs-mRNA regulatory network.
Prediction of microRNAs

MicroRNAs (miRNAs) are endogenous, short, non-coding RNAs

that play a crucial role in inhibiting or degradating target mRNAs. In

order to better understand how gene expression is affected in different

physiological and disease contexts, we analyzed the regulatory network

between miRNAs and mRNAs (29). To do this, we utilized

miRTarBase (version 8.0), a database specifically designed for

predicting miRNA binding sites, to identify potential interactions

between key genes and miRNAs. This involved conducting a cross-

analysis of mRNA-miRNA binding and constructing a competing

endogenous RNA (ceRNA) network. The results of this analysis were

then visualized using Cytoscape software (version 3.8.0).
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Prediction of potential compounds

The Drug-Gene Interaction Database (DGIdb) (http://

www.dgidb.org) is a comprehensive resource that provides

information on interactions between drugs and genes (30). In this

study, we utilized DGIdb to identify potential drugs that target

pivotal genes, supplemented by candidate compounds sourced from

existing literature for treating T2D and OA. We downloaded

protein and ligand files for MMP9 and ANGPTL4 from the RCSB

Protein Data Bank (https://www.rcsb.org/) in “PDB”. The PDB

format focuses on storing 3D structural data of biological

macromolecules such as proteins and nucleic acids, and contains

detailed information of protein-ligand binding sites. It is more

suitable for the screening of predictive gene drugs. The SDF format

is mainly used to store and exchange detailed molecular structure

information, including 2D or 3D coordinates of molecules, atomic

types, bond information. It is suitable for occasions that require

batch processing of large amounts of molecular data, such as virtual

screening and compound library management (31). Therefore, after

establishing the corresponding coordinates between the proteins

and ligands, we converted the protein files to the “PDBQT” format.

The “SDF” format ligands of candidate compounds were also

converted into “PDBQT” format using the PubChem database

(https://pubchem.ncbi.nlm.nih.gov/) (32). Molecular docking was

performed using AutoDock (Vina 1.2.2), which calculated the

binding affinity between receptors and ligands. A binding energy

lower than −5.0 kcal/mol typically indicates strong binding activity

to the target protein. We analyzed the docking results with the

Protein-Ligand Interaction Profiler (https://plip-tool.biotec.tu-

dresden.de/plip-web/plip/index) and visualized them using

PyMOL (version 2.0). This allows us to demonstrate the ligand-

receptor binding process through hydrogen bonds and amino

acid residues.
Statistical analysis

All data were processed and analyzed using the GraphPad

Prism software 8.0 (GraphPad Software, La Jolla, CA, USA), and

results were expressed as mean ± standard deviation (SD).

Significant differences between the groups were evaluated by

unpaired student’s t-test. Unidirectional Analysis of Variance

(ANOVA) with Tukey’s multiple comparison tests was utilized

where appropriate in cases involving multiple groups. A p-value of

less than 0.05 was regarded as significant.
Results

Screening of DEGs in T2D and OA

We analyzed tissue samples from GEO, performing data on the

datasets for T2D and OA. In the T2D dataset (GSE26168), we

identified 1,746 DEGs. Similarly, in the OA dataset (GSE114007),

we identified 2,910 DEGs. These DEGs for both T2D and OA were

visually represented through volcano plots and heat maps
Frontiers in Immunology 05
(Figures 2A–D). A Venn diagram was utilized to highlight the

overlap between the two datasets, revealing 209 common DEGs

(Figures 2E, F). The results underscore the presence of many

common genes shared between T2D and OA.
Functional analysis of DEGs

GO and KEGG enrichment analyses were conducted on the 209

common DEGs. The GO analysis (Figure 2G) revealed significant gene

enrichment in various categories. In Biological Processes (BP), themost

enriched pathways included ossification, ameboidal-type cell

migration, wound healing, and regulation of epithelial cell

proliferation. Within the Cellular Components (CC) category,

collagen-containing extracellular matrix, presynapse, and neuron

projection terminus were most prominent. Regarding Molecular

Functions (MF), the top enriched functions were extracellular matrix

structural constituent (ECM), glycosaminoglycan binding, and sulfur

compound binding. KEGG analysis (Figure 2H) indicated substantial

enrichment in pathways such as ECM-receptor interaction, PI3K-Akt

signaling pathway, Wnt signaling pathway, intestinal immune network

for IgA production, and protein digestion and absorption. These results

strongly suggest that the common DEGs between T2D and OA play

crucial roles in regulating chemokines, cytokines, and inflammatory

responses. These genes are implicated in cellular processes like

production, metabolism, and apoptosis and are significantly

associated with the onset and progression of T2D and OA.
PPI network construction of hub genes

We conducted a comprehensive analysis of the DEGs shared by

T2D and OA using the STRING online network tool and Cytoscape

software to elucidate PPI. A universal PPI network was constructed

with a minimum interaction score of 0.4, consisting of 207 nodes

and 226 edges (Figure 3A). This complex PPI network showed that

96.86% of the genes had co-expression and 2.05% shared protein

domains, and 1.08% had interaction responses. In this network,

nodes represent proteins, and edges represent their interactions.

The size and color intensity of a node indicates its degree value,

while the thickness of an edge reflects the strength of the

relationship between the proteins. Using the Cytoscape plug-in

MCODE, we identified the most significant gene module

(Figure 3B). Furthermore, we used the Cytoscape’s cytoHubba

plug-in to determine the top 14 hub genes, which included

MMP9, NGFR, CXCL12, CACNA1A, SERPINE1, CCR9, CALCA,

NRCAM, MME, ANGPTL4, PTPRU, DLL4, SELP, and FAIM2

(Figures 3C–E). To further explore the functions of these hub genes,

we analyzed their co-expression network and related functions

using the GeneMANIA database (Figure 3F).
Identification of key genes

To validate the mRNA expression levels of the 14 identified hub

genes, we utilized an additional T2D dataset and an OA dataset. The
frontiersin.org
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analysis of these datasets revealed significant expression differences

in the hub genes. In the T2D external dataset (GSE20966), three hub

genes-ANGPTL4, MMP9, and NRCAM-showed substantial

differential expression compared to the normal control

(Figure 4A). Similarly, in the OA external dataset (GSE51588),

three hub gene-ANGPTL4, MMP9, and CACNA1A-exhibited

significant expression differences (Figure 4B). By intersecting the

results from both datasets, ANGPTL4 andMMP9 were conclusively

identified as the pivotal genes shared between T2D and OA.
Frontiers in Immunology 06
Expression of the key genes in
clinical samples

Firstly, we statistically analyzed the clinical data of the tested

samples and established a baseline table of clinical information

(Table 1). In the limited clinical cases, we can find that patients in

the T2D + OA group had the highest blood glucose and Glycated

hemoglobin A1c (GHbA1c), and 5 patients who had poor long-

term blood glucose control in T2D group were rated grade 1 or 2 for
FIGURE 2

Visualization of DEGs screening of T2D and OA. (A) Heatmap of T2D datasets (GSE26168). (B) The volcano plot of DEGs in T2D datasets.
(C) Heatmap of OA datasets (GSE114007). (D) The volcano plot of DEGs in OA datasets. Red represents upregulated genes, Green represents
downregulated genes, and black represents genes with no difference. (E) Comparing the number of DEGs between T2D and OA. (F) Venn diagram
showing the overlap of DEGs between T2D and OA. (G) The bar graphs of GO enrichment analysis. (H) The bar graphs of KEGG enrichment analysis.
DEGs, differentially expressed genes. T2D, Type 2 Diabetes Mellitus. OA, Osteoarthritis.
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Kellgren-Lawrence (KL). Four patients in OA group were in the

abnormal range of blood glucose. There were no significant

differences in age, sex and bone mineral density among the

groups. It suggested that hyperglycemia may promote the

development of osteoarthritis. Secondly, As illustrated in the

figure, the test results indicated significant differences in the

mRNA expression levels of these genes among the different

groups. Specifically, MMP9 expression was significantly higher in

T2D patients (p=0.046), OA patients (P=0.009), and T2D + OA

patients (p=0.048) compared to healthy individuals (Figure 5A).
Frontiers in Immunology 07
Similarly, ANGPTL4 showed significantly elevated mRNA

expression levels in T2D patients (P=0.001), OA patients

(p=0.013), and T2D + OA patients (p=0.045) relative to healthy

controls (Figure 5B).

Combined with the clinical data above, we can find that blood

glucose was also higher in T2D and T2D + OA patients with higher

MMP9 and ANGPTL4 expression. In T2D patients who had not been

diagnosed with OA, higher expressions of MMP9 and ANGPTL4

were associated with higher KL grades. It suggests that the expression

of MMP9 and ANGPTL4 may be positively correlated with blood
FIGURE 3

Screening of hub genes. (A) PPI network of 209 common DEGs between T2D and OA. (B) PPI network of top14 hub genes screened by the degree
method using cytoHubba. A higher ranking is represented by a redder color. (C–E) Three significant gene clustering modules. (F) 14 hub genes and
their co-expression genes were analyzed via GeneMANIA. PPI, protein-protein interaction. T2D, Type 2 Diabetes Mellitus. OA, Osteoarthritis.
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glucose and the severity of osteoarthritis.The details on clinical data

above can be found in the Supplementary Table 3.
Protein analysis of hub genes

We utilized western blot analysis to evaluate the protein levels of

ANGPTL4 and MMP9 in tissue samples from T2D patients, OA

patients, T2D+OA patients, and healthy controls. The results

showed a significant increase in MMP9 protein in T2D patients

(5.57 times higher, p < 0.001), OA patients (9.71 times higher, p <

0.001), and T2D+OA patients (3times higher, p = 0.046), when

compared to healthy controls (Figures 5C, E). Similarly, ANGPTL4

protein level was elevated in in T2D patients (6 times higher,

p=0.001), OA patients (3.6 times higher, p=0.036), and T2D+OA

patients (10 times higher, p < 0.001) compared to the healthy group

(Figures 5D, E). The original western blot gel was found in the

Supplementary Figure 1.
Evaluation of key genes in T2D and OA

The method focused on assessing the area under curve (AUC)

values to determine the sensitivity and specificity of these genes in

diagnosing T2D and OA. In the T2D dataset, both ANGPTL4 and

MMP9 had AUC values greater than 0.8 (Figures 6A, B), indicating

a high level of diagnostic accuracy. Similarly, in the OA dataset,

both genes had AUC values exceeding 0.75 (Figures 6D, E),

confirming their strong diagnostic value for OA. Furthermore, we

integrated ANGPTL4 andMMP9 with multiple markers to enhance

prognosis prediction and developed a multi-marker diagnostic

model using logistic regression analysis. The ROC results

demonstrated that this multi-marker model effectively predicted

the diagnosis of T2D (AUC = 0.980) and OA (AUC = 0.855)

(Figures 6C, F), highlighting its potential clinical utility.
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Analysis of TFs-miRNAs regulatory network

The results in the construction of an interaction network

between key genes and TFs (Figure 6G). The network consists of

50 nodes and 57 edges. Notably, ANGPTL4 is influenced by 35 TF

genes, while MMP is regulated by 22 genes. Our analysis revealed

that different key genes are modulated by distinct TFs, with 7 TFs

(ZBTB26, MXD3, DRAP1, GATAD1, SSRP1, TFAP4, MXD4)

simultaneously regulating both key genes. Additionally, we used

miRTarBase to predicted miRNA binding sites and establish an

interaction regulatory network between key genes and miRNA

(Figure 6H). This network consists of 24 nodes and 25 edges. In

this configuration, ANGPTL4 is regulated by 4 TF genes and MMP9

by 21 genes. Our results indicate that different miRNAs regulate

distinct key genes, with hsa-mir-29b-3p concurrently regulating

both key genes.
Screening of candidate compounds

Our research has identified 10 candidate compounds that

interact with ANGPTL4 and MMP9, sourced from DGIdb

(Supplementary Table 4). Additionally, we have identified 10

potential therapeutic drugs for T2D combined with OA from

relevant literature references (33–37). Using AutoDock, we have

calculated the binding energies between the key target proteins

MMP9 (PDB ID: 6ESM) and ANGPTL4 (PDB ID: 6U1U) and the

candidate compounds. Upon comparing the binding energies to

those of the original ligands, we have observed that in the MMP9

molecular docking group, two compounds exhibited binding

energies equal to or greater than the original ligand of the

protein. The drug with the highest binding affinity in this group

was identified as Raloxifene (Table 2). In the ANGPTL4 molecular

docking group, 17 compounds had binding energies equal to or

greater than that of the original protein-ligand. The candidate drug
FIGURE 4

Identification of the key genes expression in external datasets. (A) ANGPTL4,MMP9 and NRCAM were statistically significant in T2D expression
profifile (GSE20966). (B) ANGPTL4, MMP9 and CACNA1A were statistically significant in OA expression profifile (GSE51588). NS, not significant.;*, p <
0.05; **, p <0.01; ***, p< 0.001. T2D, Type 2 Diabetes Mellitus. OA, Osteoarthritis.
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showing the greatest binding activity in this group was Ezetimibe

(Table 3). Notably, Raloxifene and S-3304 exhibited binding

energies surpassing the original protein ligands of ANGPTL4 and

MMP9. After analyzing the docking results with the best binding

properties for MMP9 and ANGPTL4 through the Protein-Ligand

Interaction Profiler website, we used PyMOL to visualize the

molecular docking interactions (Figures 6I–L).
Discussion

The accumulating evidence indicates that T2D and OA has

shown a strong correlation and bidirectional link (37–42). Research

has identified similarities in decreased cell function, mitochondrial

dysfunction, lipid metabolism disorders, chronic inflammation, and

the role of pro-inflammatory cytokines like IL-1b and TNFa (43,

44). However, the intricate molecular mechanisms underlying the

interplay between T2D and OA are still not fully understood.

Recently, some common molecular targets of the two diseases

have been identified through the bioinformatics method of

weighted gene co-expression network analysis (WGCNA),

including EPHA3, CEBPB, UBAP1, FZD7, IRAK3 and KDELR3,

etc. Which may theoretically affect the occurrence of the two

diseases by regulating signal transduction and protein activity. It

has certain theoretical significance for guiding future research (45,

46). However, the identified molecular targets have not been

validated by cell experiments, animal experiments, or clinical case

organizations. Since T2D and OA are not the result of a single gene,

many genes may play a role in both. Therefore, the bioinformatics

method of PPI was used to further identify the common molecular

targets in this study.

The analysis of DEGs that are common to both T2D and OA

provides valuable insights into their shared pathogenesis of these

two diseases. In this study, we performed GO enrichment analysis

on DEGs, such as ECM. The ECM plays a crucial role in adipocyte

metabolic dysfunction, which is a key factor in the onset of T2D

(47). An imbalance in ECM synthesis and degradation can lead to

articular cartilage destruction, which is a hallmark of OA onset (48).

KEGG enrichment analysis highlighted significant pathways, such
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as PI3K-Akt and Wnt signaling, which plays a crucial roles in the

pathogenesis of both T2D and OA. In fact, inhibiting the PI3K-Akt

pathway has been shown to alleviate articular cartilage degeneration

in OA (49), while activating this pathway has been found to

improve insulin sensitivity, making it beneficial in the

management of T2D (50). These findings highlight the shared

functional enrichments and signaling pathways in T2D and OA,

prov id ing a d i r ec t ion for fu r ther s tud i e s on the i r

common pathomechanisms.

To further elucidate the pathogenic molecular mechanisms

between T2D and OA, we constructed a PPI analysis on shared

DEGs. There are various bioinformatics analysis tools used to

identify key genes. PPI is composed of proteins interacting with

each other. It can systematically analyze the interaction of a large

number of proteins in biological systems, explore the reaction

mechanism of biological signals and material metabolism in

special physiological states. It also helps to study the molecular

mechanism of diseases and discovers new drug targets in the field of

biomedicine. WGCNA can resolve the associations between gene

collections and sample phenotypes, mapping regulatory networks

between genes in gene collections, and identifying key regulatory

genes. The two methods above have their own advantages. The

accuracy of identifying key genes may be improved with the

combination of the two methods in the future molecular

target screening.

ANGPTL4 and MMP9 were identified as common critical

genes. ANGPTL4 is a multifaceted 50-kDa secretory protein with

a unique ~15 kD N-terminal coiled-coil domain (nANGPTL4) and

a ~35 kD C-terminal fibrinogen-like domain (cANGPTL4) (51). It

is predominantly expressed in metabolic tissues and is primarily

produced in adipose and liver tissues, playing an essential role in

lipid and glucose metabolism (52). ANGPTL4 regulates numerous

cellular and physiological functions, making it a potential

therapeutic target for various diseases (53). Genetic studies have

linked mutations in the ANGPTL4 (E40K) gene to reduced plasma

triacylglycerol and glucose levels (54, 55). Furthermore, ANGPTL4

expression levels are positively correlated with an increased risk of

T2D and obesity-related diabetic phenotypes. Research by

Abhishek K using a hepatocyte-specific ANGPTL4 mutant mouse
TABLE 1 Basic information of the clinical samples.

Clinical indicators T2D(n=8) T2D+OA(n=4) OA(n=7) Normal(n=9)

Age (year), Mean(SD) 57.63(7.33) 57.25(6.80) 63.14(5.11) 59.00(4.74)

Gender (male/female) 5(3) 2(2) 4(3) 4(5)

IBM (kg/m²), Mean(SD) 25.05(2.61) 24.98(2.36) 27.72(2.52) 24.88(2.69)

Fasting glucose (mmol/l), Mean(SD) 9.37(2.48) 13.34(2.25) 5.83(1.09) 5.19(0.53)

GHbA1c(%), Mean(SD) 6.94(1.11) 11.31(1.24) 6.08(1.15) 4.44(1.04)

Kellgren-Lawrence grade (0/1/2/3/4) 3(4/1/0/0) 0(0/0/1/3) 0(0/0/2/5) 8(1/0/0/0)

Bone mass grade (1/2/3/4) 7(1/0/0) 4(0/0/0) 5(2/0/0) 8(1/0/0)

MMP9 expression levels, Mean(SD) 1.66(1.03) 1.92(0.90) 2.13(1.80) 0.50(0.43)

ANGPLT4 expression levels,
Mean(SD)

1.86(0.81) 1.46(1.41) 1.53(0.86) 0.41(0.40)
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model demonstrated that suppressing ANGPTL4 could prevent

diet-induced obesity, reduce ectopic lipid accumulation, and

enhance insulin sensitivity and glucose tolerance (56). These

findings support the role of ANGPTL4 in regulating glucose

homeostasis and its potential impact on T2D. Moreover,

ANGPTL4 is linked to musculoskeletal diseases, including OA,

and influences processes such as bone resorption, cartilage

degradation, angiogenesis, and vascular permeability (57, 58). It
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also participates in receptor-mediated and intracellular activities,

including NF-kB-regulated inflammatory responses and interaction

with sirtuin1 (59). A recent study found that silencing ANGPTL4 in

animal models alleviated OA progression, inhibited the sirtuin1/

NF-kB signaling pathway, and reduced TNFa-induced
chondrocyte inflammation and apoptosis (60). Collectively, these

studies highlight the significant impact of ANGPTL4 on the

development of T2D and OA. Our clinical sample analysis
FIGURE 5

Validation of the key genes (ANGPTL4 and MMP9). (A) MMP9 expression levels in tissue samples of NC, T2D, OA and T2D+OA. (B) ANGPTL4
expression levels in tissue samples of NC, T2D, OA and T2D+OA. (C–E) Western blot was used to determine the protein expression levels of
ANGPTL4 and MMP9 in tissue samples of NC,T2D, OA and T2D + OA. *, p < 0.05; **, p <0.01; ***, p< 0.001. NC,Normal control. T2D+OA, T2D
combined with OA. T2D, Type 2 Diabetes Mellitus. OA, Osteoarthritis. NC,normal control.
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FIGURE 6

Diagnostic value, regulators, and potential drug analysis of key genes. (A, B) ROC of ANGPTL4 and MMP9 in the T2D dataset. (C) Validation of the
integrated diagnostic model in the T2D dataset. (D, E) ROC of ANGPTL4 and MMP9 in the OA dataset. (F) Validation of the integrated diagnostic
model in the OA dataset. These findings indicated these key genes have excellent diagnostic efficiency in T2D and OA. (G) TFs-gene interaction
network based on key genes. The nodes in red color indicated key genes, and nodes in blue color indicated TF genes. (H) miRNAs-gene
coregulatory network based on key genes. The nodes in red color indicated key genes, and nodes in blue color represent miRNAs. (I) Molecular
docking conformation of Raloxifene interaction with MMP9. (J) Molecular docking conformation of S-3304 interaction with MMP9. (K) Molecular
docking conformation of Ezetimibe interaction with ANGPTL4. (L) Molecular docking conformation of S-3304 interaction with ANGPTL4. ROC,
Receiver Operating Characteristic. TFs, Transcription factors. miRNAs, MicroRNAs. T2D, Type 2 Diabetes Mellitus. OA, Osteoarthritis.
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confirmed ANGPTL4 expression in the pathological tissues of

patients with T2D + OA.

The matrix metalloproteinases family, consisting of multiple

members, primarily regulates various cellular behaviors such as

proliferation, migration, differentiation, apoptosis, and host defense

(61). Among these members, MMP9, a type IX collagenase, is

prevalent in non-infected normal connective tissues, where it aids

in the degradation of the extracellular matrix and the inflammatory

response (62). Research has shown a link between OA and both

local and systemic low-grade inflammation, with MMP9 playing a

pivotal role (61, 63). In inflammatory conditions, MMPs are

produced by body tissues, contributing to the degradation of the

cartilage extracellular matrix, which is primarily compose of

proteoglycans and collagen. MMP9, in particular, targets type IX

collagen, accelerating extracellular matrix degradation and thereby

establishing a direct correlation with the pathogenesis of OA (64).

Furthermore, MMP9 has been implicated in the progression of

diabetic osteoarthritis. In an animal study on diabetic OA, MMP9

overexpression was observed in rat cartilage, leading to inhibition of

the anti-apoptotic protein (B-cell lymphoma-2) and an increase in

apoptotic cartilage cells (65). Moreover, MMP9 overexpression

suppressed the expression of cartilage markers collagen type II

alpha 1 (COL2a1) and collagen type I alpha 1 (COL1a1), while its
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inhibition reversed the decrease in COL2a1 and COL1a1expression.

An previous study also demonstrated that plasma MMP9 level was

significantly elevated in early OA patients and positively correlated

with the severity of clinical symptoms (total Lequesne’s scores),

even when imaging features did not indicate articular cartilage

degeneration (66). This suggests that MMP9 could potentially serve

as an early diagnostic marker of OA. These findings, which are

consistent with our study, highlight the high expression of MMP9

in both the pathological and cartilage tissues of T2D and OA

patients. This underscores the regulatory mechanism of

ANGPTL4 and MMP9 in T2D + OA. As discovered in this study,

the expression of MMP9 and ANGPTL4 has a positive correlation

between blood glucose and KL in patients, which suggests a causal

association between MMP9, ANGPTL4 with T2D and OA.

Therefore, ANGPTL4 and MMP9 may have potential value in

diagnosing and treating both diseases. However, T2D and OA are

not the result of a single gene, and many genes or environmental

factors may play a role in both (67). Arruda found evidences of

colocalization at 18 genomic loci to T2D and OA, and these findings

support enrichment for lipid metabolism and skeletal formation

pathways for signals underpinning T2D comorbidities with OA

(68). At the current, most study don’t have sufficient data on

phenotype, other potential predictors, clinical and imaging
TABLE 2 Summary of molecular docking affinity of MMP9 with ligands.

NO. Ligand_name Affinity(Kcal/mol)

1 Raloxifene -10.7

2 S-3304 -10.1

3 Ezetimibe -9.9

4 Warfarin -9.5

5 Curcumin Pyrazole -9.3

6 Celecoxib -9.3

7 Pioglitazone -9.2

8 Curcumin -8.8

9 Demethylwedelolactone -8.7

10 Rosiglitazone -8.7

11 Atorvastatin -8.2

12 Rosuvastatin -8.1

13 Prinomastat -8.1

14 Incyclinide -8.1

15 Tamsulosin -7.8

16 Lovastatin -7.8

17 Bevacizumab -7.7

18 Marimastat -6.4

19
Carboxylated
Glucosamine -6.4

20 Metformin -6.1
The binding affinity between MMP9 and the original ligand is -10.1 Kcal/mol.
TABLE 3 Molecular docking affinity of ANGPTL4 with ligands.

NO. Ligand_name Affinity(Kcal/mol)

1 Ezetimibe -8.8

2 Raloxifene -8.6

3 Curcumin Pyrazole -8.1

4 Pioglitazone -8

5 Rosiglitazone -7.9

6 S-3304 -7.8

7 Celecoxib -7.6

8 Curcumin -7.6

9 Warfarin -7.3

10 Demethylwedelolactone -7.3

11 Prinomastat -7.1

12 Bevacizumab -6.9

13 Atorvastatin -6.9

14 Incyclinide -6.5

15 Tamsulosin -6.4

16 Rosuvastatin -6.4

17
Carboxylated
Glucosamine -6.3

18 Marimastat -6

19 Lovastatin -6

20 Metformin -5.1
The binding affinity between ANGPTL4 and the original ligand is -6.3 Kcal/mol.
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parameters to fully elucidate causal relationships between genes and

diseases. The more detailed study of the queue population is needed.

Our investigation focused on understanding the relationship

between miRNAs, TFs, and the expression of ANGPTL4 and

MMP9. Previous research indicates that the miR-29 family,

including miR-29a, miR-29b, and miR-29c, plays a significantly

role in the pathogenesis of T2D and OA (69–71). Le found

increased expression of hsa-miR-29b-3p in both OA mouse model

experiments and clinical OA tissue samples, indicating its role in early

OA progression (72). Furthermore, hsa-miR-29b-3p has been linked

to the NF-kB and WNT signaling pathways and is implicated in the

onset of diabetes. Marttila noted that hsa-miR-29b-3p’s predicted

targets are enriched in the insulin signaling pathway, with a positive

correlation between its overall expression and serum VLDL lipid and

triglyceride levels, potentially influence glucose tolerance (70).

Animal models have also demonstrated that hsa-miR-29b-3p’s

contributes to insulin resistance and can inhibit insulin-stimulated

glucose uptake, affecting blood glucose levels (73, 74). Our findings

suggest that seven TFs–ZBTB26, MXD3, DRAP1, GATAD1, SSRP1,

TFAP4, and MXD4 concurrently regulate ANGPTL4 and MMP9,

potentially influencing the development of T2D and OA. However,

there is currently limited evidence confirming their involvement in

these diseases. Further research into these miRNAs and TFs may

provide a valuable insight into the mechanisms of T2D and OA and

could potentially lead to new therapeutic targets.

Developing accurate predictive models for diagnosing diseases

and assessing their severity is crucial for risk stratification, tailoring

treatments, and improving patient quality of life. However, there is

a notable gap in predictive models for the early detection of OA

induced by T2D. To address this gap, we developed a diagnostic

prediction model using external data for ANGPTL4 and MMP9.

Our model demonstrated high accuracy, suggesting that ANGPTL4

and MMP9 could serve as preventive and diagnostic biomarkers for

T2D and OA, providing a theoretical foundation for understanding

the molecular mechanisms underlying their co-occurrence.

The molecular docking insights from our study suggest that

Raloxifene, Ezetimibe, and S-3304 may have unique therapeutic

potential for T2D and OA. Previous studies have shown that

raloxifene, a selective estrogen receptor modulator, can prevent

diabetes onset and improve bone material properties in diabetes-

prone rats (75). Laura Tinti found that raloxifene had

chondroprotective effects in human osteoarthritis chondrocytes

(76). S-3304, a novel D-tryptophan derivative, is an MMP

inhibitor that has been shown to reduce extracellular matrix

degradation and inhibit angiogenesis, tumor growth, invasion,

and metastasis, primarily in cancer research (77). Ezetimibe, a

cholesterol absorption inhibitor, has been found to inhibit the

NF-kB pathway, attenuate IL-1b-induced extracellular matrix

degradation, and reduce MMP expression levels induced by IL-

1b, thereby exerting a protective effect (78). These findings support
further experimental and clinical research in this area.

Despite the contributions of our study, it is important to

acknowledge its limitations. Firstly, due to the distinct nature of

the two diseases, it was challenging to find a suitable dataset with

identical sample tissue in public databases. The limited clinical

information in these databases poses a risk of sample
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contamination, potentially leading to biased analytical results.

Secondly, due to the small sample size of clinical patients

included, there may be biases in the correlation between MMP9,

ANGPTL4 and body weight, blood glucose, bone mineral density,

Kellgren Lawrence grade, GHbA1c. Thirdly, due to limitations in

our laboratory conditions and project funding, we are currently

unable to further validate the efficacy and safety of the identified

potential drugs in vitro.
Conclusion

Our study sheds light on shared signaling pathways,

biomarkers, potential therapeutic agents, and diagnostic models

for T2D and OA. These findings offer novel insights into the

pathogenesis, diagnosis, and treatment approaches for T2D

combined with OA, paving the way for future research.
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