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Complete Freund’s adjuvant as a
confounding factor in multiple
sclerosis research
Milica Lazarević , Suzana Stanisavljević , Neda Nikolovski ,
Mirjana Dimitrijević and Đorđe Miljković*

Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of
Republic of Serbia, University of Belgrade, Belgrade, Serbia
Complete Freund’s adjuvant (CFA) is used as a standard adjuvant for the induction

of experimental autoimmune encephalomyelitis (EAE), the most commonly used

animal model in multiple sclerosis studies. Still, CFA induces glial activation and

neuroinflammation on its own and provokes pain. In addition, as CFA contains

Mycobacteria, an immune response against bacterial antigens is induced in

parallel to the response against central nervous system antigens. Thus, CFA

can be considered as a confounding factor in multiple sclerosis–related studies

performed on EAE. Here, we discuss the effects of CFA in EAE in detail and

present EAE variants induced in experimental animals without the use of CFA. We

put forward CFA-free EAE variants as valuable tools for studyingmultiple sclerosis

pathogenesis and therapeutic approaches.
KEYWORDS

multiple sclerosis, experimental autoimmune encephalomyelitis, complete Freund’s
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1 Introduction

Experimental autoimmune encephalomyelitis (EAE) is an animal model of the central

nervous system (CNS) autoimmune diseases. It is mostly used to study the pathogenesis of

multiple sclerosis and to explore therapeutic approaches for the disease (1). EAE was

invented by Rivers and colleagues in 1933 as a consequence of studying the neurological

side effects of vaccination against rabies (2). For more details on the timeline of the origin

and development of EAE, readers are referred to a comprehensive review by Alan G. Baxter

(3). Complete Freund’s adjuvant (CFA) was introduced as an essential component for EAE

induction as early as 1947 (4, 5), just 5 years after its invention (6). CFA is used in most

variants of EAE, including the most prominent ones, such as myelin oligodendrocyte

glycoprotein (MOG)35–55–induced chronic EAE in C57BL/6 mice, proteolipid protein

(PLP)139–151–induced relapsing-remitting EAE in Swiss Jim Lambert (SJL) mice, and

myelin basic protein (MBP)–induced monophasic acute EAE in Lewis rats. Moreover,
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T-cell lines produced for adoptive transfer in passive EAE are

originating from animals immunized with CNS antigens

emulsified in CFA (7).

CFA is a suspension of desiccated heat-inactivated

mycobacterium (most commonly used is M. tuberculosis, followed

by M. butyricum) in paraffin oil and mannide monooleate. It has

been regularly used as an adjuvant of choice for induction of

autoimmune disorders in experimental animals (8). CFA extends

injected autoantigen lifetime, galvanizes the effective delivery of the

antigens to the immune system, and stimulates the innate

compartment of the immune system (8), which, in turn, results in

the effective induction of autoimmune disorders in experimental

animals, including EAE. Still, in studies where EAE is used as a

multiple sclerosis model, CFA introduces numerous confounding

effects, including immune reactivity against antigens unrelated to

the CNS, activation of glia independent of the autoimmune process,

and induction of pain (Figure 1). These and other confounding

effects of CFA are discussed in detail in the following sections.
2 Confounding effects of CFA in EAE

2.1 Mycobacteria

One of the confounding effects of CFA arising from the

presence of mycobacteria is the stimulation of lymphocytes

specific for non-CNS antigens that contribute to the

inflammatory response in EAE (8). As an example, it has been

reported that lymphocytes obtained from the lymph nodes draining

the site of immunization or from the CNS of EAE rats immunized

with MBP + CFA exhibited reactivity against mycobacterial purified

protein derivative (PPD) (9). Moreover, the addition of a PPD-

specific T-cell line to MBP-specific T cells in passive EAE induction

resulted in increased blood-brain barrier disruption, suggesting that

PPD-specific T cells contribute to the CNS autoimmunity in EAE
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(10). On the contrary, reactivity to mycobacterial antigens

homologous to mammalian proteins, such as heat-shock proteins

(HSPs), may interfere with EAE induction. Indeed, prophylactic

application of mycobacterial HSP was shown to inhibit the

development of EAE (11, 12).

Mycobacteria are intracellular bacteria, and the dominant

immune response against them is performed by activated T helper

1 (Th1) cells. Therefore, there is a concern that CFA skews immune

response toward Th1 and away from Th17 arm. Both Th populations

are involved in multiple sclerosis pathogenesis, and each population

has been associated with different clinical expressions of the disease

and/or different mechanisms of effector actions within the CNS (13,

14). Still, CFA does not contain live mycobacteria, and it is more

likely that it shapes immune response through mycobacterial

pathogen-associated molecular patterns, such as muramyl

dipept ide (MDP), trehalose dimycolate (TDM), and

lipoarabinomannan (LAM), which are recognized by nucleotide

oligomerization domain (NOD), C-type lectin-type receptors, or

Toll-like receptor 2 (TLR2), respectively (8, 15–17). Whereas TLR2

stimulation enhances production of cytokines interleukin (IL)-12,

interferon (IFN)–g, and IL-18, promoting Th1 differentiation, TDM

induces production of TNF, IL-6, and CXCL2, promoting

development of both Th1 and Th17 cells (8, 17). Similar to TDM-

induced stimulation, acute NOD2 activation by MDP results in

induction of TNF, IL-12, IL-6, IL-8, and IL-10 (18). Th1-dominated

cytokine pattern is also induced through TLR9 stimulation by

unmethylated 5′-C-phosphate-G-3′ (CpG) oligodeoxynucleotides

and TLR4 stimulation by mycobacterial HSP (19–21). Thus, it

seems that CFA is able to produce both Th1 and Th17 responses.

As an example, both Th1 and Th17 T cells are present in the CNS in

EAE induced in Dark Agouti (DA) rats with spinal cord homogenate

(SCH) + CFA (22). Still, predominance of Th1 response cannot be

excluded as a confounding factor of CFA.

The other important question is if mycobacteria are involved in

the aetiology and pathogenesis of multiple sclerosis. There were
FIGURE 1

Comparison of EAE induced without and with CFA.
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Lazarević et al. 10.3389/fimmu.2024.1353865
studies on the role of mycobacterial HSP70 in multiple sclerosis (23,

24), not only on the human zoonotic infection with M. avium

subsp. paratuberculosis as a cause of multiple sclerosis (25, 26) but

also on the protective role of vaccination with attenuated strain of

M. bovis (BCG vaccine) on disease activity in patients with multiple

sclerosis (27, 28). In short, it seems that M. avium subsp.

paratuberculosis might be a causal agent in genetically

predisposed individuals that appear to be restricted to certain

human populations, such as those of Sardinia and Japan. As for

BCG, epidemiological data support its protective role in multiple

sclerosis, but the mechanisms behind its effects are still elusive. For

more details on the possible role of mycobacteria in multiple

sclerosis etiopathogenesis, readers are referred to a review by

Cossu and colleagues (29). Thus, it seems that there is insufficient

evidence on the role of mycobacteria in multiple sclerosis

pathogenesis to support the use of CFA in EAE.

In addition, one should be careful when studying gut/lung

microbiota role in the pathogenesis of the CNS autoimmunity

using EAE induced with CFA, as there are studies showing that

CFA is affecting microbiota in experimental animals (30, 31).

Overall, as different findings demonstrated diverse relationship

between mycobacteria and multiple sclerosis, the presence of

mycobacterial components in CFA during EAE induction could

potentially serve as a disease-modifying factor. This could pose

challenges in conclusively identifying the precise pathological

mechanisms driving the CNS autoimmunity and in evaluating

potential mechanisms for multiple sclerosis therapy.
2.2 Pain, glial activation,
and neuroinflammation

CFA is known to induce pain in experimental animals (8).

Continual release of antigens from the oily deposit induces a

delayed hypersensitivity reaction characterized by intense

inflammation and hyperalgesia at the injection site (8). Noted

responses to CFA include local acute and chronic inflammation,

granulomatous reactions, skin ulceration, local abscess, and

sloughing. Systemic reactions include diffuse systemic granulomas

resulting from the migration of the oil emulsion, adjuvant-related

arthritis, and chronic wasting disease (32). Inflammatory pain is

influenced by various modulators, including neurotransmitters,

receptors, ion channels, and signaling pathways (33). In a study

exploring effects of CFA on various metabolites, a decrease of

arginine levels and an increase in histidine, phenylalanine, and

tyrosine levels were found in response to CFA injection (34). These

changes in amino acid levels have been associated with alterations

in neurotransmitter levels and, subsequently, with potentiation of

chronic inflammatory pain (34). Additional mechanisms involved

in CFA-induced pain include the production and release of

prostaglandin E2, NO, leukotriene B2, TNF, IL-2, and IL-17 (35).

These mediators contribute to synovitis, polyarticular

inflammation, bone resorption, periosteal bone proliferation, and

consequently to joint degeneration (36).

CFA is typically used to induce peripheral inflammation that can

subsequently affect the CNS. Peripheral inflammation induced by
Frontiers in Immunology 03
CFA leads to the release of inflammatory mediators, including

cytokines that can affect the blood-brain barrier and influence

communication between the immune system and the CNS.

Indeed, it was previously demonstrated that the permeability of

the blood-brain barrier increased after CFA administration (37).

This can affect both glial cells and neurons and ultimately induce

pain. Accordingly, CFA-induced pain in experimental animals is

paralleled with the activation of glia and the production of

inflammatory mediators in the spinal cord (38). Microglia and

astrocytes are recognized as active participants in the initiation

and maintenance of pain facilitation triggered by inflammation

and damage to peripheral tissues, peripheral nerves, spinal nerves,

and spinal cord (39–42). Upon activation, glial cells release a variety

of mediators, including proinflammatory cytokines that can enhance

pain transmission by activating and sensitizing neurons (41–44). In

turn, activated neurons can have reciprocal effects on glial cells, thus

maintaining persistent inflammation and prolonged pain

sensitization (45). Specifically, increased expression of IL-1b and

IL-1RI was found in glial cells and sensory neurons in an articular

arthritis model induced with CFA (46). Furthermore, intraplantar

administration of CFA led to elevated expression of microglial

markers (Mac-1, CD11b/c, TLR4, and CD14) in the spinal cord

and brain during all stages of inflammation (47). In contrast to

microglia, increased expression of astrocytic markers, glial fibrillary

acidic protein (GFAP) and S100 calcium-binding protein B (S100B),

was detected only at the later stages, indicating delayed astrocytic

activation. Having in mind all before mentioned, immunization with

CFA represents a standard model for studying pain (48).

Considering the wellbeing of experimental animals, the ability of

CFA to cause inflammatory pain in experimental animals is

problematic per se and should be avoided to prevent unnecessary

suffering and additional distress in animals. Furthermore, the

enduring inflammatory pain induced by CFA interferes with

various classical tests assessing exploratory behavior, stress coping,

and naturalistic behavior. A systematic review and meta-analysis,

encompassing numerous experiments with hundreds of mice and

rats, distinctly revealed that CFA markedly reduces exploratory

behavior and heightens immobility in the tail suspension test (49).

The most pronounced negative impact was observed in naturalistic

behaviors like burrowing and wheel running. Finally, pain induced

by CFA interferes with the studies of pain caused by CNS

autoimmunity and, consequently, with translation to multiple

sclerosis. Neuropathic pain is a common symptom in patients with

multiple sclerosis, affecting between 28 and 87% of individuals (50,

51). It stems from damage of the central or peripheral somatosensory

systems, including the hyperexcitability of neurons within pain

pathways (52). As CFA induces pain on its own, EAE induced

with CFA is not a reliable animal model for analyzing the

mechanism underlying chronic neuropathic pain frequently

registered in patients with multiple sclerosis.
3 EAE models without CFA

EAE can be induced in monkeys and rats with IFA (incoplete

Freund’s adjuvant) as adjuvant or even without adjuvant at all.
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Although EAE cannot be induced in mice without adjuvant,

transgenic mice develop EAE without induction (vide infra). The

list of actively induced EAE variants in experimental animals

without adjuvant or with IFA is provided in Table 1. Importantly,

the idea of using CFA-free animal models in the study of CNS

autoimmunity is not novel, having been proposed by pioneers in the

field, Levine and Wenk, some 60 years ago (65). These authors were

able to show that EAE can be induced by intracutaneous injection of

neural tissue homogenates without adjuvant in various strains of

rats, with Lewis rats being the most susceptible. In addition, they

tested SCH of different origins, including various rodents, dogs,

bovines, guinea pigs, and even humans. Their results showed that

guinea pig and rat SCH were by far the most efficient.

DA rats were not investigated in their study, but we were able to

convincingly demonstrate that these rats are also highly susceptible

to CFA-free EAE (66–68). Classically, EAE in DA rats is induced

with SCH (either guinea pig or rat) emulsified in CFA (69–71).

Moreover, if immunization of DA rats is performed with SCH

mixed with carbonyl iron, then strong and highly lethal EAE is

induced (72). Still, EAE is easily induced in DA rats by rat SCH

immunization even without adjuvant. The incidence higher than

90% and the clinical course that is prolonged in comparison to SCH

+ CFA immunization was determined in DA rats immunized with

SCH (67). Infiltrates were observed in both the white and the gray

matter of the spinal cord and also in the brain (68). This model has

proven useful for evaluating the therapeutic efficacy of novel agents

(73, 74). We are currently investigating cellular and molecular

mechanisms behind the pathogenesis of CNS autoimmunity in

this model in detail. We are particularly interested in the effects

of immune cells on various brain structures, such as the cortex, the
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cerebellum, and the hippocampus. Moreover, antigen specificity of

T and B cells activated by immunization with SCH in DA rats

is underway.

Furthermore, DA rats immunized with rat SCH and IFA

develop severe protracted and relapsing EAE characterized by

extensive demyelinating inflammatory lesions and autoreactivity

to the rat-specific neuro antigens MOG, MBP69–87, and MBP87–101
(58). Axonal loss in DA rats immunized with MOG in IFA

correlates with clinical severity and number of relapses (61). A

similar mechanism of inflammatory demyelination involving

different components of endoplasmic reticulum stress has been

proposed for demyelination in both the MOG + IFA rat EAE model

and in multiple sclerosis (62). Recently, a novel low-dose MOG +

IFA–induced EAE rat model was introduced in DA and SD rats to

investigate pain with minimal motor impairment/disability and to

find a potential treatment for multiple sclerosis–related pain (63,

64). The high susceptibility of DA rats to EAE was also confirmed

by the induction of severe disease after injection of an

encephalitogen in Titermax, an adjuvant consisting of the block

copolymer CRL-8300, squalene, and a sorbitan monooleate (75).

EAE in marmosets immunized with rhMOG peptides in IFA is

characterized by demyelinating cortical gray matter and prevalent

white matter lesions (53–55). Interestingly, the cross-reactivity of

MOG-specific T cells with the effector memory cells that control

latent CMV infection was determined in rhesus monkeys (76).

Although, this cross-reactivity was not investigated in marmosets,

the possibility exists that CMV infection, which is common in these

monkeys, contributes to the rhMOG peptide + IFA–induced EAE

model. The variable clinical presentation of EAE in monkeys is

related to inflammation and demyelination in the CNS (56),
TABLE 1 Active EAE models with IFA or no adjuvant.

Model Antigen Adjuvant Clinical Course Reference

M
on

ke
ys

Marmosets

rhMOG20-50

rhMOG14-36

rhMOG34-56

rhMOG74-96

IFA Chronic/progressive (53–55)

Marmosets
Rhesus
Cynomolgus

rhMOG1-125 IFA
Monophasic/relapsing/

progressive
(56, 57)

R
at
s

DA rSCH IFA Protracted/relapsing (58)

DA
Lewis

rSCH IFA Relapsing (59)

Lewis rrMOG1-125 IFA Chronic/progressive (60)

DA rmMOG1-116 IFA Chronic/relapsing (61, 62)

DA
SD

rhMOG1-125 IFA Benign to progressive (63, 64)

Lewis
CD F

gpSCH
No
IFA

NA (65)

DA
rSCH
gpSCH

No Chronic/relapsing (66–68)
CD F, Fischer; DA, Dark Agouti; EAE, experimental autoimmune encephalomyelitis; gp, guinea pig; IFA, incoplete Freund’s adjuvant; MOG, myelin oligodendrocyte glycoprotein; NA – not
addressed; r, rat; rh, recombinant human; rm, recombinant mouse; rr, recombinant rat; SCH, spinal cord homogenate; SD, Sprague Dawley.
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whereas the occurrence of an early anti-rhMOG IgM response is

associated with a more severe disease course (76). However, the

purity of the antigen is critical for the development of a mild form of

EAE using IFA, as low traces of LPS in rhMOG can increase the

severity of clinical and histologic features of the disease in

cynomolgus monkeys (57).

Finally, resistance of mice to EAE induction with MOG35–55 or

PLP139–151 in IFA can be abolished by addition of the bacterial

component peptidoglycan from S. aureus (77) or by co-injection of

pertussis toxin (78, 79), respectively. EAE can also be induced in

mice with MOG35–55 and quillaja bark saponin as an adjuvant

followed by pertussis toxin injections (80, 81). Microbial products

seem to be essential for efficient antigen-presenting cell activity and,

consequently, for the induction of CNS autoimmunity in mice (77–

79). Thus, it can be concluded that active EAE induction in mice is

not possible without adjuvant or with IFA as the only adjuvant.

However, there are transgenic mouse models that develop EAE

without any immunization, such as double-transgenic TCRMOG35–

55 × IgHMOG C57BL/6 or non-obese diabetic (NOD) mice (82–84)

and TCRMOG92–106 transgenic SJL mice (85, 86). These models are

very useful for studying the pathogenesis of CNS autoimmunity yet

with limitations introduced by intrinsic restriction in the specificity

of their antigen recognition receptors.

Importantly, different models presented in Table 1 cover the full

spectrum of multiple sclerosis expression, from benign/mild,

through the most common relapsing-remitting, and to the chronic

and progressive forms. For a comprehensive understanding of the

complexity of clinical manifestations of multiple sclerosis and their

significance for the pathogenesis and treatment of the disease, please

refer to a review by Confavreux and Vukusic (87). This versatility of

the CFA-free animal models makes them useful for studying and

addressing specific questions related to different clinical forms of

multiple sclerosis.
4 Discussion

Numerous variants of EAE are available for the investigation of

multiple sclerosis. Given the diversity in the pathogenesis of multiple

sclerosis as well as the elusive etiology of the disease, each of the EAE

variants is a valuable tool for the studies. We strongly support the use

of CFA-free EAE variants as complementary models in multiple

sclerosis studies. This approach can help to eliminate the potential

effects of CFA, which were described in detail above. Interestingly,

there were important early reports showing that EAE can be induced

in rats by immunization with an emulsion made of CFA and lung

homogenate (88). In addition, a demyelinating disease was induced

in Syrian hamsters and guinea pigs by liver homogenate emulsified

in CFA (89). It seems unlikely that CNS and lung or liver share some

common antigens that could serve as autoantigens in CNS

auto immunity . I t i s more l ike ly that CFA leads to

neuroinflammation independent of the presence of CNS antigens
Frontiers in Immunology 05
in the reported studies. This is one more reason to consider CFA as a

confounding factor in multiple sclerosis studies based on EAE.

Thus, we propose that CFA-free animal models should be used

more frequently in the exploration of multiple sclerosis pathogenesis

and therapeutic opportunities. Contemporary studies of multiple

sclerosis should provide a means to prevent demyelination

and neurodegeneration and to promote remyelination and

neuroregeneration. We strongly suggest CFA-free EAE variants for

such studies as they are superior to CFA-based EAE variants, which

are discredited by the weaknesses introduced into the model by the

use of CFA, as discussed above.
Author contributions

ML: Writing – original draft, Writing – review & editing. SS:

Writing – original draft, Writing – review & editing. NN: Writing –

original draft, Writing – review & editing. MD: Writing – original

draft, Writing – review & editing. ĐM: Conceptualization, Writing

– original draft, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The authors

declare financial support from the Ministry of Science,

Technological Development, and Innovations, Republic of Serbia

(Contract No. 451-03-47/2023-01/200007 and 451-03-66/2024-

03/200007).
Acknowledgments

The authors are thankful to Katarina Miljković for artistic
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