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The emerging importance of
skull-brain interactions in
traumatic brain injury
Grant W. Goodman, Patrick Devlin, Bryce E. West
and Rodney M. Ritzel*

Department of Neurology, McGovern Medical School, The University of Texas Health Science Center
at Houston, Houston, TX, United States
The recent identification of skull bone marrow as a reactive hematopoietic niche

that can contribute to and direct leukocyte trafficking into the meninges and

brain has transformed our view of this bone structure from a solid, protective

casing to a living, dynamic tissue poised to modulate brain homeostasis and

neuroinflammation. This emerging concept may be highly relevant to injuries

that directly impact the skull such as in traumatic brain injury (TBI). From mild

concussion to severe contusion with skull fracturing, the bone marrow response

of this local myeloid cell reservoir has the potential to impact not just the acute

inflammatory response in the brain, but also the remodeling of the calvarium

itself, influencing its response to future head impacts. If we borrow

understanding from recent discoveries in other CNS immunological niches and

extend them to this nascent, but growing, subfield of neuroimmunology, it is not

unreasonable to consider the hematopoietic compartment in the skull may

similarly play an important role in health, aging, and neurodegenerative disease

following TBI. This literature review briefly summarizes the traditional role of the

skull in TBI and offers some additional insights into skull-brain interactions and

their potential role in affecting secondary neuroinflammation and

injury outcomes.
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Introduction

Traumatic Brain Injury (TBI) plays a significant role in morbidity and mortality within

the United States, encompassing a range of injuries affecting brain function due to an external

force to the skull (1). Approximately 2.8 million head injuries occur each year in the United

States alone, with skull fracture occurring in 28-37% of those diagnosed with TBI (2, 3). The

burden of TBI is significant, with fatalities associated with TBI estimated to number more

than 69,000 annually and 3.2-5.3 million individuals suffering from lasting disability in the US

(4, 5). TBI predominates among men, young children, and elderly populations, with

incidence rates influenced by socioeconomic factors (6). Following either penetrating or
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blunt, non-penetrating traumas, TBI leads to symptoms such as

altered consciousness, amnesia, confusion, headache, or dizziness (7).

Severe complications include intracranial hemorrhage (ICH),

heightened intracranial pressure (ICP), brain edema, and seizures

(8). The initial trauma is often termed the primary injury, leading to

the secondary injury or the pathophysiological responses to trauma

(9). The secondary injury includes neuroinflammatory processes,

excitotoxicity, and eventual cell death (10). Current treatment

strategies for TBI primarily focus on the secondary injury

mechanisms following brain injury. Most of these involve relieving

elevated ICP via surgical intervention, anti-inflammatory medication,

cranial temperature modulation, or elevation of the head (11).

Penetrating TBI involves foreign object intrusion into brain tissue,

often due to injuries caused by projectiles like gunshot wounds (7). In

contrast, blunt, non-penetrating TBI results from direct head impact or

rapid head acceleration and deceleration without direct contact (7).

Blunt non-penetrating TBI frequently leads to a contrecoup brain

injury, causing brain contusion on the opposite side to the external

force (12). This phenomenon arises due to the sudden movement of

denser cerebrospinal fluid (CSF) towards the skull impact point,

displacing the brain towards the opposite side of the skull and

causing the contrecoup injury (13). The health and structural

integrity of the skull as a living tissue, is thus directly and critically

involved in determining the severity of TBI. However, until recently,

the involvement of skull bone marrow cells, including hematopoietic

cells, bone-modifying osteocytes, and other stromal cells, has been long

overshadowed by the evolving neuropathology seen in the brain.

The International Classification of Diseases, Tenth Revision,

Clinical Modification (ICD-10-CM) diagnostic codes for TBI

include skull fracturing (7). However, TBI severity is typically

classified as mild, moderate, or severe based on the Glasgow

Coma Scale (GCS), which evaluates eye-opening, motor, and

verbal responses (14). The GCS does not account for skull

fracturing in TBI. Notably, skull fractures are evident in

approximately 5% of mild TBI cases and up to 50% of severe TBI

cases, correlating with worse TBI prognoses (2, 15). Non-

penetrating TBI accounts for 90% of skull fractures, with the

remaining 10% originating from penetrating TBI (16). Disparities

between these two evaluations, and more, may result in improper

treatment plans and poorer outcomes.

While research has extensively explored the secondary brain

injury following TBI, the biological role of the skull in mitigating or

exacerbating the pathophysiological response remains unclear.

Initially regarded as a static protective structure for the brain and

meninges, recent studies have uncovered a significant role for the

skull bone marrow (BM) as a distinctive site housing immune cells

crucial for sensing and participating in central nervous system

(CNS) inflammation (17). Moreover, direct connections between

the skull and brain allow skull BM-derived immune cells to migrate

into brain tissue after injury (18). This review aims to synthesize

current literature on experimental TBI models, the inflammatory

response post-TBI, and the skull’s involvement in TBI.

Furthermore, we aim to evolve the view of the skull as not just an

inert protective casing for the brain, but as a dynamic tissue that is

actively involved in the brain’s response to trauma.
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The skull and TBI

The human neurocranium is a composite bone structure

composed of two compact cranial tables enclosing a cancellous

intermediary layer of the skull, termed the diploe (19). Importantly

for the discussion of brain-skull immune dynamics, the diploe

serves as the primary reservoir of skull-derived bone marrow.

Studies investigating the relative force capacity of each of the

skull’s layers have found that it is this composite sandwich

structure that accounts for the human skull’s impressive

durability, rather than the strength of any individual layer (19).

As skull thickness may be a significant protective modifier in TBI

and skull fracture risk, apart from impact velocity, one of the most

important predictors of blunt force TBI severity is impact location.

Bone thickness within the cranium ranges significantly, even within

the same individual bone plate (19). Unlike other bone structures,

cranium bone thickness does not appear to decrease in an age-

dependent manner, but it does exhibit the same trend of reduction

in flexibility (20). Currently, the interaction between age and sex on

cranial thickness and strength remains unclear (20). It is worth

noting here that while skull fracture can occur in severe TBI and

contribute to post-injury fragility, moderate TBI has been shown to

cause an increase in cranial thickness which may be protective

against cranial fracture in cases of repeated TBI (21).

Furthermore, while the skull serves an invaluable protective role

against the mechanical forces that result in brain injury, it also

contributes to TBI through the contact forces imposed on the brain

during coup and contrecoup injury, as well as through the sheering

forces induced between superficial brain areas and the bony

protrusions of the frontal and temporal internal cranial fossae

(22). Although the direct impact of the brain within the cranial

vault mediates primary injury, the skull also provides a means for

therapeutic intervention via craniotomy to release ICP.

Additionally, the vascular channels acting as an interface between

the skull and meninges have been proposed as a potentially novel

route of drug delivery across the BBB, with intraosseous

administration of drug compounds reaching 10- to 100-fold

greater penetration into the brain parenchyma compared to

systemic administration (23). Emerging data also indicate that

skull bone health may be critical for normal brain function,

especially in the context of repetitive mild concussion or age-

specific TBI (24). Skull-targeted therapies may be in the nascent

phase of preclinical development but have strong potential to

attenuate the local inflammatory environment or prevent bone

fracturing and dural bleeding.
Acute inflammatory response to TBI

During the secondary phase of injury, there are numerous

mechanisms to promote the inflammatory response following

TBI, including apoptotic cascades, reactive oxygen species (ROS)

generation, increased BBB permeability, and mitochondrial

dysfunction (25–27). Damage-Associated Molecular Patterns

(DAMPs) like ATP, Heat-Shock Proteins (HSPs), and High
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Mobility Group Box 1 (HMGB1) are released from neurons and

glial cells, activating innate immune receptors on macrophages,

dendritic cells, and glial cells (28). This activation prompts

microglia, the resident macrophages of the CNS, to clear debris

and intensify inflammation by releasing pro-inflammatory

cytokines (29, 30). These cytokines, including IL-1B and IL-6,

recruit neutrophils to the affected area (31, 32). Elevated serum

IL-6 levels in severe TBI patients have been found to correlate with

poorer outcomes, suggesting intensified inflammation results in

more prominent pathology (33). Within 24 hours of TBI, microglia

release nitric oxide (NO), ROS, IL-1B, and IL-6, enhancing the

recruitment and differentiation of monocytes into tissue

macrophages (34, 35). The nucleotide-binding oligomerization

domain-like receptor pyrin domain-containing-3 (NLRP3)

inflammasome activation by innate immune regulator, nuclear

factor- kB (NFkB), in microglia and astrocytes contributes to a

pro-inflammatory environment via caspase cleavage and IL-1B and

IL-18 secretion (36). In TBI, microglial-secreted IL-6 and NFkB
upregulate the aquaporin (AQP4) water channel in endothelia,

which is known to promote brain edema (32, 37, 38). Chronic

microglial activation following TBI has been posited as one of the

drivers of long-term cognitive dysfunction seen in TBI, with one

study of former National Football League players showing increased

binding of the microglia-associated inflammatory marker,

translocator protein (TSPO), in brain regions including the

supramarginal gyrus and amygdala (39). In addition to the

increase in inflammatory signaling in the brain parenchyma, the

meninges is rapidly gaining interest as an area of immune activation

in the context of TBI (40, 41). Indeed, in recent neuroimaging

studies, patients with mild TBI show meningeal abnormalities that

may indicate areas of increased inflammation (42).

Lymphoid immune cells have also been demonstrated to have

significant involvement in the inflammatory response to TBI.

Following TBI, CD4+ T cells differentiate into T-regulatory

(Treg) and T-helper (Th) subsets Th1, Th2, and Th17 (43). Th1

and Th17 play strong pro-inflammatory roles in the ensuing

immune response. Th1 cells release IL-2, interferon-gamma (IFN-

y), and tumor necrosis factor-alpha (TNF-a) to activate

macrophages and increase BBB permeability (44, 45). Human

CD4+ Th17 cells, via IL-17 and IL-22 secretion, disrupt the BBB

and cause CNS inflammation (46). CD4+ Th2 cells secrete

neuroprotective cytokines IL-4 and IL-5, promoting anti-

inflammatory processes (47). Th cell polarization is driven by

microglial secretion of the chemokine CXCL10, promoting Th1

cell infiltration and overall brain inflammation (48). A previously

understudied, but crit ical ly important player in this

neuroinflammatory response to TBI is the immune cell-rich

lymphoid tissue found in the skull.
Immune contribution of the skull

Although the skull has been largely overlooked in neurotrauma

research, it contains millions of immune cells in a proximal location

to the brain and is thus poised to act as a significant modulator of

CNS function via regulation of skull-meningeal trafficking
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(Figure 1). The immune compartment in the diploe of the skull

calvarium may also play a pivotal role in the immune activation

following TBI via its direct access to arachnoid CSF absorption sites

in the meninges through short ossified paravascular channels (49,

50). Differentiated from other bone marrow compartments by its

distinct transcriptomic and proteomic profile, calvarium bone

marrow has been identified as a major source of immune cell

recruitment to the CNS following injury to the brain (51). Multiple

studies have demonstrated infiltration of skull-derived immune

cells into the CNS following brain injury, indicating a previously

uninvestigated role of skull bone marrow in contributing to the

inflammatory response to TBI (52). The bone marrow is a complex

environment containing various cell types of endothelial cells,

osteocytes, and matrix components that support the immune

system and hematopoietic stem cells (HSCs) (53–55). Within this

environment, HSC proliferation and differentiation play a pivotal

role in immune responses, giving rise to both lymphoid and

myeloid cell lineages (56, 57). In fact, during the acute

inflammatory response to TBI, there is a well-characterized shift

in HSC differentiation towards the myeloid cell lineage in the

nearby skull marrow (58). Furthermore, damage to the skull has

been shown to directly influence immune dynamics in the brain,

with murine models of a weight-drop TBI demonstrating increased

inflammation-related gene expression of TNF-a and TIMP-1 in the

brain tissue of mice with skull fractures compared to those without

(59). Mice with skull fractures also had significantly worse

Neurological Severity Scores (NSS) than those without, and skull

fracture severity correlated positively with NSS (59). It is not clear

whether TBI-associated with or even without skull fractures

resulted in greater leukocyte infiltration into the brain. Notably,

murine models of CNS trauma demonstrate the presence of

myeloid progenitors in the meninges during neuroinflammation,

which are otherwise absent without trauma (60, 61). Combined
FIGURE 1

Proposed schematic depicting the infiltration of skull-derived
immune cells into the brain parenchyma via ossified vascular
channels following TBI with microfractures. Immune cells located in
the calvarial bone marrow of the skull’s diploe have a direct portal to
the meninges via the shared vasculature penetrating this cancellous
bone tissue. Note the bidirectional travel of immune signaling
molecules through these same channels. Illustration created with
BioRender.com.
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with findings that indicate myeloid cell migration from both the

skull and peripheral blood, evidence strongly suggests a role for

skull bone marrow in the initial immune response to TBI (17, 62).

One of the main vehicles proposed to enable the transmigration

of immune cells into the brain parenchyma CSF has also been

implicated in signaling myeloid cell movement from the skull BM to

the meninges by accessing skull diploe and mobilizing immune cells

following insult (63). Additionally, these vascular portals between

the CNS and the skull enable traffic in both directions, with immune

factors from the CNS traveling to bone marrow niches in the skull

to drive HSC differentiation and recruitment (64). The greatest

source of this heterogeneity arises from differing genetic profiles of

the resident myeloid and B cells. Multiple studies have

demonstrated the presence of calvaria-derived neutrophils,

monocytes, macrophages, and B cells in the meninges and brain

parenchyma (17). While the precise role of the skull-derived

hematopoietic cells in TBI remains uncertain, the existing

literature indicates a clear mechanism for immune cell infiltration

from the skull’s BM into the brain parenchyma following injury.

Importantly, the skull-meninges interface described here is

bidirectional. This is supported by studies showing that CSF can

exit into skull bone marrow to instruct hematopoietic response to

neuroinflammatory conditions, including infection, stroke, and

multiple sclerosis (64, 65).Additionally, this skull-meninges

connection may not only be a route of traffic for immune cells,

but also secretory factors which may further modulate

neuroinflammation following TBI. Unfortunately, there is to date

little research directly investigating the changes to calvaria bone

marrow composition following TBI. While there is no longer doubt

as to the neuroinflammatory contribution of skull-derived immune

cells located in the dura following brain injury, whether the

neuroimmune response is preferential to migration from local

bone marrow sites over circulating, bloodborne immune cells is a

question which requires further investigation (17).
Glymphatic-meningeal
lymphatic circulation

An important consideration to account for in the discussion of

CSF circulatory dynamics between the skull and the meninges is

TBI’s impact on paravascular glymphatic and perivascular

lymphatic function in the meninges and brain. Normally

responsible for the clearance of neurotoxic substances such as

DAMPs, Ab aggregates, tau proteins, and alpha-synuclein

aggregates, the glymphatic and lymphatic systems in the brain

play a vital role in recovery from TBI and are a burgeoning area

of research in the field (66). TBI has been shown to significantly

impact the rate of flow in these drainage systems. Following injury,

the rate of paravascular drainage is slowed by as much as 60%,

causing a subsequent reduction in the movement of interstitial fluid

through the brain and an increase in protein accumulation in the

parenchyma (67). Furthermore, it has recently been shown that

enhancement of glymphatic-lymphatic drainage via a “nano-
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plumber” technology results in a significant improvement in

neurological function in rodents following TBI (68). This

treatment works by returning injured tissue to a homeostatic

microenvironment via dampening the local microglial response

and recovering healthy vascular and glymphatic-meningeal

lymphatic circulation to support the clearance of noxious material

and pro-inflammatory immune cells. The disruption to

paravascular drainage in the parenchyma may well extend to the

meningeal-skull marrow paravascular interface following TBI,

however, the consequence of such a disruption for the function of

immune signaling and migration between the skull and meninges is

currently unknown.
Skull fracturing and morphological
adaptation to TBI

Despite the dissipative effect on impact energy that may occur

when the skull fractures in response to mechanical trauma, one of

the greatest clinical risk factors for mortality and worsened

outcomes in severe TBI is the presence of fractures to the skull

vault or skull base (69). In the weight-drop animal model of TBI,

skull fractures are reported to induce a significant increase in the

inflammatory response compared to TBI mice without fractures

(59). Due to the heterogeneity of cranial bone thickness and

geometry, the likelihood of fracture varies significantly based on

which region of the skull an impact occurs. Microfracturing is rarely

examined in imaging studies but may be a key predictor of more

serious fracturing with repeated head impacts. Recent studies

investigating impact force dynamics on the human skull suggest

that the temporal region is the area most susceptible to fracture,

largely due to its thinner diploe compared to more resilient areas of

the skull in the frontal, parietal, and occipital regions (19). The skull

also appears to exhibit mechanosensitive adaptations to physical

impact, increasing in thickness in the area exposed to the impact

force in a dose-dependent manner. Preliminary research shows that

this bone anabolic effect may be mediated in part by the

cannabinoid-1 receptor (70). Furthermore, the underlying

meninges appears to respond in a similarly localized fashion,

mounting a dynamic transcriptomic response that is exacerbated

with age (21). As with the potential role of the skull’s immune

response in modulating TBI outcome, the influence of changes to

skull morphology at both the macroscopic and cellular levels

following TBI may serve as another path to explore potential

therapeutic interventions for recovery from TBI.
Experimental models for TBI

Due to the heterogeneity of injuries associated with TBI, there

are a number of different experimental animal models to mimic

different aspects of both primary and secondary TBI progression

and pathology. The current prevailing models in the TBI literature

include controlled cortical impact (CCI), weight drop-impact
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acceleration injury, fluid percussion injury, blast injury, and

penetrating ballistic-like brain injury (71). Although each of these

models comes with its own advantages and disadvantages,

experimental paradigms such as the weight drop-impact

acceleration model and other closed-head models of TBI are

better suited to study the skull-brain axis of immunity due to

their comparatively less invasive manipulation of the calvarium.

However, evidence of leukocyte infiltration is absent in most weight

drop models of mild concussion. Injury models, such as CCI, that

involve direct manipulation of the skull tissue prior to injury

induction, most often in the form of a partial craniotomy over

the impact location, may serve to obscure the potential influence of

proximal skull tissue on injury progression and recovery following

TBI. This is evidenced clinically by the high proportion of patients

who undergo craniotomy experiencing fever in the post-operative

period (72). Furthermore, as CT analysis of skull fracturing is

commonly used for clinical diagnosis of TBI (73), models that

incorporate this aspect of TBI pathology will be especially useful in

future research investigating the influence of the skull in TBI

secondary injury and recovery.
Conclusion

As one of the leading causes of neurological disability in the

world, the study of TBI pathophysiology and its potential

therapeutic interventions is a matter of pressing importance.

Despite this, investigation of nearby tissues with preferential

access and influence over immune dynamics within the brain is

an area of relative neglect in TBI literature until recently. With the

discovery of vascular channels by which the immune compartments

of the brain and skull may communicate, there is a greater impetus

than ever before to expand research seeking to investigate the role of
Frontiers in Immunology 05
this connection and how it may be incorporated into future

treatment approaches.
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