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Introduction: BAP1 is a deubiquitinase (DUB) of the Ubiquitin C-terminal

Hydrolase (UCH) family that regulates gene expression and other cellular

processes, through its direct catalytic activity on the repressive epigenetic

mark histone H2AK119ub, as well as on several other substrates. BAP1 is also a

highly important tumor suppressor, expressed and functional across many cell

types and tissues. In recent work, we demonstrated a cell intrinsic role of BAP1 in

the B cell lineage development inmurine bonemarrow, however the role of BAP1

in the regulation of B cell mediated humoral immune response has not been

previously explored.

Methods and results: In the current study, we demonstrate that a B-cell intrinsic

loss of BAP1 in activated B cells in the Bap1fl/fl Cg1-cre murine model results in a

severe defect in antibody production, with altered dynamics of germinal centre B

cell, memory B cell, and plasma cell numbers. At the cellular and molecular level,

BAP1 was dispensable for B cell immunoglobulin class switching but resulted in

an impaired proliferation of activated B cells, with genome-wide dysregulation in

histone H2AK119ub levels and gene expression.

Conclusion and discussion: In summary, our study establishes the B-cell

intrinsic role of BAP1 in antibody mediated immune response and indicates its

central role in the regulation of the genome-wide landscapes of histone

H2AK119ub and downstream transcriptional programs of B cell activation and

humoral immunity.
KEYWORDS

B cell, humoral immune response, epigenetic regulation andgene expression,mousemodel,
germinal center (GC) B cells, class switch recombination, deubiquinating enzymes
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Introduction

B lymphocytes are the central mediators of humoral immunity

in response to infections and vaccinations (1). During humoral

immune response naïve B cells make a multitude of cell fate

decisions and differentiate into germinal center (GC) B cells,

memory B cells, and plasma cells. Such differentiation pathways

are tightly controlled by a complex network of transcriptional

regulators, as for example PAX5 acts to maintain the B cell

lineage identity, BCL6 drives GC transcriptional programs (2),

and BLIMP1 and XBP1 promote plasma cell differentiation (3).

Disruption of such transcriptional programs can result in life-

threatening immunodeficiencies or carcinogenesis (1, 4).

Epigenetic regulators cooperate with transcription factors in the

control of cellular gene expression. Polycomb repressive complexes

(PRCs) are the central regulators of cell identity and differentiation

(5, 6), and include the histone H3K27me3 methyltransferase PRC2

and the histone H2AK119ub E3 ubiquitin ligase PRC1 (7). While

PRC2 is required for the normal induction of GC reaction and

humoral immunity (8–11), and is widely investigated for its roles in

lymphomagenesis and as a lymphoma drug target (4, 12, 13), the

roles of PRC1 in humoral immunity are less well explored (14). The

B-cell restricted loss of the PRC1 subunit BMI1 (also known as

PCGF4) modulated GC reaction and enhanced humoral immunity

in the context of chronic viral infections (15), while the loss of

PRC1-binding transcription factor YY1 disrupted the progression

of the GC reaction and impaired humoral immunity (16–18).

H2AK119ub is a highly abundant repressive epigenetic mark,

estimated to occur on ~10% of nucleosomes in a typical mammalian

cell (19). Thus, multiple chromatin-associated deubiquitinases are

known to antagonize PRC1 by removing H2AK119ub from

chromatin (H2A-DUBs) (20, 21). In previous work, we and

others explored the roles of the DUB MYSM1 in B cell

development (22, 23), humoral immune response (24), and B cell

carcinogenesis (25), while others reported on the role of USP16 in

hematopoiesis and the regulation of transcriptional programs in

naïve B cells (26, 27). It is however important to stress that such

DUBs are multifunctional proteins with many known substrates,

and their specific roles in the regulation of the genome-wide

H2AK119ub epigenetic landscapes or specific functions in the

cell-fate decisions of the GC reaction and humoral immunity are

poorly understood (20, 21).

BAP1 is a member of the ubiquitin C-terminal hydrolase

(UCH) family of DUBs and is widely recognized as one of the

major DUBs for H2AK119ub (28). At chromatin BAP1 acts in

complex with ASXLs, HCF1 and OGT (29–32), and also interacts

with transcription factors FOXK1/2 (33, 34), YY1 (35), KLF5 (36),

and PGC1a (37). However, beyond the role of BAP1 as an

epigenetic regulator of gene expression, it is known to have other

substrates and functions both in the nucleus and the cytosol (28), as

for example promoting apoptosis through its DUB catalytic activity

on IP3R3 (38) and in DNA damage repair through the homologous

recombination (HR) pathway (39).

BAP1 is an important tumor suppressor, mutated in sporadic

uveal melanomas, mesotheliomas, renal cell carcinomas,
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hepatocellular carcinomas, and to a lesser extent other cancers

(28, 40–42), while BAP1-interacting ASXL proteins are commonly

mutated in myeloproliferative disorders (43, 44). Furthermore, rare

BAP1 germline mutations result in the so called ‘BAP1 cancer

syndrome ’ , with a high incidence of uveal melanoma,

mesothelioma, and other malignancies (28, 45, 46). In mouse

models, BAP1 is known to be essential for normal progression of

embryonic development, and its constitutive loss results in lethality

at E9.5 of gestation (47). Interestingly, an inducible loss of BAP in

the Bap1fl/fl CreERT2 mouse model resulted in hematologic and

immune pathology, including myelodysplastic syndrome (47),

impaired thymocyte development (48), and defective peripheral T

cell expansion (48), with global increases in the H2AK119ub levels

in the affected cells.

In recent work, we analyzed the role of BAP1 in B cells using the

Bap1fl/fl mb1-Cre mouse model, with a selective loss of BAP1

throughout the B cell lineage (49). We demonstrated the cell-

intrinsic requirement for BAP1 in the normal progression of B

cell development, and established its role as a DUB for histone

H2AK119ub in the regulation of the transcriptional programs of

cell proliferation in pre-B cells (49).While BAP1 remains highly

expressed throughout the B cell lineage (50), its role in the

regulation of B cell activation and humoral immune response

remains unknown and is the focus of our current work.
Materials and methods

Mice

The Bap1tm1c(EUCOMM)Hmgu mouse strain carries a conditional

(floxed) allele of the Bap1 gene; it was generated by the Wellcome

Trust Sanger Institute Mouse Genetics Project and Infrafrontier/

EMMA (www.infrafrontier.eu) (51–53), and described in our recent

work (49). The strain was bred to the transgenic line expressing Cre

recombinase under the control of the B cell lineage specific

promoter mb1-Cre (from Prof. Michael Reth, MPI für

Immunbiologie und Epigenetik, Germany) (54), and to the

B6.129P2(Cg)-Ighg1tm1(cre)Cgn/J mouse strain (Jackson Labs:

010611, Cg1-cre) expresses Cre recombinase from the

endogenous immunoglobulin heavy constant gamma 1 locus

(Ighg1) (55). As we previously described (49), the loxP sites flank

exons 6-12 (ENSMUSE00000121807-00000121801) of the main

ENSMUST00000022458.10 Bap1 transcript, and the Bap1D allele

is predicted to disrupt BAP1 protein coding sequence from amino

acid 126 (out of 728), precluding full expression of the N-terminal

UCH catalytic domain and all the downstream domains of the

protein. All lines were on the C57BL/6 genetic background. Both

male and female animals were used in experiments, sex-matched

between test and control groups. Experiments were in accordance

with the guidelines of the Canadian Council on Animal Care and

protocol MCGL-2011-6029 approved by the McGill Animal Care

Committee. Genotyping was performed in house using the

DreamTaq DNA Polymerase (Thermo Fisher Scientific) and

primers from IDT Technologies.
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Cell culture

Mouse B cell line CH12F3, which is a widely used model for the

study of B cell activation and class switching (56), was maintained at

0.5-2 x106 cells/mL in RPMI-1640 (Thermo Fisher Scientific) with

10% Fetal Calf Serum (FCS, Thermo Fisher Scientific), 2mM L-

Glutamine, 100mg/mL streptomycin, 100U/mL penicillin (Thermo

Fisher Scientific), and 5% NCTC (Sigma-Aldrich).
CRISPR-Cas9 gene targeting

Bap1D/D CH12F3 cells were generated through CRISPR-Cas9

gene editing according to our previously described protocols (49).

gRNAs were designed with http://crispr.mit.edu online tools (57):

gRNA_Bap1_Exon4_Chr14:32,066,155: gcaaatggatcgaagagcgc,

gRNA_Bap1_Exon5_Chr14: 32,066,654: ggcgtgagtggcacaagagt, and

cloned into the pSpCas9(BB)-2A-GFP (PX458) plasmid (Addgene,

#48138). Sequence-verified plasmids were introduced into CH12F3

cells through nucleofection using the Amaxa Cell Line Nucleofector

Kit V (Lonza) according to the manufacturer’s protocol. Single

GFP+ IgA- cells were sorted on day-2, and expanded for further 14

days to generate single cell clones. Loss of BAP1 protein was

validated with Western blotting and the following antibodies:

anti-BAP1 (D7W7O, Cell Signaling Technology) and anti-b-Actin
(D6A8, Cell Signaling Technology).
CH12F3 cell assays

AlamarBlue fluorogenic assay (ThermoFisher Scientific) was

performed according to the manufacturer’s protocols, as we

previously described (49). Cells were seeded into 96-well plates at

105/mL, rested overnight, and the AlamarBlue reagent added at 10%

(v/v). Fluorescence intensity was recorded at the 4-hour timepoint

on the EnSpire Plate reader (Perkin Elmer), at the 560nm excitation

and 590nm emission wavelengths. For the CFSE-dilution assay, 5 ×

106 cells were incubated in 2 mM CellTrace™ CFSE (ThermoFisher

Scientific) in 1mL of PBS for 10 min at 37°C. The cells were washed

in PBS with 5% FBS, followed by a second wash in PBS. The cells

were re-suspended in complete media at 2 × 105/mL and

maintained in culture overnight at 37°C 5% CO2. The cells were

counterstained with Fixable Viability Dye eFluo780 (ThermoFisher

Scientific), and the data were acquired on the BD Fortessa and

analyzed with FlowJo (Tree Star, BD Biosciences) software. In some

assays the CH12F3 cells were stimulated with TGF-b (1ng/ml, R&D

Systems), IL-4 (10 ng/ml, Peprotech), and anti–CD40 (1mg/ml,

BD Biosciences).
Primary B cell cultures

The protocols were as described in our recent work (58). Briefly,

naïve primary mouse B cells were purified from splenocytes using

EasySep™ Mouse B Cell Isolation Kit (19854, Stem Cell
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Technologies) and were cultured at 37°C with 5% CO2 in iGB

media: RPMI-1640 (Wisent), supplemented with 10% FBS

(Wisent), 1% penicillin/streptomycin (Wisent), 0.1 mM 2-

mercaptoethanol (BioShop), 10 mM HEPES, and 1 mM sodium

pyruvate. Mouse primary B cells were labeled with 2.5mM
CellTrace™ Violet (C34557, Invitrogen) in PBS for 20 minutes at

37°C before quenching as recommended by the supplier. For

switching to IgA, B cells were stimulated with mouse

recombinant IL-21 (20ng/mL, Peprotech), TGF-b1 (5ng/mL),

retinoic acid (1mM, Sigma), F(ab’)2 goat anti-mouse IgM (5mg/
mL, Jackson ImmunoResearch) and anti-CD40 mAb FGK45 (5mg/
mL, prepared in-house from hybridoma), as previously described

(59). To measure class switching to IgA, cells were treated with

mouse FcR blocking reagent (130-092-575, Miltenyi Biotec) then

stained with anti IgA-PE (1040-09, Southern Biotech). Dead cells

were excluded using eBioscience™ Fixable Viability Dye eFluor™

780 (65-0865-14, Invitrogen). Induced GC B cells (iGBs) were

generated on 40LB feeder cells (a gift from Dr. Daisuke Kitamura,

Tokyo University of Science, Tokyo, Japan) (60). One day prior to B

cell plating, 40LB cells were treated with 10mg/mL mitomycin C

(SKU M-1108, AG Scientific) at 0.5 × 106 cells per mL in 10cm

dishes with DMEM media supplemented with 10% FBS (Wisent)

and 1% penicillin/streptomycin (Wisent). After treatment, the cells

were washed 6 times with 10 mL of PBS and plated at 1.3×105 cells

per well in 0.5 mL (24-well plate). Subsequently, purified naive B

cells were plated onto the 40LB feeders at 2x105 cells in 1mL of iGB

media, supplemented with 1 ng/mL IL-4 (214-14, Peprotech). On

days 3, 4 and 5, the cells were either harvested for downstream

analyses in PBS with 0.5% BSA and 2 mM EDTA or fed with 1 mL

of fresh iGB media with 1 ng/mL IL-4. Class switching to IgG1 was

analyzed by flow cytometry, treating with mouse FcR blocking

reagent and staining the cells with anti-IgG1 PE (550083, A85-1, BD

Pharmingen) and anti-IgM BV421 (562595, R6-60.2, BD

Pharmingen). For the analyses of cell division, iGBs were stained

with 2.5mM CellTrace™ Violet on the day of plating, according to

the manufacturer’s protocol. Cell numbers for the iGBs growth

curves were calculated using Countess 3 Automated Cell Counter.
Mouse immunization

For the phycoerythrin (PE) immunization the mice were

injected subcutaneously with immunogen emulsion comprising

100 ml CFA (Thermo Fisher Scientific), 15 mg of R-PE (ProZyme,

Cedarlane), and 100 ml PBS, vortexed for 45 min prior to the

injection. For the immunization with sheep red blood cells (SRBCs),

the mice were injected intravenously with 109 SRBCs (Innovative

Research IC10-0210, Cedarlane) in 300uls of PBS. Immunization

protocols were previously described (24, 61).
Analyses of antibody titers

ELISA analyses of total immunoglobulin levels in the serum of

naive mice (or in the supernatants from B cell cultures) used rat
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anti-mouse capture antibodies IgM II/41, IgG1 A85-3, and IgG3

R2-38 (BD Biosciences, 1 mg/ml) followed by detection with goat

anti-mouse IgG(H+L)-HRP (Southern Biotechnologies). For the

analysis of total IgG2c levels capture antibody goat anti-mouse Ig

(H+L) and detection antibody goat anti-mouse IgG2c-biotin

(Southern Biotechnologies), followed by streptavidin-HRP

(Thermo Fisher Scientific) were used. Purified mouse IgM, IgG1,

IgG2c, and IgG3 isotype control antibodies (BioLegend) were used

as standards for the calculation of immunoglobulin concentrations.

In the ELISA assays for the detection of PE-specific antibodies, the

plates were coated with R-PE (10 mg/ml, ProZyme, Cedarlane), and

developed with biotin goat anti-mouse IgM, IgG1, IgG2c, or IgG3

(Southern Biotechnologies), followed by streptavidin-HRP

(Thermo Fisher Scientific). All the ELISAs were developed with

SuperAquaBlue substrate (Thermo Fisher Scientific), and data

acquired at 405 nm on EnSpire 2300 plate reader (PerkinElmer).

Throughout the ELISA procedure, PBS with 0.05% Tween-20 was

used as the Wash Buffer, PBS with 1% bovine serum albumin

(Wisent) as the Blocking Buffer, and PBS with 0.1% bovine serum

albumin (Wisent) as the Assay Diluent.

The detection of SRBC-specific antibodies was performed by

flow cytometry, as described previously (62). Briefly, mouse serum

samples were pre-diluted 1:60 in PBS and incubated with 3x 105

SRBC for 30 min on ice. The SRBCs were washed and stained with

goat anti-mouse IgG AlexaFluor488 (Poly4053, BioLegend, 1:200),

or with goat anti-mouse IgM-biotin (1020-08, Southern

Biotechnologies, 1:750), or IgG1-biotin (1070-08, Southern

Biotechnologies, 1:750), followed by streptavidin – PerCP-Cy5.5

(BioLegend). Following thorough washing, the samples were

analyzed on BD Fortessa and data processed with FlowJo software

(Tree Star, BD Biosciences). SRBCs pre-incubated with serum of

naive mice and stained as described above were analyzed as

negative controls.
Flow cytometry

Cell suspensions of mouse tissues were prepared in RPMI-1640

(Thermo Fisher Scientific) with 2% (v/v) FCS, 100mg/ml

streptomycin and 100U/ml penicillin (Thermo Fisher Scientific).

The cells were stained for surface-markers in PBS with 2% FCS for

20 min on ice, with the following antibodies, as summarized in

Supplementary Table S1: Alexa Fluor 488 anti-GL7 (GL7,

Biolegend); APC anti-CD21/CD35 (7E9, Biolegend), anti-CD86

(GL-1, Biolegend), anti-CD267/TACI (ebio8F10-3, eBioscience),

and anti-IgD (11-26c.2a, BioLegend); APC-eFluor780 anti-

CD45R/B220 (RA3-6B2, ThermoFisher); APC-Cy7 anti-CD5 (53-

7.3, Biolegend); Brilliant UltraViolet 395 anti-CD43 (S7, BD

Biosciences); Brilliant Violet 421 anti-CD95/Fas (Jo2, BD

Biosciences) and anti-CD138 (281-2, Biolegend); Brilliant Violet

650 anti-CD45R/B220 (RA3-6B2, BioLegend); Biotin anti-IgG1

(polyclonal, 1070-08, Southern Biotech); eFluor450 anti-CD45R/

B220 (RA3-6B2, Thermo Fisher); FITC anti-CD23 (B3B4,

Invitrogen) and anti-Ki67 (SolA15, eBioscience); Pacific Blue anti-

IgD (11-26c.2a, BioLegend); PE anti-Blimp-1 (5E7, Biolegend),

anti-CD184/CXCR4 (L276F12, Biolegend) and anti-IgM (II/41,
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Thermo Fisher); PE-Cy7 anti-CD19 (6D5, BioLegend), anti-

CD21/CD35 (eBio8D9, Invitrogen), and anti-CD38 (90,

Invitrogen); PerCP-Cy5.5 anti-CD4 (RM4-4, Biolegend), anti-

CD8a (53-6.7, Biolegend), anti-CD11b (M1/70, eBioscience), anti-

CD19 (1D3, Tonbo Biosciences), anti-CD45R/B220 (RA3-6B2,

BioLegend), anti-IgD (11-26c.2a Biolegend), anti-CD93 (AA4.1,

Biolegend), anti-NK1.1 (PK136, Biolegend), and anti-TER119

(Ly-76, Biolegend). Brilliant Violet 785 Streptavidin (Biolegend)

was used to detect biotin-conjugated antibodies. Viability Dye

eFluor® 506 (eBioscience) was used to discriminate dead cells.

Compensation was performed with BD CompBeads (BD

Biosciences). The data were acquired on BD Fortessa and

analyzed with FlowJo software (Tree Star, BD Biosciences).
Cell isolation and sorting

Total B cells were isolated from mouse spleens via magnetic

enrichment using with the EasySep Mouse CD19 Positive Selection

Kit II (Stem Cell Technologies). For the FACS-sorting of B cell

subsets, mouse spleens were mechanically dissociated in PBS with

0.1% BSA and 2mM EDTA, passed through 40 mm cell-strainers,

and subjected to red blood cell lysis in ACK buffer (0.15M NH4Cl,

10mM KHCO3, 0.1mM EDTA). Cells were stained with the

following antibodies, as summarized in Supplementary Table S2:

Alexa Fluor 488 anti-GL7 (GL7, Biolegend), Brilliant Violet 421

anti-CD95/Fas (Jo2, BD Biosciences), and Brilliant Violet 650 anti-

CD45R/B220 (RA3-6B2, BioLegend). Viability Dye 7-AAD

(Biolegend) was used to discriminate dead cells. Sorting was

performed on the FACSAria (BD Biosciences).
Chromatin immunoprecipitation

ChIP was performed as described previously (49, 63). Cells were

fixed with 1% formaldehyde in cell culture media for 10 min at

room temperature, followed by addition of 0.125 M glycine to stop

the fixation. Nuclei were extracted with 5 min lysis in 0.25% Triton

buffer, followed by 30 minutes in 200mM NaCl buffer. Nuclei were

resuspended in sonication buffer and sonicated for 12 cycles of 30

sec with a digital sonifier (Branson Ultrasonics) at 80%, with 30 sec

rest in cooled circulating water. Beads immunocomplexes were

prepared overnight by conjugating 40mL of Dynabeads Protein G

(Thermo Fisher Scientific) with antibodies anti-BAP1 (Cell

Signaling Technology, D1W9B, 52.8 mg) or anti-H2AK119ub

(Cell Signaling Technology, D27C4, 5 mg). Immunoprecipitation

was performed with an overnight incubation of the antibody-bead

matrices with sheared chromatin from the equivalent of 5x106 cells.

Six washes were performed with low-stringency buffers, and

samples de-crosslinked by overnight incubation in 1% SDS buffer

at 65°C. Following treatments with RNaseA and Proteinase K, ChIP

DNA was purified using Qiaquick PCR Cleanup kit (Qiagen).

ChIP-seq libraries were prepared using the Illumina TruSeq kit

and sequenced on the Illumina NovaSeq 6000 in a paired-end

100bp configuration, with input DNA from the same cells

sequenced as the negative controls. The reads were mapped to the
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UCSC mouse mm9 reference genome with Bowtie 1.0.0 (64), and

BAP1 binding sites identified using the MACS1.4 peak detection

algorithm (65), comparing for read enrichment against input DNA

from the same cells. Normalized sequence read density profiles

(bigwig) were generated with Homer (66) and visualized with IGV

(67). Gene ontology (GO) enrichment analysis on the genes

associated with the BAP1 ChIP-Seq binding clusters was

performed on GREAT 4.0.4 (68) with Basal plus extension,

searching for genes within 2kb upstream, 2kb downstream, or

200kb in distal.
RNA sequencing

RNA-seq protocols were as previously described (49, 69).

Briefly, RNA was isolated using the Mag-MAX total RNA kit

(Ambion) and quality assessed using Bioanalyzer RNA Pico chips

(Agilent). rRNA depletion and library preparation were performed

using the SMARTer Stranded RNA-Seq kit (Takara Clontech). The

libraries were sequenced on an Illumina Novaseq 6000 in a paired-

end 100 bp configuration aiming for 50x106 reads per sample. The

quality of the sequencing reads was confirmed using the FastQC

tool (Babraham Bioinformatics), and low-quality bases were

trimmed from the read extremities using Trimmomatic v.0.33

(70). The reads were then mapped to the mouse UCSC mm9

reference genome assembly using Hisat2 v2.2.1 (71–73). Gene

expression was quantified by counting the number of uniquely

mapped reads with featureCounts using default parameters (74).

We retained genes that had an expression level of at least 5 counts

per 106 reads (CPM) in at least 4 of the samples (75). TMM

normalization and differential gene expression analyses were

conducted using the edgeR Bioconductor package (76).

Dimension reduction analysis was performed using the Principal

Component and Partial Least Squares regression method (77).

Pairwise comparisons were performed between genotypes or

between treatments, and genes with changes in expression ≥ |2.0|

fold and Benjamini-Hochberg adjusted p values ≤ 0.05 were

considered significant. Gene ontology (GO) enrichment analyses

on differentially expressed gene clusters were performed with

DAVID Bioinformatics Resources 6.8 (78), and Gene Set

Enrichment Analysis (GSEA) was performed with GSEA tool

v4.3.2 using MSigDB v2022.1 with default configuration and

permutation within gene sets (79). For the RNA-Seq data

consolidation with the ChIP-Seq data, full gene annotations were

obtained from UCSC mouse mm9 reference genome. An in-house

Python script was developed to load the genomic locations of ChIP-

Seq binding sites and RNA-Seq dysregulated genes, and search for

gene TSS within a specific distance to each ChIP-Seq binding site, as

previously described (80).
Statistical analyses

Statistical analyses used Prism 9.5.1 (GraphPad Inc.), with

Student’s t-test for two datasets and ANOVA for multiple
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comparisons, with further information is provided in

Figure Legends.
Results

B-cell specific loss of BAP1 results in
impaired antibody production

Due to the high expression of Bap1 throughout the B cell lineage

(Supplementary Figure S1) (50, 81) and its important role as a DUB

for H2AK119ub in other cell types (28), we hypothesized that BAP1

may act as an important regulator of the transcriptional programs

of B cell mediated immune response. In order to test this, we

adopted the previously established Bap1fl/fl mb1-Cre mouse model,

with the selective loss of BAP1 throughout the B cell lineage (49).

We observed a strong reduction in total antibody titers in the serum

of naïve Bap1fl/fl mb1-Cre mice, relative to control mice of Bap1fl/+

and Bap1fl/+ mb1-Cre genotypes, including both IgM antibodies

and class-switched IgG1, IgG2c, and IgG3 antibodies (Figures 1A,

B). We proceeded to challenge the mice with subcutaneous

injections of phycoerythrin (PE) in CFA adjuvant and observed a

strong reduction in the antigen specific antibody responses in

Bap1fl/fl mb1-Cre relative to control mice, following both primary

and boost immunizations, and affecting both IgM and class-

switched IgG1, IgG2c and IgG3 isotypes (Figures 1C–E). Overall,

this indicates the importance of BAP1 expression in the B cell

lineage for the induction of B cell mediated immune response.
Cell-intrinsic role of BAP1 in mature
activated B cells in humoral immunity and
antibody production

Bap1fl/fl mb1-Cre mice lack BAP1 expression throughout the B

cell lineage, resulting in impaired B cell development and reduced B

cell numbers in lymphoid organs (49), which could in part account

for the impaired antibody production in these mice. Our objective

therefore was to test the direct role of BAP1 in the regulation of B

cell mediated immune response, independently of its functions in B

cell development. For this purpose, we generated the Bap1fl/fl Cg1-
cre mice, with Cre expression driven from the IgG1 heavy chain

locus and Cre activity restricted to the activated, germinal center

(GC), and downstream B cell populations (55). In contrast to the

Bap1fl/flmb1-Cremice (49), naïve Bap1fl/fl Cg1-cre mice had normal

numbers of splenic pre-GC B cells, including the transitional,

follicular, and marginal zone subsets (Supplementary Figure S2).

At the same time, the effective Cre-mediated Bap1fl to Bap1D allele

conversion was demonstrated by PCR-genotyping of the genomic

DNA from ex vivo stimulated Bap1fl/fl Cg1-cre and control Bap1+/+

Cg1-cre B cells (Supplementary Figures S3A, B). Furthermore,

RNA-seq analyses of splenic Bap1fl/fl Cg1-cre GC B cells

demonstrated a strong reduction in the transcript reads mapping to

theBap1floxed exons 6-12, as compared to theGCBcells frommice of

control Bap1+/+ Cg1-cre genotype (Supplementary Figure S3C, D).
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CohortsofnaïveBap1fl/flCg1-cremicewere analyzed for total serum

antibody levels anddemonstrated a significant reduction in IgG1butnot

IgM titers relative to the Bap1+/+ Cg1-cre control group (Figure 2A).

Further cohorts of Bap1fl/fl Cg1-cre and control Bap1+/+ Cg1-cre mice
Frontiers in Immunology 06
were immunized, either subcutaneously with PE/CFA or intravenously

with sheep red blood cells (SRBCs) and analyzed for antigen specific

antibody titers over a time-course post-prime and post-boost

immunization. A strong reduction in the antigen-specific antibody
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FIGURE 1

Reduced antibody levels and impaired antibody mediated immune response in Bap1fl/fl mb1-Cre mice. (A) Schematic of the experimental plan and timeline
for the analyses of antibody production in Bap1fl/fl mb1-Cre and control Bap1fl and Bap1fl/+ mb1-Cre mice. The mice received primary (day 0) and boost (day
58) immunizations of PE in CFA; post-primary immunization serum samples were acquired on day 14, pre-boost serum samples on day 58, and post-boost
serum samples on day 65. (B) Levels of total IgM, IgG1, IgG2c, and IgG3 antibody isotypes in the serum of naïve mice of Bap1fl/fl mb1-Cre and control Bap1fl

and Bap1fl/+ mb1-Cre genotypes. The data for IgM, IgG1, and IgG3 is from 6-11 mice per genotype, and for IgG2c from 3-6 mice per genotype, consolidated
from two independent experiments. (C–E) Antigen specific antibody titers in the mice of Bap1fl/fl mb1-Cre and control Bap1fl and Bap1fl/+ mb1-Cre
genotypes, immunized and bled as outlined in (A). Data is from 3-6 mice per genotype. Bars represent means ± SEM; statistical analyses used non-
parametric Kruskal-Wallis multiple comparison test with Dunn’s post-hoc test in GraphPad Prism 9.5.1; * p<0.05, ** p<0.01, *** p<0.001; AU - arbitrary units.
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levels in Bap1fl/fl Cg1-cre mice relative to the control Bap1+/+ Cg1-cre
groupwas observed across both immunizationmodels andmost time-

points (Figures 2B–E). Overall, these findings demonstrate the direct

and cell intrinsic role of BAP1 in the induction of B cell mediated

immune response, independent of its previously reported functions in

B cell development (49).

Germinal center dysfunction and plasma
cell depletion with the loss of BAP1

To understand the impact of BAP1-loss on the cellular

dynamics of humoral immune response, mice of Bap1fl/fl Cg1-Cre
Frontiers in Immunology 07
and control Bap1+/+ Cg1-Cre genotypes, both naïve and challenged

with SRBC-immunization (as shown in Figure 2C), were analyzed

for the numbers of germinal center (GC) B cells, memory B cells,

and plasma cells using flow cytometry (Figure 3). While there was

no significant change in the absolute numbers of GC B cells in

Bap1fl/fl Cg1-Cre relative to control mice at day 11 following the

SRBC-immunization (Figure 3A), we observed a significant

reduction in the ratio of dark zone (DZ) to light zone (LZ) GC B

cells (Figure 3B), primarily due to an expansion in the number of LZ

B cells (data not shown). Importantly, Bap1fl/fl Cg1-Cre mice

showed a reduction in the numbers of class switched IgG1+ GC B

cells (Figure 3C), with a significant depletion of IgG1+ cells within
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Reduced antibody levels and impaired antibody mediated immune response to immunization in Bap1fl/fl Cg1-Cre mice. (A) Levels of total IgM and
IgG1 antibody isotypes in the serum of naïve mice of Bap1fl/fl Cg1-Cre and control Bap1fl and Bap1+/+ Cg1-Cre genotypes, assessed by ELISA.
Data are from 9-11 mice per genotype, consolidated from two independent experiments. (B) Antigen specific antibody titers in the mice of
Bap1fl/fl Cg1-Cre and control Bap1fl and Bap1+/+ Cg1-Cre genotypes, immunized with PE in CFA adjuvant, as outlined above; data acquired with
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SRBCs with the serum followed by the staining of SRBCs for antibody binding, as previously described (62).
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FIGURE 3

Analyses of germinal center (GC) B cells, memory B cells, and plasma cells in Bap1fl/fl Cg1-Cre mice. Mice of Bap1fl/fl Cg1-Cre and control Bap1+/+

Cg1-Cre genotypes, both naïve and at day 11 post-primary SRBC-immunization, were analyzed by flow cytometry. (A) Absolute numbers of GC B
cells per mouse spleen, (B) ratio of dark zone (DZ) to light zone (LZ) GC B cells, (C) absolute numbers of IgG1+ GC B cells per mouse spleen, and (D)
absolute numbers of IgG1+ memory B cells per mouse spleen, comparing between the Bap1 genotypes and immunization conditions. (E)
Representative flow cytometry plots analyzing splenic GC B cells; average percentage of cells in each gate relative to the parent gate for all the mice
in each group is indicated as mean ± SD. (F, G) Absolute numbers of total plasma cells and IgG1+ plasma cells in the bone marrow and spleen,
comparing between the Bap1 genotypes and immunization conditions. (H) Representative flow cytometry analyses of plasma cells in the spleen of
Bap1fl/fl Cg1-Cre and control Bap1+/+ Cg1-Cre mice, both naïve and at day 11 post-primary SRBC-immunization; average percentage of cells in each
gate relative to the parent gate for all the mice in each group is indicated as mean ± SD. Bars represent means ± SEM; statistical analyses used
ANOVA with Sidak’s post-hoc test to compare between the Bap1fl/fl Cg1-Cre and Bap1+/+ Cg1-Cre genotypes and immunization conditions; NS
stands for not-significant; * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. GC B cells were gated as live B220+GL7+CD95+ cells and divided into
CXCR4+CD86– dark zone (DZ) and CXCR4–CD86+ light zone (LZ) cell. Plasma cells were gated as live CD138 +TACI + cells, negative for the lineage
markers CD11b, TER119, CD4, CD8, and NK1.1.
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both the DZ and LZ subpopulations (data not shown), as well as a

reduction in IgG1+ memory B cells (Figure 3D). Absolute numbers

of plasma cells were also significantly reduced in both the spleen

and bone marrow of Bap1fl/fl Cg1-Cre mice (Figure 3F), with a

particularly strong depletion of the IgG1+ class-switched plasma

cells (Figure 3G). Further analysis of the plasma cell population

demonstrated a more significant depletion of plasmablasts and early

plasma cells as compared to late plasma cells in the Bap1fl/fl Cg1-Cre
mice (Supplementary Figures S4A, B), and a reduction in the

proportion of plasma cells positive for the Ki-67 marker of cell

proliferation at least in the bone marrow (Supplementary Figure

S4C). Overall, the significant depletion of plasma cells likely

contributes to the failure to produce and sustain normal antibody

titers in the Bap1fl/fl Cg1-Cre mice.

The mice were further analyzed for GC B cells, memory B cells,

and plasma cells at day 7 after the boost SRBC immunization

(Supplementary Figure S5). Surprisingly, an increase in GC B cells

was observed in Bap1fl/fl Cg1-Cre relative to control mice after the

booster immunization (Supplementary Figure S5A), and this may

reflect the modulatory effects of pre-existing high antibody titers on

B cell recruitment into the GC in the control group (82).

Furthermore, numbers of IgG1+ class-switched GC and memory

B cells in the Bap1fl/fl Cg1-Cre mice were restored to normal after

the booster immunization (Supplementary Figures S5C, D),

consistent with a considerable rise in their antibody titers at this

time point (Figures 2D, E). However, the reduced ratio of DZ to LZ

GC B cells and the significant depletion of class switched IgG1+

plasma cells persisted even after the booster immunization in

Bap1fl/fl Cg1-Cre mice (Supplementary Figures S5B, G). The

persisting plasma cell phenotype likely contributes to the ongoing

reduction in the antibody titers in Bap1fl/fl Cg1-Cre mice.
Loss of BAP1 in primary B cells does not
impair antibody class switching

While the more significant impact of BAP1-loss on the

numbers of IgG1+ rather than total GC B cells and plasma

cells in the Bap1fl/fl Cg1-Cre model may reflect the higher

expression of Cre in the IgG1+ cells (55), it may also suggest a

role for BAP1 in immunoglobulin class switching. We therefore

proceeded to directly test the effects of Bap1-loss on antibody

class switching in vitro. Induced GC B cells (iGBs) of Bap1fl/fl

Cg1-Cre and control Bap1+/+ Cg1-Cre genotypes were generated
on the 40LB feeder cells that provide CD40L and BAFF, as

described previously (58, 60). iGBs were analyzed at day 4 for

class switching to IgG1 and demonstrated no significant

differences between the Bap1fl/fl Cg1-Cre and control Bap1+/+

Cg1-Cre cultures (Figures 4A, B). We further analyzed B cell

proliferation in the iGBs cultures, using either the CellTrace

Violet (CTV) dilution method with flow cytometry (Figures 4C,

D, day 4) or manual cell counting (Figure 4E, days 0-6). This

demonstrated a significant impairment in the proliferation for

Bap1fl/fl Cg1-Cre relative to control Bap1+/+ Cg1-Cre B cells

under these culture conditions (Figures 4C–E). Further

analyses of the antibody class switching rates per cell division
Frontiers in Immunology 09
in this model confirmed that the loss of Bap1 does not directly

interfere with class switching, and any reduction in class

switched Bap1fl/fl Cg1-Cre B cells can be attributed to impaired

B cell proliferation (Figures 4C, F).

Primary B cells from Bap1fl/fl Cg1-Cre and control Bap1+/+ Cg1-
Cremice were also stimulated in culture to class-switch to IgA with

IL-21, anti-CD40, anti-IgM, TGF-b, and retinoic acid, as reported

previously (59). Again, Bap1fl/fl Cg1-Cre B cells demonstrated

normal levels of class switching over 4 days in culture

(Supplementary Figures S6A, B), though Cre-mediated Bap1fl to

Bap1D allele conversion was observed as early as days 3, albeit

without full loss of the Bap1fl allele (Supplementary Figures S6C, D).

It is notable that no loss of cell proliferation was observed in these

cultures, and this may reflect biological differences in the responses

of Bap1-deficient B cells to different stimulation conditions or the

lower efficiency of Cg1-Cre in the cells undergoing class switching to
IgA relative to IgG1, as shown by the persistent detection of the

Bap1fl allele in these cells (Supplementary Figure S6D).

We further evaluated class switching using splenic B cells from

Bap1fl/fl mb1-Cre and control Bap1+/+ mb1-Cre mice, as in this

model the Cre-mediated Bap1-allele deletion takes place from the

early stages in B cell lineage development, and the full loss of BAP1

protein in Bap1fl/fl mb1-Cre splenic B cells has been validated

through Western blotting in our previously published studies

(49). Thus, to further assess the role of BAP1 in antibody class

switching, Bap1fl/fl mb1-Cre and control Bap1+/+ mb1-Cre B cells

were stimulated in culture with IL-21, anti-CD40, anti-IgM, TGF-b,
and retinoic acid to class-switch to IgA and analyzed at day 3

(Figures 4G–K). While Bap1fl/fl mb1-Cre B cells showed a trend

toward impaired cell proliferation relative to the control B cells

(Figures 4G, I, J), there were no differences in class switching per cell

division between the Bap1-genotypes (Figure 4K), consistent with

our findings with the Bap1fl/fl Cg1-Cre B cells (Figure 4F,

Supplementary Figure S6B). Overall, we conclude that BAP1 is

not directly required for the normal progression of antibody

class switching.

Given the impaired proliferation of Bap1-deficient B cells under

some of the stimulation conditions presented above, we further

analyzed the effects of BAP1 on B cell viability. No significant

differences in cell viability were observed between Bap1fl/fl Cg1-Cre
and control Bap1+/+ Cg1-Cre germinal center B cells, memory B

cells, or plasma cells, freshly isolated from naive mice or from mice

at day 11 post-SRBC immunization (Supplementary Figures S7A–

D). Further analysis of the plasma cell populations as plasmablasts,

early plasma cells, and mature plasma cells also demonstrated no

differences in viability based on the Bap1-genotype of the cells (data

not shown). However, such analyses may not detect subtle changes

in cell viability due to the rapid clearance of dead cells in healthy

tissues, and we therefore further analyzed the viability of primary B

cells of Bap1fl/fl Cg1-Cre and control Bap1+/+ Cg1-Cre genotypes in
culture, stimulated over 5 days with either anti-CD40 and IL-4, or

with LPS and IL-4. This demonstrated a mild but statistically

significant reduction in the viability of Bap1fl/fl Cg1-Cre relative to
control Bap1+/+ Cg1-Cre B cells under both stimulation conditions

(Supplementary Figure S7E). Overall, we conclude that the loss of

BAP1 can impair the viability of activated B cells.
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Cre genotypes over a 6-day time course, evaluated with cell counting and demonstrating the impaired proliferation of Bap1-deficient B cells. (F) Antibody
class switching per cell division, comparing Bap1fl/fl Cg1-Cre and control Bap1+/+ Cg1-Cre iGBs at day 4 and showing no differences between the genotypes.
Bars represent means ± SEM, with two mice per genotype. (G–K) Primary splenic B cells of Bap1fl/fl mb1-Cre and control Bap1+/+ mb1-Cre genotypes were
stimulated in culture to induce class switching to IgA. (G) Analyses of the cultures at day 3 of stimulation for class-switching to IgA and for cell proliferation
using the CTV-dilution method demonstrated no differences in class switching between the Bap1-genotypes. (H) Quantification of the B cell cultures for
class-switching to IgA demonstrated no differences between the Bap1-genotypes. (I, J) Analyses of B cell proliferation using (I) cell counting or (J) CTV-
dilution method demonstrated a trend toward decreased proliferation of Bap1fl/fl mb1-Cre relative to the control Bap1+/+ mb1-Cre B cells. (K) Antibody class
switching per cell division comparing Bap1fl/fl mb1-Cre and control Bap1+/+ mb1-Cre B cells showed no differences between the genotypes. Bars represent
means ± SEM with two mice per genotype. Statistical analyses used (B, H, I) unpaired two-tailed Student’s t-test or (E, K) two-way ANOVA with Sidak’s
multiple comparison test; p-values are indicated in the figure or not-significant (NS) if not indicated.
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Impaired proliferation in Bap1 CRISPR/Cas9
gene targeted CH12F3 B cells

To further explore the roles and mechanisms of BAP1 activity

in B cells, we targeted Bap1 gene using CRISPR/Cas9 in the CH12F3

B cell lymphoma line (56), which is a commonly used model for the

analyses of B cell activation, class switching, and associated cellular

processes. gRNAs were designed to target Bap1 exons 4 and 5 that

encode the N-terminal catalytic domain of the protein (Figure S8A),

and single-cell clones screened by PCR for deletions within the

targeted regions of the Bap1 locus. Further analyses of five Bap1D/D

single-cell clones by Western blotting confirmed the full loss of

BAP1 protein expression (Supplementary Figure S8B).

Based on the impaired proliferation of Bap1fl/fl Cg1-Cre primary

B cells in the iGB cultures (Figure 4) and on our previous report of

impaired proliferation in Bap1fl/fl mb1-Cre pre-B cells (49), we

analyzed the Bap1D/D CH12F3 cell clones for defects in

proliferation, using the AlamarBlue resazurin/resorufin-based

assay in bulk cell cultures, and the flow cytometry based CFSE

dilution method. The assays demonstrated a significant reduction in

cell proliferation for the Bap1D/D CH12F3 cell clones relative to

control wild type CH12F3 cells (Supplementary Figures S8C–E), as

well as the reduced viability of Bap1D/D CH12F3 cell at least under

unstimulated culture conditions (Supplementary Figure S8F). This

demonstrates the conservation of Bap1-deficiency phenotypes

between CH12F3 cells and primary B cells and establishes the

Bap1D/D CH12F3 cells as a model for further analyses of BAP1

functions in B cell biology.
BAP1 genome-wide binding in
B lymphocytes

To identify the genomic regions directly regulated by BAP1 in

mature B cells, we conducted ChIP-seq to map BAP1 genome-wide

DNA-binding sites using an anti-BAP1 antibody and wild type

CH12F3 cells, with and without stimulation with TGF-b, IL-4, and
anti-CD40 over 72 hours. While there are limitations to using

CH12F3 cells as a model of primary GC B cells, BAP1 is a

challenging target, with most previously published ChIP-seq

datasets using cells that express an epitope-tagged BAP1 protein

(47, 83, 84). We have therefore also repeated the ChIP-seq analysis

using CH12F3 cells stably expressing 3xFLAG-tagged BAP1 with an

antibody against the FLAG epitope, as previously described (47, 49).

We identified a total of 1,499 BAP1 binding sites (or peaks) across

the genome (Figure 5A, Supplementary Figure S9A, Supplementary

Table S3A), with the high concordance between the dataset from

unstimulated and stimulated CH12F3 cells, indicating that BAP1

recruitment to chromatin is constitutive rather than induced with B

cell stimulation. Among the BAP1 binding sites 88% were classified

as gene-proximal based on their distance to the nearest gene

transcription start site (≤1kb to TSS, Supplementary Table S3A).

To gain insights into the biological functions of the BAP1

transcriptional target genes, ontology analyses were performed on

the genes in the vicinity of the BAP1 binding sites using the
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Genomic Regions Enrichment of Annotations Tool (GREAT)

(68). This demonstrated a highly significant association of the

gene-proximal BAP1 binding sites with the genes involved in

proteosome-dependent protein degradation, DNA damage

response, and protein trafficking, and the association of the gene-

distal BAP1 binding sites with the genes involved in the regulation

of transcription and RNA processing (Figure 5B, Supplementary

Tables S3B, C). This suggests the role of BAP1 in the regulation of

many transcriptional programs essential for normal cell physiology,

as well as for the induction of B cell activation and humoral

immune response.

To compare the role of BAP1 as a transcriptional regulator in

mature B cells to its role in other cell types, we consolidated our newly

acquired BAP1 ChIP-Seq with the previously published BAP1 ChIP-

Seq datasets from Ba/F3 pro-B cells (49), ES cells (85), and

macrophages (47). This indicated a considerable overlap in BAP1

genomic binding and suggested shared BAP1 functions in the

regulation of housekeeping transcriptional programs across many cell

types (Supplementary Figures S9A, Supplementary Tables S3D, E). To

gain further insights into the cross-talk between BAP1 and other

transcriptional regulators, we also consolidated our BAP1 ChIP-Seq

data with the public ChIP-Seq datasets for BAP1-associated

transcriptional regulators, including HCF1 and OGT in macrophages

(47), and ASXL1 in hematopoietic stem and progenitor cells (HSPC)

(86). A significant overlap in the genomic localization was observed

between BAP1 and BAP1-interacting proteins ASXL1, HCF1, and to a

lesser extent OGT (Supplementary Figure S9B, Supplementary Tables

S3D, E), indicating that BAP1 may act in cooperation with these

transcriptional regulators in B cells, as in other cell types. Furthermore,

we consolidated our BAP1 ChIP-seq data with the public ChIP-seq

datasets from primary murine B cells for the other major regulators of

the histone H2AK119ub epigenetic mark, including polycomb proteins

RING1B, CBX7, YY1, EZH2 and deubiquitinase USP16 (18, 27). We

observed an overlap in the genomic binding of BAP1 with components

of the polycomb repressive complex 1 (PRC1), including its E3

ubiquitin ligase catalytic subunit RING1B (Supplementary Figure

S9B, Supplementary Table S3D). This suggests that BAP1 and PRC1

may co-regulate histone H2AK119ub levels and turnover at shared

genomic locations. Interestingly, we also observed an overlap in the

genomic binding of BAP1 and another well-known H2AK119ub-

deubiquitinase USP16 (Supplementary Figure S9B, Supplementary

Table S3D), suggesting their cooperative or complementary functions.
Non-redundant role of BAP1 as a
deubiquitinase for histone H2AK119ub in
B cells

To assess the role of BAP1 as a DUB for histone H2AK119ub in

activated B cells, consistent with its reported function in other cell

types (28), further ChIP-Seq analyses were performed to quantify

the histone mark H2AK119ub. The study compared control wild

type (WT) and BAP1-deficient Bap1D/D CH12F3 B cell lines,

analyzing three independent clones of CH12F3 cells (KO3-4-5)

and repeating the analyses at steady-state and following cell
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activation (TGFb, IL-4, anti-CD40, 72 hours). ChIP-Seq data

demonstrated that the loss of BAP1 resulted in a highly

significant increase in histone H2AK119ub levels at the BAP1

binding sites and surrounding genomic regions ( ± 5kb) in all the

three Bap1D/D clones and under both untreated and stimulated

conditions (Figures 5C). This establishes the non-redundant role of

BAP1 as a DUB for histone H2AK119ub in B lymphocytes.
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Next, we set out to interrogate the biological functions of the

genes regulated via the BAP1 DUB-activity for H2AK119ub. We

therefore re-analyzed our ChIP-seq datasets to identify the genes

with a >2-fold increase in H2AK119ub within ±1.5kb to their TSS in

the Bap1D/D relative to control CH12F3 B cells (Supplementary

Table S4A). GO-term analysis on this gene-set indicated that the

genes undergoing an increase in H2AK119ub with the loss of BAP1
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FIGURE 5

ChIP-seq analyses of BAP1 genome-wide binding and the effects of BAP1-loss on the histone H2AK119ub levels in CH12F3 B cells. (A) Heat-map
showing the tag densities of 1,499 BAP1 binding sites identified in the ChIP-Seq experiments from wild type CH12F3 cells, untreated and at 72-hours
of stimulation with TGFb, IL-4, and anti-CD40. The sites are ranked based on their distance to the nearest gene transcription start site (TSS), and the
gene-proximal sites are defined based on their location within 1kb to the nearest gene TSS. (B) Gene ontology (GO) analysis performed on the
GREAT website, showing the biological process GO-terms enriched for the genes nearest to each BAP1 binding site, plotting the -log10(binomial
FDR) for each GO-term. (C) ChIP-Seq analyses of histone H2AK119ub levels at the BAP1 binding sites in CH12F3 cells, including wild type (WT)
control cells and three independent clones of CRISPR/Cas9 edited BAP1-knockout cells (KO3-4-5). Box plots show the H2AK119ub read intensities
±5kb to the gene-proximal and gene-distal BAP1 binding sites, comparing WT and KO cells; the p-values are calculated using Mann-Whitney U-test.
(D) Gene ontology enrichment analyses on the genes that undergo an increase in the levels of histone H2AK119ub (fold change ≥ 2.0) around their
transcription start sites ( ± 1.5kb to TSS) in Bap1D/D versus control CH12F3 B cells; the -log10(p-values) are listed for selected top GO-terms.
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encode regulators of protein transport, Ub-dependent protein

degradation, DNA damage response and repair, RNA processing,

as well as autophagosome assembly and cell cycle progression

(Figure 5D, Supplementary Table S4B). This demonstrates a

strong concordance in the biological functions of this gene-set

with the genes marked by BAP1-binding (Figures 5B, D). Overall,

we conclude that BAP1 acts as a DUB for H2AK119ub in B cells to

regulate many transcriptional programs essential for normal cell

physiology, but also for B cell activation and the induction of

humoral immune response.

For further insights into BAP1 functions as a DUB for

H2AK119ub in the transcriptional networks of B cell mediated

immune response, we performed supplementary analyses to

consolidate our ChIP-seq datasets with the published RNA-seq

data characterizing the transcriptional response of wild type

CH12F3 cells to stimulation (87), and the transcriptional change

with the transition from follicular to GC in primary B cells (81). In

both cases, we identified a subset of differentially expressed genes

that in our datasets have proximal BAP1 binding and sustain an

increase in H2AK119ub with the loss of BAP1 (Supplementary

Tables S4D-F). Such datasets may represent a starting point for

future studies to validate and characterize genes under the direct

transcriptional control of BAP1 in activated B cells.
BAP1-regulated transcriptional programs of
germinal center B cells

To further analyze the role of BAP1 in the transcriptional

regulation of B cell activation, RNA-Seq gene expression analysis

was conducted on GC B cells isolated from the spleen of Bap1fl/fl

Cg1-cre and control Bap1+/+ Cg1-cre mice at day 11 post-SRBC

immunization, with the cells gated for FACS-sorting as shown in

Supplementary Figure S10. As already discussed, a strong reduction

in the expression of the Bap1fl exons was demonstrated in the RNA-

seq datasets from Bap1fl/fl Cg1-cre relative to control GC B cells

(Supplementary Figures S3C, D), confirming an effective Cre-

mediated Bap1 gene inactivation in the cells captured for the

RNA-seq. Importantly, dimension reduction analysis of the gene

expression profiles revealed a clear segregation of the Bap1fl/fl Cg1-
cre and control Bap1+/+ Cg1-cre GC datasets (Figure 6A,

Supplementary Table S5, PC1 – 31% and PC2 –14% variance),

which indicates a significant transcriptional change in GC B cells

with the loss of BAP1.

To explore the biological functions of the genes dysregulated in

Bap1-deficient GC B cells, gene set enrichment analysis (GSEA) was

performed (79). This demonstrated a significant downregulation of

the transcriptional signatures involved in B cell engagement with T-

helper cells, such as ‘positive regulation of T cell proliferation’ and

‘positive regulation of IL2 production’ in the Bap1fl/fl Cg1-cre GC B

cells, as well as an upregulation of the transcriptional signatures

linked to mitochondrial function such as ‘inner mitochondrial

membrane organization’, ‘ATP biosynthetic process’, and

‘oxidative phosphorylation’ (Figure 6B, Supplementary Table

S5C). We also conducted a differential gene expression analysis

between the Bap1fl/fl Cg1-cre and control Bap1+/+ Cg1-cre GC B
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cells, at the fold change (FC) ≥ |2.0| and false discovery rate (FDR) ≤

0.05, which identified 94 upregulated and 76 downregulated genes

in the Bap1fl/fl Cg1-cre GC B cells (Supplementary Table S5A).

Applying gene ontology (GO) analysis, we note the downregulation

of the transcriptional signature of ‘intracellular signal transduction’

in the Bap1fl/fl Cg1-cre GC B cells (Figure 6C, Supplementary Table

S5E), with the downregulated genes including important positive

and negative regulators of B cell receptor signaling, such as Nfam1

(88), Camk2d (89), Lrrk2 (90), Dgka (91), and Cblb (92, 93)

(Figure 6D). As an example, Cblb encodes an E3 ubiquitin ligase

that targets CD79a, CD79b, and IRF4 to regulate the initiation and

progression of the GC-reaction (92, 93). Overall, the cell intrinsic

loss of BAP1 in GC B cells resulted in a dysregulation of the

transcriptional programs essential for normal induction of humoral

immune response.

We consolidated the RNA-seq and ChIP-seq datasets to identify

putative genes under the direct transcriptional control of BAP1 in B

cells, as the genes dysregulated in Bap1fl/fl Cg1-cre GC B cells and

with BAP1-binding at their promoters in CH12F3 and/or BaF3 B

cell lines. While our datasets showed no evidence for BAP1

regulation of the genes encoding the major mediators of B cell

lineage choice, GC reaction, or plasma cell differentiation (Bach2,

Batf , Bcl6 , Blimp1/Prdm1 , Irf4 , Irf8 , Myc , Pax5 , Xbp1 ,

Supplementary Tables S3-S5), we identified 73 putative BAP1-

regulated genes (Supplementary Tables S5F, G). Such genes

included the regulators of B cell receptor signaling Dgka and

Cblb, already discussed above (Figures 6D, E) (91–93). The genes

also included Litaf that encodes a repressor of Bcl6-expression and a

regulator of autophagy and apoptosis in B cell lymphoma (94, 95),

as well as Igf2bp3 that encodes a reader of the N6-methyladenosine

(m6A) RNA-modification, specifically induced in GC B cells and

essential for normal induction of humoral immune response

(Figures 6D, E) (96). In summary, our study identifies novel

transcriptional targets of BAP1 that are essential for the

progression of GC-reaction and can contribute to the failure of

humoral immunity with the loss of BAP1 function.
Discussion

Our study establishes the essential and cell-intrinsic role of the

chromatin-binding DUB BAP1 in B cells for the normal induction

of humoral immune response. It characterizes the impact of BAP1-

loss on the genome-wide distribution of the H2AK119ub epigenetic

mark and on the B cell transcriptome, and discovers novel BAP1-

regulated genes with critical roles in the regulation of GC reaction

and antibody-mediated immunity.

It is important to note that BAP1 is a multifunctional DUB with

many putative substrates (28). Beyond histone H2AK119ub (19),

BAP1 is reported to regulate the ubiquitination, stability, and

activity of many transcription factors and enzymes at chromatin

of various cell types, namely HCF1 (31, 32, 35), YY1 (35), FOXK1/2

(33, 34), KLF5 (36), PGC1a (37), and OGT (37, 47). BAP1 can also

modulate the ubiquitination and stability of IP3R3, regulating Ca2+

release from endoplasmic reticulum and cell viability (38).

Nevertheless, we demonstrate a major disruption in the
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H2AK119ub epigenetic landscape in Bap1D/D B cells, with an

increase in H2AK119ub specifically at the BAP1 genome-binding

sites. This establishes the major non-redundant role of BAP1 as a

DUB for the H2AK119ub epigenetic mark in B cells and suggests

this as the primary mechanism for the failure of B cell mediated

immunity in the Bap1fl/fl Cg1-cre model. Possible roles of other

BAP1 substrates in B cell physiology remain to be further explored

in future work.
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Analyzing the effects of BAP1-loss on the transcriptome of GC

B cells in consolidation with the BAP1 ChIP-seq data, we identified

putative novel BAP1-regulated genes with essential roles in the GC

reaction and humoral immunity. Furthermore, the significant

overlap in BAP1 ChIP-seq genome binding sites in our B cell

datasets with previously published datasets from other cell types

indicated the engagement of BAP1 in shared housekeeping

transcriptional programs. Although, due to the broad BAP1
A B

D

EC

FIGURE 6

RNA-Seq analysis of the transcriptome of Bap1fl/fl Cg1-Cre and control Bap1+/+ Cg1-Cre GC B cells. (A) Principal component analysis plot demonstrating the
gene expression profiles of the RNA-Seq samples: differences between the Bap1 genotypes are described by principal component 1 (PC1, 31% variability) and
PC2 (14%). (B) Gene set enrichment analysis (GSEA) showing the normalized enrichment scores (NES) of 3,107 pre-established biological processes
transcriptional signatures in Bap1fl/fl Cg1-Cre relative to control Bap1+/+ Cg1-Cre GC B cells. (C) Gene ontology enrichment analysis of the genes
downregulated in Bap1fl/fl Cg1-Cre relative to control Bap1+/+ Cg1-Cre GC B cells, at fold change (FC) ≥ |2.0| and false discovery rate (FDR) ≤0.05; -log10(p-
values) for the top GO-terms are presented. Equivalent analysis of the upregulated genes in provided in Supplementary Table S5D. (D) Examples of the genes
downregulated in Bap1+/+ Cg1-Cre GC B cells and encoding important regulators on B cell receptor signaling, GC reaction, and humoral immunity; data
presented as normalized read counts per million (CPM); bars represent mean ± SEM; * p< 0.05, ** p<0.01, *** p<0.001. (E) Genomic snapshots of selected
genes representing the putative direct transcriptional targets of BAP1 in B cells, based on their altered expression in the Bap1fl/fl Cg1-Cre GC B cells RNA-seq
data and on BAP1 binding at their promoters in the ChIP-seq data. ChIP-Seq tracks for BAP1 and input DNA are shown on the top two lanes, including new
data from CH12F3 B cells and previously published data from Ba/F3 pre-B cells (49). The gene feature track is shown in the middle, and averaged RNA-Seq
tracks are in the bottom, with fold changes comparing expression in Bap1fl/fl Cg1-Cre and control Bap1+/+ Cg1-Cre GC B cells indicated. The maximum data
range of each track is indicated at the top-right corner.
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functions in both housekeeping and cell-type specific

transcriptional programs, we cannot attribute all the observed

phenotypes to a defined set of BAP1-target genes, our analyses

provide many novel BAP1-regulated genes the dysregulation of

which can contribute to the failure of humoral immunity in the

Bap1fl/fl Cg1-cre model. This includes Cblb that encodes an E3

ubiquitin ligase known to target CD79a, CD79b, and IRF4 to

regulate the GC-reaction (92, 93), as well as Igf2bp3 that encodes

a reader of the m6A RNA-modification, induced in GC B cells and

essential for normal activation of humoral immunity (96).

Compensatory activity of the YTHDF2 m6A-binding protein has

been reported in Igf2bp3-deficient GC B cells (96), and may

contribute to the overexpression of the transcriptional signatures

of mitochondrial biogenesis in the Bap1fl/fl Cg1-cre GC B cells.

Downregulation of the transcriptional signatures of ‘IL2

production’ and ‘T cell proliferation’ in the Bap1fl/fl Cg1-cre GC B

cells is also notable, as failure to receive T cell help is known to

result in mitochondrial dysfunction and apoptosis in activated B

cells (97, 98). Another example of a novel BAP1-regulated gene

identified in our work is Litaf, which encodes a repressor of Bcl6-

expression and a regulator of autophagy in B cell lymphoma (94,

95), and indeed autophagy plays an important role in the regulation

of GC reaction and plasma cell maintenance (99–102). While our

study focused on the BAP1-regulated transcriptional programs in

GC B cells, its functions in the downstream checkpoints in humoral

immunity, such as in plasma and memory B cells, remains to be

further explored. The reduction in plasma cell numbers and

antibody titers in the Bap1fl/fl Cg1-cre model is particularly

notable, and our study did not quantify antigen specific plasma

cells or assess the efficiency of Bap1-deletion within the plasma cell

compartment. The roles and molecular mechanisms of BAP1 in

plasma cell differentiation should be addressed in future work.

Loss of BAP1 in activated B cells in the Bap1fl/fl Cg1-cre mouse

model resulted in a severe defect in antibody production, and we

noted the more profound reduction in IgG as compared to IgM

isotypes. We hypothesized that this may reflect the enhanced Cg1-
cre activity in the B cells committed to undergo class switching to

IgG1, or a direct role for BAP1 in the antibody class switching

reaction. Indeed, epigenetic mechanisms are important across many

checkpoints in antibody class switching, such as regulation of S-

region accessibility and transcription, AID expression and targeting

to chromatin, and in the DNA break-repair step (103). For instance,

BAP1 was previously shown to facilitate DNA repair through the

homologous recombination (HR) pathway in DT40 B cell

lymphoma (39). However, we found normal class switching of

Bap1fl/fl Cg1-cre B cells when normalized to the significant

reduction in B cell proliferation. This result is consistent with the

major roles of the other repair pathways in antibody class switching,

namely non-homologous end joining (NHEJ) and microhomology-

mediated end joining (MMEJ) (104), and also rules out non-

redundant roles of BAP1 in steps upstream from DNA damage in

class switching. Nonetheless, BAP1 functions in the class switching

reaction may be redundant with other chromatin associated DUBs

(20), as for example the chromatin associated DUB USP22 was

recently shown to promote DNA repair in antibody class

switching (105).
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Our current study focusses on the role of BAP1 specifically in

mature activated B cells, with the Bap1fl/fl Cg1-cre model allowing

the selective analyses of its B cell-intrinsic functions in the induction

of humoral immune response. However, beyond this experimental

model, it is important to consider that BAP1 activities in other cell

types may also contribute to the regulation of antibody mediated

immunity in vivo. BAP1 is known to play an important cell-intrinsic

role in T cell development in the thymus, as well as in the peripheral

T cell expansion under homeostatic conditions and in response to

antigenic stimulation (48). Furthermore, BAP1 activities in

mesenchymal stromal cells (MSCs) are essential for normal B cell

development in the bone marrow (106). Therefore, in addition to

the cell intrinsic roles of BAP1 in B cells, elucidated in our current

work, BAP1 functions in T cells and stromal compartments need to

be considered when assessing its systemic roles in the regulation of

humoral immunity in vivo, as for example in carriers of germline

BAP1 mutations.

Our study establishes the critical role of BAP1 as a

transcriptional and epigenetic regulator in the GC reaction, which

is a common site of cell transformation that gives rise to B cell

lymphomas (4, 107). While BAP1 is a highly important tumor

suppressor (28), lymphomas are not among the major cancer types

associated with germline or acquired BAP1 mutations, and our

current study didn’t directly address the role of BAP1 in

lymphomagenesis. Nevertheless, cases of non-Hodgkin lymphoma

have been reported in carriers of germline BAP1 mutations (108),

and lymphomas with other genetic aberrations were shown to

acquire BAP1 gene silencing via epigenetic mechanisms (109).

Therefore, we anticipate that future work in the Bap1fl/fl Cg1-cre
and other relevant murine models may further explore BAP1

functions as a tumor suppressor in B cell lymphoma.

In summary, our study provides novel insights into the

epigenetic regulation of B lymphocyte biology and humoral

immunity by BAP1, the major DUB for histone H2AK119ub,

with potential implications for host responses to infections and

vaccinations, and the mechanisms of B cell carcinogenesis.
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