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Objective: While observational studies link immune cells with post-stroke

functional outcome, the underlying immune mechanisms are not well

understood. Immune cell surface antigens are actively involved in the biological

behavior of immune cells, investigating immune cell surface antigens could deepen

our comprehension of their role and biological processes in stroke recovery.

Therefore, we aimed to investigate the immunological basis of stroke outcome

by exploring the causal relationship between immune cell surface antigens and

functional outcome after ischemic stroke in a Mendelian randomization study.

Methods: Genetic variants related to immune cell surface antigens and post-

stroke functional outcome were selected for two-sample Mendelian

randomization (MR) analysis. 389 fluorescence intensities (MFIs) with surface

antigens were included. Inverse variance weighted (IVW) modeling was used as

the primary MR method to estimate the causal effect of exposure on the

outcome, followed by several alternative methods and sensitivity analyses.

Additional analysis of the association between immune cell surface antigens

and risk of ischemic stroke for assessment of collider bias.

Results: We found that suggestive associations between CD20 on switched

memory B cell (OR= 1.16, 95% CI: 1.01-1.34, p=0.036) and PDL-1 on monocyte

(OR = 1.32, 95% CI: 1.04-1.66, p = 0.022) and poor post-stroke functional

outcome, whereas CD25 on CD39+ resting Treg (OR=0.77, 95% CI: 0.62-0.96,

p = 0.017) was suggestively associated with good post-stroke functional outcome.

Conclusion: The elevated CD20 on switched memory B cell, PDL-1 on

monocyte, and CD25 on CD39+ resting Treg may be novel biomarkers and

potential causal factors influencing post-stroke functional outcome.
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1 Introduction

Ischemic stroke, accounting for 62.4% of stroke events in 2019,

is the predominant stroke type with significant long-term

neurological impairment and high mortality (1). The complex

and poorly understood pathogenesis of ischemic stroke leads to

uncertain treatment strategies. Despite available treatments like

thrombus removal, their limited effectiveness and narrow

therapeutic window often result in an unfavourable outcome for

many patients (2). Hence, there is an urgent need to identify novel

biomarkers and therapeutic targets for ischemic stroke treatment.

Recent studies indicate that ischemic stroke triggers

neuroinflammation, characterized by lymphopenia and

dysfunction of immune cells, highlighting the critical role of the

immune response in stroke outcome (3, 4). Understanding how

immunity influences neurological recovery is thus essential. The

characteristics of immune cells in stroke patients mirror the body’s

immune status and are strongly linked to prognosis (5, 6). For

instance, regulatory T cells (Tregs), a crucial subset of

immunosuppressive T cells, are believed to modulate immune

responses in ischemic strokes, impacting prognosis (7, 8). CD4+

Treg levels at admission predict the modified Rankin Scale (mRS)

score three months post-stroke, correlating positively with outcome

(9). Immune cell surface antigens, key in immune cell

differentiation, activation, and signaling, determine immune cell

properties, indicating changes in function and status and reflecting

their phenotype. Targeting specific surface antigens on immune

cells could improve ischemic stroke therapy outcomes (10). Yet, the

exact relationship between these antigens and the post-stroke

functional outcome remains to be elucidated with existing studies

potentially affected by reverse causation and confounding factors.

Given that specific immune cell surface antigens might impact post-

stroke functional outcome, further research is essential to deepen

our understanding.

Mendelian randomization (MR), utilizing germline genetic

variants to investigate the causal effects of exposures on outcome,

is a pivotal methodology in epidemiological etiological inference

(11–13). The general independence of genetic variations from

environmental influences and outcomes provides us with a

favorable tool to study the causality of several complex exposures

and outcomes. Therefore, we performed a two-sample MR

framework using genome-wide association studies (GWAS) data

to explore the potential causal associations between immune cell

surface antigens and post-stroke functional outcome.
2 Methods

2.1 Study design

In this study, we utilized GWAS summary statistics for a two-

sample MR analysis to determine the causal effect of immune cell

surface antigens on post-stroke functional outcome (Figure 1).

Instrumental variables (IVs) in MR must meet three core

assumptions: (1) association with the exposure; (2) independence

from confounders; (3) influence on the outcome exclusively
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through the exposure. Our analysis relied on publicly available

GWAS summary statistics from cohorts primarily of European

ancestry. We carefully reviewed the original studies, and found that

sample overlap was negligible. An overview of the GWAS summary

data sources is presented in Table 1.
2.2 Genetic instruments for immune cell
surface antigens

In this MR study, we sourced genetic variants linked to immune

cell surface antigens (measured by median fluorescence intensities,

MFIs) from the publicly available GWAS Catalog (https://

www.ebi.ac.u/gwas/home). The initial genome-wide GWAS

analysis utilized data from 3,757 individuals of European

ancestry (14).

The MFI represents the median expression level of a

fluorescent-conjugated antibody bound to a cell, directly

proportional to the median quantity of antigen expressed in that

cell. The distribution was normalized for overall and daily

fluctuations to control batch effects in MFIs. A total of 389 MFIs

with surface antigens were included in seven panels (maturation

stages of T cell, Treg, TBNK, DC, B cell, monocyte, and myeloid cell,

respectively). All immune cells used to measure MFIs were collected

from the participant’s peripheral blood. Details of the 389 MFIs are

listed in Supplementary Table S1. Genetic variants were screened

based on the following conditions: (1) Single nucleotide

polymorphisms (SNPs, refer to DNA sequence polymorphisms

caused by variation in a single nucleotide at the genomic level)

associated with MFIs of immune cell surface antigens (P< 1×10-5)

and not in linkage disequilibrium (LD) with other SNPs (r2< 0.001

within a clumping window of 10000 kb); (2) a phenotypic variance

explained (PVE, evaluated using the R2) > 0.5% and a F statistic >10;

the F statistic was calculated as follows: R2 N−K−1ð Þ
K 1−R2ð Þ (R2, phenotypic

variance explained; N, effective sample size; K, the quantity of

genetic variants); (3) a minor allele frequency (MAF) > 0.05; (4)

exclusion of SNPs associated with the outcome (P< 1×10-5). The

remaining SNPs were utilized as IVs. Subsequently, we harmonized

the alleles and effects between the exposure and outcome. When the

SNPs were not identified in the outcome data, the proxy SNPs (r2 >

0.8) from 1000 genomes European reference data were used to

replace them. The SNPs that have palindromic alleles with

intermediate allele frequencies (MAF > 0.42) were removed.

Furthermore, we applied Steiger filtering to exclude SNPs that

explained more of the variance in the outcome than the exposure.

In the reverse MR analysis, the screening criteria for IVs were the

same as above.
2.3 Outcome data sources

We derived GWAS summary statistics for post-ischemic

stroke functional outcome from the Genetics of Ischemic Stroke

Functional Outcome (GISCOME) network (15), comprising 6,021

patients across 12 studies from Europe, Australia, and the United

States (16). Participants were European ancestry and aged 18 or
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above. Post-stroke functional outcome refers to a person’s level of

physical, mental and cognitive ability after a stroke, which

includes a range of factors such as mobility, strength,

coordination, speech, language, memory (15, 17). The main

focus of research has been on unfavorable functional outcomes

for stroke patients, including cognitive impairment or dementia,

dependency, disability, motor impairment, psychological

impairment (depression or anxiety) and death (18, 19). The

mRS approximately 3 months post-stroke was selected to assess

functional outcome. mRS assesses dependency of stroke patients
Frontiers in Immunology 03
and ranges from 0 (no symptoms) to 5 (completely dependent and

bed ridden), and death was included in scale (mRS score = 6),

which is a commonly used scale for measuring the degree of

disability of people who have suffered a stroke or other causes of

neurological disability. We classified a ‘poor’ outcome as an mRS

score > 3 (2,280 cases) and a ‘good’ outcome as a score< 2 (3,741

cases). In our analyses, the mRS was analyzed as 2 dichotomous

variables (score of 0–2 vs 3–6), and the results were adjusted for

age, sex, ancestry, and baseline stroke severity as evaluated by the

NIH Stroke Scale (NIHSS).
TABLE 1 An overview of the GWAS summary data sources in this study.

Traits Data source Sample size or
cases/controls

Number
of SNPs

Ancestry Publication
year

PMID

389 immune cell
surface antigens

GWAS Catalog 3,757 individuals ∼22 million European 2020 32929287

Ischemic stroke MEGASTROKE
consortium

34,217 cases; 406,111 controls ∼8.3 million European 2018 29531354

Functional outcome after
ischemic stroke

GISCOME network 6021 cases ∼8.5 million European 2019 30796134
fron
FIGURE 1

Design of the present Mendelian randomization study of the associations between immune cell surface antigens and post-stroke
functional outcome.
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2.4 Assessment of collider bias

To assess whether the causal association between MFIs of immune

cell surface antigens and functional outcome after ischemic stroke is

attributable to collider bias, we also performed an MR analysis between

immune cell surface antigens and the risk of ischemic stroke. The

summary statistics were obtained from theMEGASTROKE consortium,

which included 406,111 controls and 34,217 patients with ischemic

stroke (20). Participants were drawn from 17 studies and were restricted

to Europeans only. SNPs that met the MEGASTROKE criteria (n_cases

> 50% and oevar_imp > 0.5) were selected for the MR analysis.
2.5 Statistical analysis

The inverse-variance weighted (IVW) method was adopted as

the main MR analysis. To account for multiple hypothesis testing,

we applied Bonferroni correction with a significance threshold of

P< 1.285 × 10-4 (0.05/389), indicating statistical significance. We

also considered results with p-values of 1.285 × 10-4 to 0.05

nominally significant. Sensitivity analyses were performed using

the weighted median, MR-Egger regression, and MR-Pleiotropy

Residual Sum and Outlier (MR-PRESSO). The weighted median

method yields consistent estimates when over 50% of the weights

originate from valid instrumental variables (21). MR-Egger

regression, both for the intercept and slope, assessed directional

pleiotropy and provided robust estimates adjusted for its presence

(22). Specifically, MR Egger regression tests for the presence of

directional pleiotropy by examining the intercept term and provides

an approximately unbiased estimate of the causal effect of exposure

on outcome by incorporating the intercept into the regression

model (22). MR-PRESSO was utilized to detect and account for

potential horizontal pleiotropy and to identify and exclude any

outliers with such effects (23). In cases where pleiotropy and

heterogeneity were absent, a significant result (P< 0.05) obtained

via the IVW method was considered positive, provided that the

effect estimates from other methods were consistent with those of

the IVW method. Cochran’s Q statistic assessed heterogeneity

among instrumental variables. If heterogeneity was present (P<

0.05), a random-effects IVW model was applied. For comparison,

we conducted anMR analysis using GISCOMEGWAS data without

adjusting for baseline NIHSS. All statistical analyses were carried

out using the MR-PRESSO (version 1.0) (23) and TwoSampleMR

(version 0.5.7) (24) packages in the R software environment.
3 Results

3.1 Thirteen immune cell surface antigens
as potential causal mediators of functional
outcome after stroke in the main
MR analysis

The number of SNPs as IVs generated by 389 MFIs of

immune cell surface antigens for MR analysis ranged from 7 to
Frontiers in Immunology 04
30, and all IVs passed Steiger filtering. Notably, all IVs exhibited

F statistics exceeding 10, with a minimum F statistic of

19.54, indicating the significant effectiveness of these IVs

(Supplementary Table S2).

In the IVWMR analysis of the expression levels of immune cell

surface antigens and post-stroke functional outcome, 13 suggestive

MFIs of surface antigens were identified, of which 4 were in the B

cell panel, 1 in maturation stages of the T cell panel, 6 in the Treg

panel, 1 in myeloid cell panel, and 1 in the monocyte

panel (Figure 2).

The forest plot in Figure 3 presents the IVW estimates of the

associations between the levels of these immune cell surface

antigens and post-stroke functional outcome.

Genetically elevated levels of surface antigens in the DC and

TBNK panel were not strongly associated with post-stroke

functional outcome (all p > 0.05). We also conducted a reverse

MR analysis (IVW method), which did not reveal a causal effect of

post-stroke functional outcome on these immune cell surface

antigens, suggesting no reverse causal effect (Supplementary

Table S3).
3.2 Sensitivity analyses

To ensure the robustness of our findings, we conducted multiple

sensitivity analysis methods to assess the presence of potential

pleiotropy in the results obtained from the MR analysis

described above.

Our sensitivity analyses yielded consistent and reassuring

results (Table 2). Specifically, we found no evidence of

heterogeneity, as indicated by all p-values for Cochran’s Q test

exceeding 0.05. This suggests a lack of substantial variability among

the instrumental variables used in the MR analysis. Furthermore,

our assessment of directional pleiotropy using the MR-PRESSO

global test and MR-Egger intercept revealed no significant

deviations from the IVW method. All p-values exceeded 0.05,

indicating that the potential for pleiotropy did not substantially

influence our findings. Additionally, the weighted median and MR-

PRESSO methods produced effect estimates that were concordant

with those obtained from the IVW method. This consistency

reinforces the reliability of our results. However, it is worth

noting that in the MR-Egger (slope) analysis, we observed that

the effects of CD24 on switch memory B cell and CD3 on EM CD4+

maturation stages of T cell were estimated in the opposite direction

compared to the results obtained from other MR analysis methods.

This discrepancy suggests the need for a cautious interpretation of

these particular associations.

As a comparative analysis, we performed MR analysis based on

GISCOME GWAS data without adjustment for baseline NIHSS.

This analysis revealed that four immune cell surface antigens

maintained suggestive causal associations with post-stroke

functional outcome based on IVW estimates (Figure 4).

Importantly, this comparison analysis showed no significant

evidence of directional pleiotropy or global heterogeneity

(Supplementary Table S4).
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FIGURE 3

The forest plot of 13 immune cell surface antigens with functional outcome after ischemic stroke adjustment for baseline stroke severity (p for
Inverse variance weighted method< 0.05).
FIGURE 2

Inverse variance weighted estimates of the causal association between 389 immune cell surface antigens and post-stroke functional outcome. The
red dashed line indicates the threshold of significance (P< 0.05). Orange bars represent deleterious mediators of post-stroke functional outcome,
whereas blue bars represent protective mediators of post-stroke functional outcome.
Frontiers in Immunology frontiersin.org05
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3.3 Two immune cell surface antigens
were associated with the risk of stroke

To comprehensively evaluate our analyses, particularly in the

context of prognostic implications, we investigated the potential

presence of collider bias by examining the association of immune

cell surface antigen levels with ischemic stroke risk using data from

the MEGASTROKE dataset.

The MR analysis outcome revealed that CD24 on switch

memory B cell (OR = 1.03, 95% CI: 1.001-1.067, p = 0.041) and

CD4 on CD39+ CD4+ Treg (OR = 1.03, 95% CI: 1.002-1.054,
Frontiers in Immunology 06
p = 0.031) were weakly associated with an increased risk of

ischemic stroke (Figure 5). These associations raise the

possibility that the observed relationships between these specific

immune cell surface antigens and poor post-stroke functional

outcome may, in part, be influenced by collider bias. However, it is

essential to note that our assessment of collider bias suggests that

any such bias, if present, is likely to be minimal. This indicates

that while these immune cell surface antigens may have some

impact on both ischemic stroke risk and post-stroke functional

outcome, collider bias is unlikely to be a major driver of the

observed associations.
TABLE 2 Sensitive analyses between 13 immune cell surface antigens and functional outcome after ischemic stroke (adjustment for baseline
stroke severity).

MFIs of immune cell
surface antigens

MR-Egger
(slope)

weighted
median

MR-PRESSO MR-Egger
(intercept)

MR-PRESSO
global test

Cochran’s
Q test

OR
(95%
CI)

p OR
(95%
CI)

p OR
(95%
CI)

p p p p

B cell panel

CD20 on sw mem 1.11
(0.77-1.59)

0.59 1.28
(1.04-1.56)

0.02 1.16
(1.01-1.34)

0.046 0.77 0.49 0.47

CD24 on sw mem 0.96
(0.64-1.43)

0.84 1.08
(0.86-1.35)

0.53 1.17
(1.01-1.34)

0.042 0.31 0.64 0.65

CD38 on CD3- CD19- 0.90
(0.66-1.23)

0.52 0.79
(0.65-0.98)

0.03 0.82
(0.72-0.95)

0.015 0.55 0.68 0.66

IgD on IgD+ CD38dim 0.75
(0.44-1.28)

0.31 0.89
(0.70-1.13)

0.34 0.82
(0.68-0.99)

0.061 0.72 0.30 0.25

Maturation stages of T cell panel

CD3 on EM CD4+ 1.03
(0.76-1.40)

0.87 0.93
(0.76-1.13)

0.46 0.84
(0.73-0.97)

0.030 0.17 0.46 0.62

Treg panel

CD28 on CD39+ secreting Treg 1.43
(1.05-1.96)

0.04 1.16
(0.94-1.43)

0.18 1.20
(1.06-1.37)

0.012 0.22 0.78 0.78

CD28 on CD28+
CD45RA- CD8br

0.88
(0.63-1.22)

0.44 0.81
(0.64-1.02)

0.08 0.84
(0.76-0.93)

0.004 0.80 0.99 0.99

CD28 on CD28+ DN (CD4-
CD8-)

0.82
(0.60-1.12)

0.22 0.80
(0.63-1.00)

0.05 0.84
(0.75-0.94)

0.006 0.87 0.95 0.94

CD25 on CD39+ resting Treg 0.69
(0.44-1.09)

0.14 0.67
(0.49-0.91)

0.01 0.77
(0.62-0.95)

0.037 0.61 0.49 0.45

CD4 on CD39+ CD4+ 1.26
(0.98-1.63)

0.09 1.14
(0.95-1.36)

0.15 1.15
(1.01-1.30)

0.042 0.42 0.35 0.32

CD4 on secreting Treg 0.82
(0.59-1.14)

0.25 0.89
(0.73-1.09)

0.26 0.85
(0.76-0.94)

0.009 0.84 0.92 0.91

Myeloid cell panel

HLA DR on CD33br HLA DR
+ CD14-

0.59
(0.33-1.04)

0.10 0.80
(0.64-1.01)

0.06 0.82
(0.71-0.94)

0.019 0.44 0.71 0.74

Monocyte panel

PDL-1 on monocyte 1.60
(0.94-2.72)

0.12 1.32
(0.96-1.80)

0.09 1.32
(1.04-1.66)

0.043 0.26 0.35 0.31
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4 Discussion

The clinical significance of post-stroke functional outcome lies

in its impact on the overall quality of life and long-term prognosis of

stroke survivors, which is critical in determining appropriate care

and rehabilitation efforts (17). In addition, it can help predict the

risk of future health complications such as falls, infections, and

depression (2). Actively exploring immunological factors that affect

stroke recovery and intervening can help patients maximize their

recovery and regain independence after stroke. While numerous

observational studies have provided substantial evidence of immune

cell involvement in stroke onset and outcome, they suffer from
Frontiers in Immunology 07
inherent limitations, including uncontrollable biases and the

heterogeneity of study metrics. Immune cell surface antigens can

potentially unravel the precise roles of these immune cells following

ischemic stroke. However, previous investigations have primarily

overlooked the contribution of cell surface antigen biological

functions in the context of stroke. This study marks the inaugural

effort to explore the causal relationship between immune cell

surface antigens and post-stroke functional outcome using

MR analysis.

In the initial primary MR analysis, we identified 13 immune cell

surface antigens associated with post-stroke functional outcome.

Following rigorous sensitivity analyses and an assessment of
FIGURE 4

The forest plot of 13 immune cell surface antigens with functional outcome after ischemic stroke without adjustment for baseline stroke severity.
FIGURE 5

The forest plot of 13 immune cell surface antigens with risk of ischemic stroke.
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collider bias, we ultimately identified three robust immune cell

surface antigens with suggestive causal associations linked to post-

stroke functional outcome. Specifically, elevated levels of CD20 on

switched memory B cell and PDL-1 on monocyte were associated

with poorer post-stroke functional outcome. In contrast, increased

expression of CD25 on CD39+ resting Treg was linked to a more

favorable post-stroke functional outcome (19).

CD20, encoded by MS4A1, is a non-glycosylated protein

belonging to the membrane-spanning 4-domain family A (MS4A)

protein family (25). Beginning with late pre-B lymphocytes, most B

cells express CD20, and its expression is diminishing in terminally

differentiated plasma cells. Therefore, CD20 can be used as a marker

for developing B cells, and CD20-specific inhibitors are commonly

used to treat B cell malignancies and autoimmune diseases (26).

However, the precise biological function of CD20 and regulatory

mechanisms remain elusive. Tedder TF et al. have suggested that

CD20 might influence B cell proliferation and activation by

modulating Ca2+ transmembrane transport (27). A case report

demonstrated that CD20 deficiency reduced circulating memory B

cell counts, impaired Ig isotype switching, and diminished IgG

antibody levels (28). Upon activation, memory B cells undergo

isotypic transformation from IgD/IgM to IgG/IgA/IgE (29). Thus,

CD20 may be involved in the isotypic transformation of memory B

cells. Our findings indicate that higher CD20 expression on

switched memory B cells is associated with poor long-term

outcome in patients with ischemic stroke. This suggests that

CD20 expression levels may trigger the conversion of B cells from

a specific state to pathogenic entities following ischemic stroke.

Notably, the concept that B cells can contribute to central nervous

system (CNS) pathology independently of antibody production has

been discussed in the context of multiple sclerosis (30). B cells can

release factors that disrupt the CNS, leading to oligodendrocyte and

neuronal death. Targeting CD20 has proven effective in multiple

sclerosis treatment (31).

Similarly, the expression level of PDL-1 on monocytes exhibited

a similar effect. Accumulating evidence from animal models and

patient studies suggests that ischemic stroke prompts the

recruitment of circulating monocytes into the brain, where they

differentiate into macrophages or dendritic cells, influencing

ischemic injury progression (32, 33). Elevated monocyte counts

have been associated with worse stroke outcome and greater stroke

severity, making them potential predictive biomarkers for post-

stroke functional outcome (34, 35). Our findings suggest that PDL-1

on monocytes may play a role in mediating unfavorable post-stroke

functional outcome. PDL-1, the primary ligand for PD-1, is widely

expressed in B cells, T cells, DCs, and monocytes, regulating

immune function in these cell types (36). Bodhankar S. et al. have

shown that homozygous knock-out (PDL-1-/-) mice had reduced

monocyte infiltration, smaller infarct sizes in the ischemic

hemisphere, and reduced activation status of splenic monocytes

compared to wild-type (WT) mice, implying PDL-1’s involvement

in exacerbating experimental stroke outcome (37). Combining these

results with our analysis, it can be inferred that monocytes with high
Frontiers in Immunology 08
PDL-1 expression may be pivotal in controlling the adverse effects

of ischemia.

On the other hand, our results suggest a beneficial role for

increased CD25 expression on CD39+ resting Tregs in post-stroke

functional outcome. CD25, the alpha-chain of the heterotrimer IL-2

receptor, also known as IL2Ra, is constitutively expressed at high

levels in most Tregs. CD25 (a-chain), together with CD122 (b-
chain) and CD132 (g-chain), forms the functional IL-2 receptor (IL-

2R), and of these three receptor chains, the binding affinity of CD25

for IL-2 is the highest (38). IL-2 signalling can affect Treg peripheral

induction, lineage commitment, stability sustainability, and

homeostasis, and CD25 expression is critical for IL-2 signalling to

Treg (39, 40). Thus, the expression status of CD25 influences, to

some extent, the immunomodulatory functions of Treg involved in

re-establishing immune homeostasis and regulating inflammatory

response after ischemic stroke. High CD25 expression influences

the immunomodulatory functions of Tregs, contributing to

immune homeostasis restoration and regulation of inflammatory

reactions post-stroke. However, it is essential to note that these

effects may be specific to certain Treg subpopulations. Elevated

CD25 expression may support the survival and maintenance of

resting Tregs, while CD39 surface expression is involved in the

hydrolysis of extracellular ATP, essential for immunosuppressive

function. These mechanisms likely play a crucial role in long-term

immune homeostasis after stroke (41, 42).

Nonetheless, several limitations of this study should be

acknowledged. Firstly, measuring immune cell surface antigen

levels (MFIs) involves flow cytometry on peripheral blood

samples, which can introduce time-dependent artifacts. These

time-dependent effects were not considered in the current MR

analysis. Additionally, MR estimates might introduce bias when

comparing brain and blood, necessitating careful consideration of

the tissue specificity of ischemic stroke. Secondly, the GISCOME

database lacked outcome data for specific stroke subtypes,

preventing an assessment of immune cell surface antigen

relationships with functional outcome in different stroke subtypes.

Moreover, a lack of available data for replication analysis may have

reduced the persuasiveness of our results. Lastly, our MR analysis

was limited to subjects of European ancestry, potentially limiting

the generalizability of our findings to other populations.
5 Conclusion

This MR study offers compelling evidence that specific immune

cell surface antigen levels are associated with adverse post-stroke

functional outcome. CD20 on switched memory B cell, PDL-1 on

monocyte, and CD25 on CD39+ resting Treg emerge as potential

biomarkers and causal factors linked to post-stroke functional

outcome. However, the underlying biological mechanisms require

further exploration, and the potential of targeting these immune cell

surface antigens as a therapeutic strategy to enhance post-stroke

recovery warrants further investigation.
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