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Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Background: Type I interferon (IFN-I) and IFN autoantibodies play a crucial role in

controlling SARS-CoV-2 infection. The levels of these mediators have only rarely

been studied in the alveolar compartment in patients with COVID-19 acute

respiratory distress syndrome (CARDS) but have not been compared across

different ARDS etiologies, and the potential effect of dexamethasone (DXM) on

these mediators is not known.

Methods: We assessed the integrity of the alveolo-capillary membrane,

interleukins, type I, II, and III IFNs, and IFN autoantibodies by studying the

epithelial lining fluid (ELF) volumes, alveolar concentration of protein, and ELF-

corrected concentrations of cytokines in two patient subgroups and controls.

Results: A total of 16 patients with CARDS (four without and 12 with DXM

treatment), eight with non-CARDS, and 15 healthy controls were included. The

highest ELF volumes and protein levels were observed in CARDS. Systemic and

ELF-corrected alveolar concentrations of interleukin (IL)-6 appeared to be

particularly low in patients with CARDS receiving DXM, whereas alveolar levels

of IL-8 were high regardless of DXM treatment. Alveolar levels of IFNs were

similar between CARDS and non-CARDS patients, and IFNa and IFNw
autoantibody levels were higher in patients with CARDS and non-CARDS than

in healthy controls.

Conclusions: Patients with CARDS exhibited greater alveolo-capillary barrier

disruption with compartmentalization of IL-8, regardless of DXM treatment,

whereas systemic and alveolar levels of IL-6 were lower in the DXM-treated

subgroup. IFN-I autoantibodies were higher in the BALF of CARDS patients,

independent of DXM, whereas IFN autoantibodies in plasma were similar to those

in controls.
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1 Introduction

The pathophysiological changes accompanying acute

respiratory distress syndrome (ARDS), a common heterogeneous

cause of respiratory failure with high mortality, have been of

interest to clinical researchers for decades (1). A hallmark of

ARDS is increased permeability of protein-rich fluid and cells

across the lung endothelium to the alveoli, including injury-

inducing neutrophils (1).

In viral respiratory infections, immune-mediated factors may

contribute to disease control, and are associated with disease severity

(2). During the COVID-19 pandemic, the pathophysiologic role of

biomarkers and potential therapeutic options to alter these

biomarkers in COVID-19 ARDS (CARDS) (3–5) have become a

growing area of research, with a focus on systemic and alveolar pro-

inflammatory mediators, such as interleukin (IL)-6, IL-8, and tumor

necrosis factor (TNF)-a.
Some studies have also compared the profiles of inflammatory

mediators in patients with CARDS with non-COVID-19 ARDS

(non-CARDS) (6). However, few studies have focused on

measuring alveolar levels of interferons (IFNs) and autoantibodies

against IFN. Interferons are crucial for viral control due to their

ability to suppress viral replication and facilitate the activation of

dendritic cells while also enhancing the functions of lymphocytes

and macrophages (7, 8). The levels of these mediators have only

occasionally been studied at alveolar levels in CARDS patients (9);

however, to our knowledge, they have not been compared across

different ARDS etiologies or according to whether dexamethasone

(DXM) was used as an intervention.

To further understand the integrity of the alveoli-capillary

membrane in CARDS and non-CARDS patients, we studied the

extent of protein-rich alveolar edema and assessed whether

systemically administered DXM has an overall impact on

membrane integrity in CARDS. Moreover, we investigated the

differences in alveolar epithelial lining fluid (ELF) concentrations

of cytokines, including type I, II, III, IFNs, and IFN autoantibodies.
2 Methods

2.1 Study population, design, and ethics

Three groups were included in the study (CARDS, non-

CARDS, and healthy controls). In all three groups, standardized

bronchoalveolar lavage (BAL) and blood sampling were performed

at a given time point. Patients with CARDS were included in the

intensive care unit (ICU) of Hvidovre Hospital, Denmark, during
02
the first and second COVID-19 waves. The inclusion criteria were

age >18 years, polymerase chain reaction-confirmed SARS-CoV-2

infection, moderate-to-severe ARDS (Berlin definition 2012 (10)),

and less than 72 h of invasive mechanical ventilation. CARDS

patients were further divided into two groups depending on

whether they were treated with DXM, as the study enrollment

covered the period before and after DXM was implemented as a

standard of care. Non-CARDS patients included intubated ICU

patients aged >18 years with either ARDS (Berlin definition 2012

(10)) and/or sepsis (Sepsis-2 criteria (11)) and less than 48 h of

mechanical ventilation. Further details of the patient and healthy

control groups, which included healthy male subjects, have been

previously described (12). Oral and written informed consent was

obtained from next-of-kin (CARDS, non-CARDS) or healthy

controls prior to participation and approval was given by the

Ethical Committee of the Capital Region of Copenhagen (H-2-

2009-131; H-2-2011-021; H-2-0023-159).
2.2 Bronchoalveolar lavage procedure
and sampling

A standardized BAL was performed in a subsegment of the right

middle lobe (CARDS and non-CARDS patients) or lingula (healthy

controls) by an experienced proceduralist, as previously described

(12). In all groups, 150 ml of isotonic saline was instilled for each

BAL procedure, aspirated immediately, pooled into a sterile

container on ice, and processed within 15 min of collection.
2.3 Epithelial lining fluid and
cytokine concentrations

Urea may be used for determining the amount of ELF, i.e., the

thin layer of fluid covering the mucosa of the alveoli and the small

and large bronchioles, because the concentration of urea in plasma

equals the concentration in ELF under steady state conditions (13,

14). Because lavaged BALF is a mixture of instilled saline and ELF,

the in situ concentration of urea in ELF is greater than the measured

concentration in BALF. To determine the in situ concentrations of

mediators, the volume of a solute-specific concentration was

calculated using the following method:

Volume ELF =  
½Urea BALF� · Volume BALF

½Urea Plasma�

½Solute ELF� =  
½Solute BALF� · Volume BALF

Volume ELF
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where [Urea BALF] is the concentration of urea in BALF

(mmol/L), Volume BALF is the lavaged return volume (mL),

[Urea Plasma] is the concentration of urea in plasma (mmol/L),

and [Solute BALF] is the solute concentration (e.g., TNF-a) in

BALF (mmol/L).
2.4 Measurements of total protein,
albumin, and urea in BALF

Total protein, albumin, and urea levels in the BALF samples

were measured at the Department of Clinical Biochemistry,

University Hospital Hvidovre, Denmark. All parameters were

measured using the Cobas 8000 system (Roche Diagnostics

GmbH, Germany). Total protein and albumin were analyzed

using cerebrospinal fluid, and urea was analyzed using plasma.

Frozen (−80°C) BALF-samples were thawed at the laboratory and

analyzed immediately after, albeit some of the samples had to be re-

centrifuged before analysis. Albumin concentration was reported as

mg/L, total protein as g/L, and urea as mmol/L.
2.5 Cytokine detection

Cytokine levels of TNF-a, IL-1b, IL-6, IL-8, IFN-a2a, IFN-b,
IFN-g, and IFN-l1 were measured in BALF and plasma, according

to the manufacturer’s instructions (mesoscale U-PLEX assay, Meso

Scale Diagnostics, USA). Notably, IFN levels (IFN-a2a, IFN-b, IFN-
g, and IFN-l1) were not measured in healthy controls. In patients

with CARDS, the potential live SARS-CoV-2 in BALF was

inactivated by mixing BALF and 0.4% Triton-X-100 1:1 and

incubating for 30 min at room temperature before analysis.

Inactivated BALF samples were analyzed undiluted, and plasma

was analyzed undiluted and 10× diluted.
2.6 IFN autoantibodies

To measure IFN autoantibodies in BALF and plasma, ELISA

plates were coated with 1 μg/mL IFNa (130-093-874, Miltenyi

Biotec) or IFNw (BMS304, Invitrogen) overnight at 4°C, followed

by blocking with 5% skimmed milk. Plasma samples were diluted

50× in HPE buffer (M1940, Sanquin) before incubation. Bound

autoantibodies were detected with HRP-conjugated goat anti-

human IgG, IgA, IgM (GAHu/Ig/Fc/PO, Nordic-MUbio), and

HRP substrate, SureBlue KPL (5120-0077, Sera care). BAL

samples from patients with CARDS were diluted 3× in 0.4%

Triton-X-100 and left for 30 min to ensure inactivation of

potential SARS-CoV-2 present in the samples before incubation

on the plates. A cut-off of 0.5 (blank-corrected OD450-OD630) was

used to determine positivity in plasma samples based on data from

previous studies (15). The cutoff value for determining positivity in

BAL samples is unknown.
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2.7 Statistics

Unless otherwise stated, continuous variables were expressed as

median (interquartile range, IQR) and compared using the non-

parametric Mann–Whitney test. Normality of distribution was not

assumed, given the relatively small sample size. Accordingly,

comparisons between groups were made using the non-

parametric Kruskal–Wallis test, followed by Dunn’s test with

Bonferroni correction for multiple comparisons between groups if

a significant difference was found in the former. For statistical

analysis, undetectable concentrations of cytokines measured in

plasma or BALF were assigned an arbitrary value equivalent to

50% of the lower limit of detection. A p-value<0.05 was considered

to represent a statistically significant difference. All analyses were

performed using the R software version 4.2.1.
3 Results

3.1 Baseline characteristics

The baseline characteristics of patients and healthy controls are

shown in Table 1. The median durations of invasive mechanical

ventilation before the BAL procedure in patients with CARDS and

non-CARDS were 26 [17–45] and 28 [18–39] h, respectively. There

were no differences in age and sex between the two patient groups,

but CARDS patients exhibited a larger impairment of gas exchange

than to non-CARDS patients (PaO2/FIO2 110 mmHg [88–149] vs.

162 mmHg [115–183], p = 0.03; Table 1). Furthermore, leucocyte

and CRP levels were higher in both patient groups, with the highest

levels observed in non-CARDS patients. Tocilizumab, a potent IL-6

inhibitor, was administered to three patients with CARDS, but

neither inclusion nor omittance of these patients in the statistical

analyses resulted in any change in leukocytes and CRP or

concentration of cytokines in both plasma and BAL (data not

shown). The baseline characteristics did not differ between the

CARDS subgroups, except for a lower PaO2/FIO2 (P/F) ratio

observed in the subgroup not receiving DXM (75 mmHg [63–82]

vs. 125 mmHg [110–151], p<0.01).
3.2 Alveolo-capillary membrane integrity—
ELF volumes

The ELF volumes are shown in Figure 1. Higher volumes of ELF

were found in both CARDS subgroups compared to healthy

controls and appeared most pronounced in CARDS patients not

receiving DXM, where a 5-fold higher value was observed (6.66 mL

vs. 1.35 mL). A significant difference was found between the healthy

controls and patients with CARDS without (p = 0.014) and with

DXM treatment (p = 0.002). No differences were found between

CARDS and non-CARDS patients, regardless of CARDS subgroup.

Similarly, no differences were observed between patients with non-

CARDS and healthy volunteers.
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3.3 Alveolo-capillary membrane integrity—
protein concentrations

The alveolar protein concentration was higher in CARDS

patients than in healthy controls (−DXM: p = 0.004, +DXM:
Frontiers in Immunology 04
p<0.001), and a similar trend was observed for non-CARDS (p =

0.08), but there was no difference between the two patient

groups (Figure 2).

Within the subgroup of CARDS patients, those who did not

receive DXM tended to have higher protein concentrations (+23%
FIGURE 1

Epithelial lining fluid. Volumes (mL) of ELF in CARDS patients without (−DXM, n = 4) or with DXM treatment (+DXM, n = 12), non-CARDS critically ill
patients (n = 8) and healthy controls (n = 15). *P<0.05 (Dunn’s test). Box plots visualize the median, first, and third quartiles (hinges), and whiskers
extends from the hinge to the largest value no further than 1.5 ∗ IQR from the hinge, with data beyond plotted individually as outlying points. BAL,
bronchoalveolar lavage; CARDS, COVID-19 associated acute respiratory distress syndrome; DXM, dexamethasone; ELF, epithelial lining fluid; non-
CARDS, non-COVID-19 associated acute respiratory distress syndrome and/or sepsis.
TABLE 1 Baseline characteristics.

CARDS
n = 16

Non-CARDS
n = 8

Healthy controls
n = 15

P-value*

Age (years) 66 [56–72] 65 [62–68] 23 [22–23] 0.69

Sex, males (%) 75 63 100 0.56

Height (cm) 175 [171–179] 173 [167–180] 187 [182–189] 0.88

Weight (kg) 80 [72–87] 81 [68–93] 80 [73–86] 0.83

CRP (mg/L) 97 [56–125] 183 [129–266] 1 [1–1] 0.03

Leukocytes (109/L) 11 [8–14] 24 [13–32] 5 [5–6] 0.03

Neutrophils (109/L) 10 [8–12] 19 [11–26] 3 [2–3] 0.08

PaO2/FIO2 (mmHg) 110 [88–149] 162 [115–183] – 0.03

SAPS II/SAPS III** 59 [56–69] 46 [38–66] – –

Mechanical ventilation before BAL (hours) 26 [17–45] 28 [18–39] – 0.54

Symptoms before BAL (days) 12 [10–14] – – –

DXM 12 – – –

DXM before BAL (days) 5 [3–5] – – –

Tocilizumab 3 – – –
f

Baseline characteristics of critically ill patients with CARDS and non-CARDS and healthy controls. Notably, the CARDS patients (with or without DXM) did not differ with regard to baseline
characteristics, except for the P/F-ratio, which was lower in the group not receiving DXM. Data are expressed as the median [IQR]. CRP, leukocytes and neutrophils were measured in the plasma
at the time of the BAL procedure. DXM and tocilizumab were administered systemically according to national guidelines at the time of inclusion (DXM: 7.2 mg, IV bolus for a total of 10 days;
tocilizumab: 8 mg/kg in 100 ml saline, IV infusion, single dose). *P-values refer to differences between critically ill patients with CARDS and non-CARDS. **SAPS III; CARDS patients, SAPS II;
non-CARDS patients. BAL, bronchoalveolar lavage; CARDS, COVID-19 associated acute respiratory distress syndrome; CRP, C-reactive protein; DXM, dexamethasone; non-CARDS, non-
COVID-19 associated acute respiratory distress syndrome and/or sepsis.
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compared to CARDS +DXM), although this was not statistically

significant (p = 0.65). Albumin accounted for approximately 45% of

the total protein in both subgroups.
3.4 Alveolar and systemic levels
of interleukins

There were no differences in ELF-corrected alveolar

concentrations of TNF-a and IL-1b between CARDS, non-

CARDS, and healthy controls. Even though the median ELF-

corrected alveolar IL-6 was higher in CARDS −DXM and lower

in CARDS +DXM than in healthy volunteers, this was not

statistically significant (p = 0.08; Table 2). However, the ELF-

corrected concentration of IL-8 was higher in both CARDS and

non-CARDS patients than in healthy controls but did not differ

between the CARDS and non-CARDS subgroups (Table 2).

The concentration of TNF-a in the plasma was similar between

the patients and healthy controls. In contrast, plasma

concentrations of IL-1b, IL-6, and IL-8 were higher in both

CARDS and non-CARDS than in healthy controls, and IL-6

values were up to 60-times higher in CARDS −DXM compared to

CARDS +DXM (Table 2).
3.5 Alveolar and systemic levels of IFNs

ELF-corrected alveolar concentrations of IFN-a2a, IFN-b, IFN-
g, and IFN-l1 were not different between CARDS and non-CARDS

patients (Table 2). Concentrations of IFN-a2a, IFN-b, and IFN-l1
in the plasma did not differ between any of the patient subgroups,

but IFN-g was found to be higher in CARDS patients not receiving

DXM compared to CARDS patients those receiving DXM and non-

CARDS (Table 2).
Frontiers in Immunology 05
3.6 Alveolar and systemic levels of
IFN autoantibodies

ELF-corrected alveolar concentrations of IFNa and IFNw
autoantibodies were higher in patients with CARDS than in

healthy controls (Figure 3). Three patients with CARDS and one

patient with non-CARDS had autoantibody levels above 0.5. For

both IFNa and IFNw autoantibodies, a difference was found

between patients with CARDS receiving DXM and healthy

controls (p = 0.042 and p<0.001, respectively).

In the plasma, autoantibody levels of both IFNa and IFNw were

found to be significantly lower in healthy volunteers than in non-

CARDS patients (p<0.01). Additionally, a difference was observed

in IFNw between patients with CARDS not receiving DXM and

healthy volunteers (p<0.01). No patients had levels above

0.5 (Figure 3).
4 Discussion

We evaluated the alveolar milieu of 16 patients with COVID-

19-related ARDS and compared it to that of eight critically ill

patients with ARDS or sepsis and 15 healthy volunteers by

measuring interleukins, interferons, and interferon autoantibodies

in both plasma and bronchoalveolar lavage fluid. Patients diagnosed

with CARDS presented with evidence of disruption of the alveolo-

capillary membrane, whereas both CARDS and non-CARDS

patients showed compartmentalization of IL-8. Although IFN

autoantibody levels in BALF overall seemed to be low, they were

higher in both CARDS and non-CARDS patients than in healthy

controls, and 3/16 CARDS patients and 1/8 non-CARDS patients

had levels above 0.5. DXM treatment in CARDS seemed to be

associated with enhanced alveolo-capillary membrane integrity and
FIGURE 2

Alveolar concentrations of proteins. Concentration of alveolar protein (g/L) in CARDS patients without (−DXM, n = 4) or with DXM treatment (+DXM,
n = 12), non-CARDS critically ill patients (n = 8), and healthy controls (n = 15). *P<0.05 (Dunn’s test). Box plots visualize the median, first, and third
quartiles (hinges), and whiskers extend from the hinge to the largest value no further than 1.5 ∗ IQR from the hinge, with data beyond plotted
individually as outlying points. ARDS, acute respiratory distress syndrome; BAL, bronchoalveolar lavage; CARDS, COVID-19 associated acute
respiratory distress syndrome; DXM, dexamethasone; Non-CARDS, non-COVID-19 associated acute respiratory distress syndrome and/or sepsis.
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lower systemic levels of interleukins and IFN-g, whereas IL-6 BALF
levels seemed to be particularly high in those not receiving DXM.

A hallmark of both CARDS and non-CARDS is increased

alveolo-capillary permeability, followed by sequestration of

activated neutrophils and accumulation of protein-rich fluid

(16–19). In our study, patients with CARDS, particularly the

−DXM group, had a higher alveolar protein concentration and a

larger degree of gas exchange impairment compared to non-

CARDS patients. This is consistent with a recent observational

study that found higher index values of pulmonary vascular
Frontiers in Immunology 06
permeability and extravascular lung water in CARDS vs. non-

CARDS patients, which is an estimate of the amount of fluid in the

interstitium and alveolar spaces (20). Extravascular lung water

may be directly related to the disruption of the alveolo-capillary

membrane, possibly caused by severe ongoing systemic and

alveolar inflammation, which may be attenuated by the

administration of corticosteroids. Accordingly, the RECOVERY

trial found that the use of systemically administered DXM

markedly reduced mortality in critically ill COVID-19 patients

(21), although the mechanisms are largely unknown. The
TABLE 2 Alveolar and plasma concentrations of cytokines and autoantibodies.

CARDS (−DXM)
n = 4

CARDS (+DXM)
n = 12

Non-CARDS
n = 8

Healthy controls
n = 15

P-value
(Kruskal–Wallis)

Interleukins (pg/mL)
- BALF

TNF-a 6 [4–18] 9 [3–18] 8 [2–20] 21 [14–28] 0.16

IL-1b 85 [44–178] 42 [25–51] 58 [3–356] 17 [10–28] 0.4

IL-6 5,701 [3,956–7,027] 726 [349–2,971] 2,464 [1,189–3,467] 1,186 [455–3,582] 0.08

IL-8 19,940 [13,116–25,052]* 16,100 [8,009–34,735]* 9,571 [3,838–55,123]* 1,461 [1,062–1,994] <0.01

Interleukins (pg/mL)—Plasma

TNF-a 1.9 [1.5–2.2] 0.9 [0.8–1.2]* 1.3 [0.7–2.5] 1.9 [1.67–2] <0.01

IL-1b 0.4 [0.3–0.4]* 0.2 [0.1–0.4]* 0.2 [0.1–0.5]* 0.02 [0.02–0.04] <0.001

IL-6 678 [15–1,398]* 11 [6–43]* 74 [33–1,142]* 0.98 [0.67–1.92] <0.001

IL-8 27 [20–40]* 17 [12–24]* 88 [40–164]* 3.1 [2.6–3.6] <0.001

Interferons (pg/mL)—BALF

IFN-l1 68 [7–158] 76 [60–159] 32 [13–49] 0.17

IFN-a2a 9 [5–13] 3 [2–3] 6 [2–10] 0.43

IFN-b 16 [12–23] 20 [11–25] 56 [16–136] 0.62

IFN-g 9 [5–12] 19 [9–26] 73 [36–94] 0.11

Interferons (pg/mL)–Plasma

IFN-l1 4 [4–11] 11 [6–16] 2 [1–3]** <0.01

IFN-a2a 0.2 [0.2–0.4] 0.3 [0.2–0.5] 0.2 [0.1–0.2] 0.13

IFN-b 5 [4–6] 7 [6–14] 4 [3–21] 0.61

IFN-g 82 [59–95] 12 [3–19] 6 [2–17] 0.1

Autoantibodies (OD450–630 nm)—BALF

IFN-a 0.20 [0.14–0.26] 0.29 [0.15–0.34]* 0.12 [0.12–0.26] 0.12 [0.11–0.15] 0.04

IFN-w 0.1 [0.06–0.14] 0.15 [0.06–0.37]* 0.07 [0.03–0.09] 0.03 [0.03–0.04] <0.01

Autoantibodies (OD450–630 nm)—Plasma

IFN-a 0.02 [0.01–0.08] 0.09 [0.06–0.12] 0.05 [0.03–0.06* 0.13 [0.08–0.17] <0.01

IFN-w 0.06 [0.05–0.1]* 0.12 [0.1–0.22] 0.08 [0.06–0.08]* 0.16 [0.11–0.26] <0.01
Interleukins (TNF-a, IL-1b, IL-6, and IL-8), interferons (IFN-l1, IFN-a2a, IFN-b, and IFN-g), and autoantibodies against IFNa and IFNw in the BALF and plasma. The concentrations of
cytokines in BALF were ELF-corrected. All numbers are presented as median [IQR] for all groups.
* indicates a difference between the patient group and the healthy volunteers (p<0.05, Dunn’s test).
** indicates a difference between CARDS (+DXM) and non-CARDS (p<0.05, Dunn’s test).
BALF, bronchoalveolar lavage fluid; CARDS, COVID-19 associated acute respiratory distress syndrome; CRP, C-reactive protein; DXM, dexamethasone; IFN-a, interferon a; IFN-a2a,
interferon a2a; IFN-b, interferon b; IFN-g, interferon-g; IFN-w, interferon w; IFN-l1, interferon l1; TNF-a, tumor necrosis factor alpha; IL-1b, interleukin 1b; IL-6, interleukin 6; IL-8,
interleukin 8; Non-CARDS, non-COVID-19 associated acute respiratory distress syndrome and/or sepsis.
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hypothesis that corticosteroids may contribute to preservation or,

to some degree, maintain barrier integrity is supported by a

previous experimental study in healthy subjects, in which DXM

significantly decreased protein leakage compared to placebo after

endotoxin-induced lung inflammation (22). Even though it has to

be confirmed in larger studies, our results point towards a

beneficial effect of DXM in the lungs of patients with CARDS,

conceivably due to a more intact alveolo-capillary membrane.

Here, we present absolute, that is ELF-corrected, cytokine

concentrations in BALF, which differ from the reported cytokine

concentrations in pg/mL of recovered BALF traditionally used in

both compartmental and transcompartmental models of

experimentally induced inflammation (23) and sepsis (24), and in

clinical studies of ARDS (25, 26) and COVID-19 (5). Interestingly,

absolute alveolar concentrations of TNF-a, IL-1b, and IL-6 were not

different between healthy controls and patients with CARDS and non-

CARDS, even though the patient cohort is usually associated with a

hyperinflammatory condition. This finding is in contrast with several

studies reporting alveolar cytokine concentrations in controls, CARDS,

and non-CARDS patients (5, 26, 27), making it imperative to revisit the

methodological approach used when comparing alveolar markers of

inflammation. In our study, comparable alveolar levels of TNF-a, IL-
1b, and IL-6 in healthy controls and patients could be explained by the

time factor in CARDS and non-CARDS disease states, with some of

these cytokines peaking at a much earlier time point, i.e., before

admission to hospital or ICU and thus before collection of

samples (28).

Conversely, IL-8 was compartmentalized in the lungs of both

CARDS and non-CARDS patients, and IL-8 is a potent

chemoattractant, suggesting ongoing alveolar inflammation,

which further perpetuates lung injury. Of note, regardless of the

methodical approach, the previously mentioned studies did also

find IL-8 to be compartmentalized in the lungs (5, 26, 27).
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Concentrations of IL-6 in BALF and plasma were lower in the

CARDS subgroup that received DXM, suggesting a distinct

compartmental pathophysiological role of both IL-6 and IL-8.

Furthermore, these findings suggest that DXM may attenuate

inflammation in CARDS by attenuating the production and/or

release of IL-6. In contrast, the alveolar levels of IL-8 were

unaffected by the treatment, suggesting that the mechanisms of

action in the lungs are not due to the low abundance of IL-8.

Concerning the absolute alveolar concentrations of type I, II, and

III IFNs, we found no significant difference between the CARDS and

non-CARDS groups. Despite the large number of studies since the

beginning of the COVID-19 pandemic investigating the immune

response and establishing the crucial role of IFN-I in antiviral

defenses against SARS-CoV-2 (15, 29), the exact role of IFNs at the

alveolar level remains unknown. However, some studies have found

decreased levels of type I IFN (IFN-a2, IFN-b) in both plasma and

BALF in the most critical COVID-19 patients compared to patients

with only mild-to-moderate COVID-19. Thus, type I IFN may have a

critical role, as an impaired response was found to correlate with the

degree of severity, emphasizing the importance of type I IFN in

antiviral immunity (29, 30).

Several studies investigating autoantibody levels in plasma have

shown a correlation between high levels of autoantibodies against

type 1 IFNs and mortality in COVID-19 patients (15, 31). To the best

of our knowledge, levels of autoantibodies against IFNa and IFNw
have only been measured in the BALF of patients with CARDS in

another published study (9). They found that 10% of tested patients

with life-threatening COVID-19 had neutralizing autoantibodies,

which may have contributed to an impaired antiviral type I IFN

immune response in the alveolar compartment. In the present study,

autoantibodies against IFNa and IFNw were measured in both BALF

and plasma, which enhanced our understanding of autoantibody

compartmentalization. Assessment of autoantibody levels in the
FIGURE 3

IFNa and IFNw autoantibodies in patients and healthy controls. Levels of alveolar and plasma autoantibodies against IFNa and IFNw with medians
(interquartile range, IQR) in CARDS patients without (−DXM, n = 4) or with DXM treatment (+DXM, n = 12), non-CARDS critically ill patients (n = 8)
and in healthy controls (n = 15). *P<0.05 (Dunn’s test). Box plots visualize the median, first, and third quartiles (hinges), and whiskers extends from
the hinge to the largest value no further than 1.5 ∗ IQR from the hinge, with data beyond plotted individually as outlying points ARDS, acute
respiratory distress syndrome; BALF, bronchoalveolar lavage fluid; CARDS, COVID-19 associated acute respiratory distress syndrome; DXM,
dexamethasone; IFNa, interferon a; IFNw, interferon w; Non-CARDS, non-COVID-19 associated acute respiratory distress syndrome and/or sepsis.
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alveolar region is particularly important, as local neutralization of

IFNs may lead to a loss of viral control within the lungs. Somewhat

surprising, no considerable difference was observed between the two

compartments, contrary to what may be expected, with the lungs

being the primary site of infection in COVID-19. However, our data

showed a tendency towards higher concentrations in BALF, as none

of the patients had plasma autoantibody levels in plasma above 0.5

compared with BALF, whereas three CARDS patients had

autoantibody levels above the threshold, although the threshold for

determining positivity in BAL samples is unknown and it might be

incorrect to compare these two. However, when comparing the

median values of the concentrations of autoantibodies in both

compartments, higher concentrations were observed in BALF. This

suggests that autoantibodies may be compartmentalized to

some degree.

Corticosteroids are now widely used in the management of

community-acquired pneumonia, ARDS, and CARDS (21, 32, 33).

These beneficial clinical effects are believed to stem from their

ability to modulate the inflammatory response and stabilize the

alveolo-capillary membrane (34). While the specific mechanisms

underlying these effects remain unknown, recent findings indicate

that corticosteroids exert at least some of these immunomodulatory

effects through multiple pathways, i.e., by interfering with alveolar

B-cell and complement pathway activation (12). The present

findings suggest that this also affects IL-6 and IFN-g signaling.
The present study had several limitations. First, the small sample

size introduces the risk of type 2 errors. Thus, alveolar concentrations

of interleukins/interferon and autoantibodies and whether

corticosteroids have an impact on membrane integrity in CARDS

need to be investigated in larger studies. Second, although urea is a

widely accepted marker of alveolar fluid dilution, it may still lead to

an overestimation of the actual ELF volume, thus limiting the

accuracy of ELF solute concentrations. Thus, the reported

concentrations of cytokines could be an underestimation of the

actual concentrations, which may be even more important to

consider in injured lungs. Third, mechanical ventilation per se

could lead to changes in alveolo-capillary barrier integrity, thus

introducing a potential confounding factor without the inclusion of

a mechanically ventilated control group. Fourth, it should be noted

that during the analysis of cytokines and autoantibodies, only samples

from CARDS patients were inactivated by using 0.4% Triton-X. This

variation in sample processing may have influenced the results and

possibly the comparison between the groups. Lastly, the use of ELF

for the calculation of absolute solute concentrations in the alveolar

compartment seems appropriate not only to consider as a strength

but also a limitation because very few studies in critically ill patients

have reported data based on ELF calculations.

Our study had several noteworthy strengths. First, it enrolled all

mechanically ventilated patients at an early stage of severe respiratory

failure, irrespective of their underlying diseases. This approach enhances

the likelihood of accurately depicting the pathophysiological

characteristics of both ARDS and CARDS. Second, the BAL procedure

was performed according to the protocol by the same clinician across

both patient cohorts and healthy volunteers, thusmitigating the potential

for sample variability by ensuring the consistent use of identical lung

segments and flush volumes. Third, our investigation included COVID-
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19 patients treated with and without DXM, thereby providing additional

support for the hypothesis that dexamethasone may impact the integrity

of the alveolo-capillary membrane.

In conclusion, while both CARDS and non-CARDS displayed

compartmentalization of IL-8, regardless of the disease entity,

patients with CARDS specifically showed evidence of increased

alveolo-capillary membrane permeability. This phenomenon

appears to be associated with numerous alveolar and systemic

immune pathways, including a pronounced increase in alveolar IL-

6 levels. This may potentially be modulated by DXM treatment,

providing a mechanistic link to its effect on alveolo-capillary

membrane integrity, which could contribute to the more favorable

outcome of patients with CARDS receiving corticosteroids.
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