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Bone fracture repair is a complex, multi-step process that involves

communication between immune and stromal cells to coordinate the repair

and regeneration of damaged tissue. In the US, 10% of all bone fractures do not

heal properly without intervention, resulting in non-union. Complications from

non-union fractures are physically and financially debilitating. We now appreciate

the important role that immune cells play in tissue repair, and the necessity of the

inflammatory response in initiating healing after skeletal trauma. The temporal

dynamics of immune and stromal cell populations have been well characterized

across the stages of fracture healing. Recent studies have begun to untangle the

intricate mechanisms driving the immune response during normal or atypical,

delayed healing. Various in vivo models of fracture healing, including genetic

knockouts, as well as in vitro models of the fracture callus, have been

implemented to enable experimental manipulation of the heterogeneous

cellular environment. The goals of this review are to (1): summarize our current

understanding of immune cell involvement in fracture healing (2); describe state-

of-the art approaches to study inflammatory cells in fracture healing, including

computational and in vitro models; and (3) identify gaps in our knowledge

concerning immune-stromal crosstalk during bone healing.
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Introduction

Unlike most tissues in the body, bone has the unique ability to regenerate - this process is

dependent on carefully orchestrated crosstalk between immune and stromal cells. Although

the term ‘osteoimmunology’ was coined over twenty years ago to describe the role of immune

cells in normal and pathological bone remodeling, there is much that remains unknown

about mechanisms guiding immune-stromal cell interactions during the process of bone

repair (1). With 600,000 yearly cases of malunion or non-union fractures in the US, there is a
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critical need to understand both restorative and detrimental

properties of immune-stromal crosstalk during the fracture healing

response (2).
Overview of fracture healing

Fracture repair involves recruitment of immune cells in a

temporal and spatial manner that influences the proliferation and

differentiation of stromal cells. During the initial stages of long bone

callus formation, a fracture hematoma forms, followed by

inflammation and stromal progenitor cell recruitment as illustrated
Frontiers in Immunology 02
in Figure 1. Bone formation occurs next via direct, osteoblast-

mediated mechanisms (intramembranous ossification) and via

indirect, chondrocyte-mediated mechanisms (endochondral

ossification) (3). The majority of pre-clinical fracture studies occur

in rodents due to feasibility, reproducibility, and similarities in

dynamics of fracture healing to that of humans (4).

Hematoma formation and
inflammatory phase

This phase occurs over the first 1-5 days post fracture in

humans (5, 6).
FIGURE 1

Overview of fracture repair. Fracture repair occurs across distinct phases, each of which involves dynamic stromal-immune cell interactions: the
hematoma phase, repair phase, and remodeling phase. MSC, mesenchymal stromal cell.
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Neutrophils

In the first 24 hours of fracture healing, a hematoma forms and

is infiltrated by granulocytic cells (predominantly neutrophils) that

act as ‘first responders’ (7, 8). These cells recruit monocytes via

secretion of cytokines like interleukins (IL-) 1, 6, and 10; tumor

necrosis factor alpha (TNF-a); and monocyte chemoattractant

protein 1 (MCP-1) (9–14). Neutrophils have also been implicated

in contributing to the initial fibrin-rich clot. Within 48 hours of

fracture, neutrophils make up the vast majority of cells present at

the injury site and synthesize a fibronectin-containing extracellular

matrix (ECM) (15). Fibronectin binds fibrin and provides binding

sites for other ECM proteins, cells, and growth factors (16).

Neutrophil depletion by anti-Ly6G antibody treatment impairs

fracture healing, highlighting the essential role of neutrophils in

the early inflammatory response (17). While neutrophil infiltration

is key to the formation of the hematoma, sustained neutrophil

activation leads to diminished osteogenic activity, reduced callus

mineralization, and impaired/delayed healing (18, 19).
Monocytes/macrophages/dendritic cells

Upon recruitment, systemically-derived monocytes differentiate

into macrophages and dendritic cells. Dendritic cells are present

during the early phases of fracture healing, and express

inflammatory cytokines (IL-6, IL-12, TNF-a, IL-10) (20–24).

Furthermore, CD8+ dendritic cells are known to stimulate CD8+

T cells (20). Early on, macrophages remove cellular debris and

secrete inflammatory cytokines including IL-1, TNF-a, IL-6,

chemokine (C-X-C motif) ligand (CXCL) 8, CXCL12, and MCP-1

(25–27). Macrophage polarization occurs along a spectrum but is

often simplified into 3 subclasses: a naïve, pro-inflammatory, or

pro-regenerative phenotype. While macrophages are present

throughout the healing process, macrophage depletion studies

have identified that their presence is most critical in the

immediate aftermath of injury during the pro-inflammatory

phase (28–31). Polarized macrophages have been shown to

exhibit plasticity in their ability to revert back to a naïve resting

state in vitro (32) and through predictive modeling (33).

Inflammatory macrophages demonstrate reduced inducible nitric

oxide synthase (iNOS) signaling as time progresses after pro-

inflammatory stimulation, eventually returning to a naïve state.

While this observation may hold for inflammatory macrophages in

tissue repair, it has yet to be described in the context of fracture

healing. Macrophage-derived cytokines IL-1b and TNF-a also

stimulate fibroblast proliferation within the fracture callus (34).

Some studies posit that cytokines, such as TNF-a, secreted by pro-

inflammatory macrophages, induce bone morphogenetic protein

(BMP) 2, the transcription factor RUNX2, and expression of

alkaline phosphatase in mesenchymal stromal cells (MSC) (35,

36). However, other studies suggest that later pro-regenerative

macrophages secrete BMP2 and oncostatin M (OSM) to promote

ECM mineralization, underscoring the importance of temporal

dynamics in fracture healing (37, 38). It has also been
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demonstrated that during this initial phase pro-inflammatory

macrophages secrete vascular endothelial growth factor (VEGF)

to stimulate neovascularization. As the pro-inflammatory to pro-

regenerative shift occurs, pro-regenerative macrophages secrete

platelet-derived growth factor (PDGF) (39). Importantly,

although the acute inflammatory phase following hematoma

formation is critical for fracture healing, chronic inflammation

and persistence of pro-inflammatory macrophages impairs

fracture healing (40, 41).
Natural killer cells

Little is known about the function of natural killer (NK) cells

during fracture repair; however, it is hypothesized that they likely

assist in debridement of the fracture callus and recruit macrophages

to the injury site (9). Early work suggested that NK cell activity was

suppressed in fracture patients; whereas recent studies indicate an

important role for NK cells in MSC recruitment to the fracture site

through neutrophil activating peptide 2 secretion, and in regulation

of osteoclastogenesis (42–44). Different classes of NK cells regulate

progenitor cell survival during digit tip regeneration that may be

comparable to events during fracture healing (45). NK cells also

show interdependency with MSC, where MSC secretion of IL-10,

transforming growth factor beta (TGF-b), and prostaglandin E2

(PGE2), has been linked to suppression of NK cells (46–48).
Lymphocytes

Lymphocytes arrive as the initial inflammatory phase wanes. T

cells express the pro-osteoclastogenic cytokine, receptor activator of

nuclear factor kB ligand (RANKL), whereas B cells express

osteoprotegerin (OPG), which blocks RANKL activity, inhibiting

osteoclastogenesis (49). Spatio-temporal studies of T and B cells in

fracture healing have established increased T cells in the bone

marrow immediately after injury, with a significant increase in

CD4+ T cells compared to CD8+ T cells. Following this initial spike

in T and B cells, they retreat from the injury site, reappearing later

during bone formation and remodeling (49). Notably, Reinke et al.

determined that CD8+ T cells release interferon ɣ (IFN-ɣ) and

TNF-a, and that their persistence throughout the fracture repair

process greatly impairs osteoblast differentiation and healing (50).

To prevent this, IgM+ CD27+ regulatory B cells release IL-10,

suppressing IFN-ɣ, TNF-a, and IL-2 signals from CD8+ T cells to

promote resolution of the inflammatory response (51).
Repair phase

The repair phase occurs between 5 and 21 days in humans and

consists of the formation of a cartilaginous soft callus that then

converts to a hard bony callus (5). During the repair phase, bone

will heal by endochondral ossification, where it goes through a

cartilaginous intermediate, or direct intramembranous ossification

where MSC differentiate into osteoblasts and deposit a mineralized
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ECM (31, 52). Both processes are necessary for fracture repair,

however the amount that each contributes to healing depends on

fracture stabilization and mechanical forces (53). During the soft

and hard callus phases, MSC, chondrocytes, osteoblasts,

macrophages, osteoclasts, T cells, and B cells are the dominant

cell populations (5, 9).
Macrophages/osteoclasts

Bone-resident macrophages regulate bone formation and play a

key role in MSC differentiation. Activated macrophages release the

cytokines TGFb, BMP, and OSM to induce MSC differentiation

(54). Chang et al. coined the term ‘osteomacs’ to define a discrete

F4/80pos Mac-2neg/lo TRACPneg macrophage population found on

the periosteum and endosteum lining the bone (55, 56). Osteomacs

promote intramembranous ossification and have been shown to

exert control over osteoblast maintenance. Within calvarial

cultures, the removal of osteomacs results in decreased

mineralization, reduced osteocalcin (OCN) induction, and a

limited TNF-a response to LPS, demonstrating an integral role in

bone homeostasis and osteoblast function (55, 57). Studies have

further demonstrated the importance of the osteomac population in

a murine tibia fracture model, where depletion resulted in decreased

bone formation (56). During the latter part of the repair phase,

inflammatory macrophages, described as F4/80pos Mac-2pos

TRACPneg differentiate into osteoclasts through macrophage

colony-stimulating factor (M-CSF) and RANKL signaling (56).

Osteoclasts can induce osteoblast differentiation through secretion

of soluble factors like including collagen triple helix repeat-

containing protein 1 (CTHRC1) and complement component C

(C3) (58, 59). In contrast to osteomac depletion, depletion of

osteoclasts, which resorb cartilaginous ECM through catabolic

activity, did not impair bone formation (56). Notably an MSC-

derived population of septoclasts have also been recently implicated

in cartilage resorption during fracture healing as well as

developmental ossification, potentially augmenting this activity.

However, septoclast importance in bone remodeling post-fracture

is still under investigation (60).
Lymphocytes

During fracture repair, T and B cells infiltrate the fracture site

and assist in osteoblast maturation and retention. In this ‘second-

wave’ lymphocytes are absent from the cartilaginous regions of the

fracture callus, however they are present near the regions of woven

bone (49). Konnecke et al. reported that B cells maintain bone

homeostasis through the production of OPG to reduce

osteoclastogenesis, and physically interact with osteoblasts to

influence their differentiation and function (49). Numerous

studies have likewise described T cells as critical for fracture

repair (61–65). T cells secrete TNF-a to induce osteogenesis and

are necessary for normal deposition of collagen I by osteoblasts

during fracture healing (61). T cell depletion further exhibited

similar premature mineral deposition as seen in Rag1-deficient
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mice (which lack mature lymphocytes), pointing toward a T cell-

osteoblast interaction pathway (61).
MSC/chondrocytes/osteoblasts

MSC derive from various sources including the periosteum and

bone marrow (66). In the healing callus they begin to differentiate

into chondrocytes and osteoblasts. MSC modulate the immune

environment by secreting regulatory molecules including nitric

oxide (NO) (67), chemokine ligand (CCL) 2 and 4, and PGE2, to

recruit macrophages which trigger MSC chondrogenic and

osteogenic differentiation (54, 68, 69). Current literature suggests

that skeletal MSC derive from multiple sources including the

periosteum, endosteum, bone marrow, and vasculature (66).

Periosteal-derived MSC at the callus edges have increased

osteoblastogenic potential and undergo intramembranous

ossification, secreting collagen 1 (COL-1), OCN and alkaline

phosphatase (ALP) (70). On the other hand, bone marrow-

derived MSC at the fracture site are more predisposed toward

endochondral ossification, depositing collagens 2 (COL-2) and 10

(COL-10) as well as sulfated glycosaminoglycans such as aggrecan

(ACAN) (10, 71, 72). Under injury conditions, periosteal-derived

MSC have also been shown to contribute to endochondral

ossification (71). During this process, the cartilaginous callus

begins to stimulate vascular infiltration as hypertrophic

chondrocytes secrete angiogenic factors VEGF (73), PDGF (74),

and placental growth factor (PGF) (75). Vascular infiltration has

been demonstrated to be crucial for the replacement of the

cartilaginous callus by bone (76). Although immune-derived cues

may direct MSC differentiation pathways, recognized contributors

to this spatial phenomenon of MSC becoming either osteoblasts or

chondrocytes are mechanical cues and hypoxia (40, 77, 78).
Remodeling phase

This phase typically takes around 18 weeks but can last for up to

1 year under typical fracture healing conditions in humans (5, 79).

During fracture remodeling, the initial fracture callus is replaced

with mature mineralized tissue and normal bone structure is

restored. This coordinated response to injury is the last stage of

fracture repair and is the longest, and the least well-studied (80).

During the remodeling phase, inflammatory cells (other than

osteoclasts) are dramatically reduced, and remodeling is driven by

continuous local and systemic cell signaling (81). Bone remodeling

occurs as a function of the stresses that bone receives due to forces

acting upon it, including muscle actions (82, 83). The ability of bone

to remodel post-fracture declines with age in humans. Indeed,

children are more likely than adults to experience overgrowth of

mineralized tissue, resulting in ectopic bone formation (84). Studies

in mice have corroborated the age-related decline in fracture

healing potential in humans, showing significant delays in bone

remodeling and decreased bone recovery in elderly mice post-

fracture (85, 86).
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Osteoclasts

Although osteoclast activity is present early on in fracture

repair, it is most prominent in the remodeling phase (87).

Osteoclasts work in a balance with osteoblasts and osteocytes to

first degrade immature woven bone which is then replaced with

more mature bone. Osteoclasts create a reversal zone where the

bone surface is eroded, leaving a canopy where osteoprogenitors are

found. The basic multicellular unit -an assembly of osteoblasts,

osteoclasts, and capillaries- is a prominent hallmark of bone

remodeling (81, 88). Osteoclast differentiation is positively

regulated by RANKL signaling and negatively regulated by OPG

(89). Osteoclasts dissolve bone through secretion of cathepsin K

(CTSK) and hydrochloric acid, and degrade ECM via secreted

matrix metalloproteinases (90, 91).
Osteoprogenitors/osteoblasts

MSC differentiate into osteoblasts, which deposit mineral in

equilibrium with osteoclast activity (21). Osteoprogenitors and

osteoblasts constitute the canopy around blood vessels, serving as

the main source of cells contributing to bone formation. A bone

remodeling compartment forms near capillaries and sinusoids,

providing access to osteoprogenitors including bone lining cells

and pericytes (88). Pericytes encircle capillaries, however evidence

suggests that these pericytes can migrate to the bone surface and

differentiate into mature osteoblasts (92, 93). Osteoblasts secrete

RANKL and OPG to modulate osteoclastogenesis (94).
Lymphocytes

T cells regulate osteoblast-osteoclast equilibrium by secretion of

RANKL (95). Although T cell expression of RANKL may drive

osteoclastogenesis during bone remodeling, T cells also drive

degradation of TNF receptor associated factor 6 (TRAF6), acting

as a negative feedback mechanism for osteoclast activity (96).
Osteocytes

Osteocytes make up 90% of healthy adult bone and function in

response to changes in their microenvironment, such as mechanical

deformation, to initiate remodeling responses via RANKL and OPG

production (97).
Fracture modeling approaches

The mechanisms by which immune and stromal cells

orchestrate fracture repair are not fully understood. To

interrogate these complex biological interactions, various models

of fracture healing have been developed. Herein follows an overview

of models of in vivo fracture healing, in vitro fracture models, and
Frontiers in Immunology 05
computational models, to replicate both typical and impaired

fracture healing.
In vivo murine fracture model

Animal models most faithfully recapitulate the physiological

environment and allow for manipulation of cell responses through

genetic knockouts and pharmacological or environmental

intervention. Selective ablation of immune cell types in mice has

contributed heavily to our understanding of the immune system in

fracture healing. Fracture models of comorbidities illustrating

immune disruption in fracture healing has been thoroughly

reviewed (98–100). Numerous studies have utilized transgenic cre

drivers such as LysM-Cre, Mrp8-Cre, and Lck-Cre, as well as

Macrophage-Fas Induced Apoptosis (MAFIA) mice to generate

immune cell-type specific targeting (101–111). Closed long bone

fractures in rodent models are often employed to study fracture

healing (112). Factors such as age, ischemia, osteoporosis, and

immune deficiency are then incorporated to examine causes of

impaired healing (57, 98, 113–117). Fracture in aged populations

exhibit increased pro-inflammatory macrophage recruitment as

well as increased apoptotic markers in human (118) and mouse

(119) systems. Lopez et al. demonstrated that anti-inflammatory

modulation of the aged fracture rescues callus formation and

healing in aged mice (119). The ischemic fracture model exhibits

distinctly smaller callus formation and increased fibrosis (114).

Ovariectomy produces postmenopausal osteoporosis in mice,

leading to chronic inflammation and increased catabolic activity

within bone. Fracture following ovariectomy demonstrates delayed

callus mineralization, and remodeling (120, 121). Macrophage

populations also exhibit increased IFN-ɣ, nitric oxide, and IL-6

expression (57, 122). Interestingly, MSC isolated from osteoporotic

patients do not have impaired potential to regenerate bone,

emphasizing the critical role of the immune environment in vivo

(123). Multiple studies have revealed that fracture healing is greatly

impaired in immunodeficient mice, underscoring the necessity of

the immune response in fracture repair (101, 124). While the

importance of the innate immune system is indisputable, studies

have contested the importance of the adaptive response; Toben et al.

demonstrated that eradication of the adaptive immune response

using RAG1-/- mice accelerated fracture healing and improved bone

quality (125). However others have stressed the immunoregulatory

importance of adaptive immune cells (particularly T cells) in

guiding the repair response and enabling osteoblast activity (63,

126). This emphasizes the complexity of the immune response in

fracture repair and the necessity for diverse models to better dissect

these pathways.
In vitro fracture callus

While the gold standard of preclinical studies is animal models,

these models may have limited transferability due to differences in

timeline, physiologic structure, pharmacologic response, and

variation in specific gene pathways across species, supporting the
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need for in vitro models using human cells and tissues to

complement animal work (4, 127, 128). In vitro models have been

developed over the past decade to create a more physiologically-

relevant system for studying human fracture. Along with reducing

the number of animals necessary to carry out fracture research, the

use of human cells carries additional translational transferability.

Pfeiffenberger et al. extensively developed a human-based fracture

gap model to interrogate immune-stromal crosstalk in vitro (128,

129). While other models, in particular co-culture models (130),

focus on later stages of regeneration, this approach uses coagulation

of human peripheral blood and MSC to model hematoma

development and its progression through fracture repair (129).

The hematoma is combined with scaffold-free bone-like

constructs made from mesenchymal condensation and allows for

manipulation of molecular and environmental cues such as oxygen

availability. Hoff et al. developed a human hematoma model using

tissue from total hip arthroplasties to monitor and characterize the

immune response under bioenergetically-controlled conditions.

Cells were exposed to hypoxia with limited nutrients, generating

an inflammatory response representative of that seen in fracture

after the first 24 hours (131). Increased vascular endothelial growth

factor and IL-8 secretion under hypoxia in this model resulted in a

decreased granulocytes and increased lymphocytes, as seen in vivo

(131). Sridharan et al. investigated the interaction of MSC and

macrophages in different collagen scaffolds functionalized with

hydroxyapatite particles of varying shapes and sizes (132). This

emphasized the ability of microenvironmental stimuli to modulate

the immune system and presents a unique opportunity to study

these interactions in a cell-specific manner. The hydroxyapatite

scaffold polarized macrophages toward a pro- or anti-inflammatory

phenotype depending upon changes in scaffold particle size and

shape, and the authors also demonstrated that macrophage

presence increased osteogenesis. Importantly, these studies

demonstrate comparable results from an in vitro human

hematoma model with that shown in vivo. In vitro models

present a powerful tool to understand discrete mechanisms of

fracture healing selective to specific cell populations.
In silico fracture modeling

Only recently has computational modeling of fracture healing

incorporated intrinsic and extrinsic effects of the immune system, to

ascertain their influence on mechanical and biological properties of

the callus (133, 134). Computational models are a powerful

complementary tool for guiding hypotheses when integrated with

in vivo and in vitro experiments. State-of-the-art in silico models

encompass continuous, discrete, or hybrid models to interrogate the

complex spatiotemporal aspects of fracture healing. No model can

holistically capture these processes; however, a corpus of literature

is available that aims to help researchers build their own in silico

models to study the spatiotemporal effects of the immune response

on fracture repair (133). Continuous models function at the tissue

and cellular level; these models use partial differential equations to

create a continuous overview of a given scenario to study

inflammation, bone mechanics, and bone repair. Discrete models
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agent-based approaches or cellular automata models to understand

mechanistic processes in response to their environments (133).

Hybrid models aim to bridge the gap from subcellular

mechanisms to the tissue. According to Lafuente-Gracia et al., to

address the physiologic processes of the inflammatory response, a

compartment model is required, where each compartment is

assigned its own equation and set of agents (molecules or cells)

and transitions (biological processes like phagocytosis or

differentiation) between compartments (133).

Kojouharov et al. developed a mathematical model of the early

inflammatory response in fracture healing using nonlinear ordinary

differential equations (135). It was then elaborated on further in

subsequent papers to consider unactivated (M0), classically

activated (M1) and alternatively activated (M2) macrophages as

separate variables (136) as well as migration due to molecular

factors (137). This study was one of the first to incorporate both

the primary hematoma formation and the inflammatory response,

by identifying the primary entities involved in the early fracture -

bone debris, pro- and anti-inflammatory cytokines, macrophages,

MSC and osteoblasts. Informing the computational model with the

known progression from fracture hematoma to cartilaginous

fracture callus to repair, the authors developed a model for

differentiation and cytokine production that includes known

events such as initial MSC density, debridement rate, proliferation

rate, and synthesis of cartilage and bone (135, 136). The model also

maintains assumptions such as the inability of M1 and M2 to

dedifferentiate back to M0 (136). This model provides an

instrument for studying normal and impaired fracture repair, and

for extrapolating mechanistic pathways that may otherwise be

overlooked and could be adapted clinically to infer the effects of

pharmacologics on fracture repair. This group has most recently

extended their model to study the direct effects of phagocytes and

inflammatory cytokines on macrophage and MSC cell migration

during the initial inflammatory and repair phases (137).

Ghiasi et al. also developed a computational model of human

fracture with a specific emphasis on the initial inflammatory stage

of fracture healing, however they approached it from a

mechanobiology perspective (138). This model employs a finite

element-based approach that simulates the processes of fracture

healing, and the entities present, such as MSC and debris. Both the

Kojouharov and Ghiasi models incorporate initial fracture size and

cellular density; however, Kojouharov et al. placed emphasis on the

cytokines released, while Ghiasi et al. emphasized the Young’s

modulus of the granulation tissue along with stresses and

mechanical responses that shape hematoma formation and

influence callus formation (135, 136, 138).

Most recently, Borgiani et al. developed the COMMBINI model,

an agent-based computational model to understand macrophage

dynamics that occur during the early inflammatory phase (up to 5

days post-injury) (139). This model utilizes deep-learning

algorithms on immunofluorescent stained slides to generate

spatial information about different macrophage populations. It

uniquely addresses phenotype-specific cell activities (eg. cell

proliferation, migration, phagocytosis, apoptosis) and

incorporates polarization and cytokine signaling. While the
frontiersin.org
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COMMBINI includes neutrophils, the focus of the model is on

macrophages, subdivided into categories M0, M1, and M2. To

understand the inflammatory phase of fracture repair in guiding

healing, the model focuses on expression of key pro-inflammatory

and pro-regenerative cytokines like TNFa, IL10, TGFb, and IFNg
(139). While valuable and an important primary step, the field

recognizes that macrophages exist on a spectrum of functionality,

more nuanced than discrete M0, M1, or M2 states.
Discussion

Fracture repair is a complex process orchestrated by immune

and stromal cells to regenerate bone tissue. Inducing ischemia

results in aberrant repair and regeneration of tissues,

underscoring the importance of systemic immune cells to guide

healing (140, 141). Studies involving the effect of limb ischemia on

fracture healing date back to the 1960s and while the importance of

the immune response during fracture repair is well acknowledged,

immune alterations in fracture healing under ischemic conditions

remain unclear (142). This is true for other impaired healing

conditions as well, for instance in aged models or diabetic models

where there is increased systemic inflammation. Numerous

methods for inducing and modulating fracture repair have been

developed to study tissue healing and remodeling in vivo –

including the integral roles of immune cells. In vitro systems

allow for the study of mechanisms in discrete phases and specific

cell interactions, with the advantage of utilizing human cells.

Computational models enhance our study of fracture healing by

expanding upon our understanding of networks underlying the

fracture microenvironment and simulating the healing response.

Importantly, they serve as a tool to study pharmacologic

intervention in fracture repair, in conjunction with in vivo and in

vitro models. Used together, these models provide a powerful and

holistic approach for interrogating immune dynamics and

mechanisms in normal and impaired fracture healing, and will

continue to evolve and incorporate more complex variables.
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