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Adoptive T cell therapy for solid
tumors: current landscape and
future challenges
Vı́ctor Albarrán1*, Marı́a San Román1, Javier Pozas2,
Jesús Chamorro1, Diana Isabel Rosero1, Patricia Guerrero1,
Juan Carlos Calvo1, Carlos González1,
Coral Garcı́a de Quevedo1, Patricia Pérez de Aguado1,
Jaime Moreno1, Alfonso Cortés1 and Ainara Soria1

1Department of Medical Oncology, Ramon y Cajal University Hospital, Madrid, Spain, 2Department of
Medical Oncology, The Royal Marsden Hospital, London, United Kingdom
Adoptive cell therapy (ACT) comprises different strategies to enhance the

activity of T lymphocytes and other effector cells that orchestrate the

antitumor immune response, including chimeric antigen receptor (CAR) T-

cell therapy, T-cell receptor (TCR) gene-modified T cells, and therapy with

tumor-infiltrating lymphocytes (TILs). The outstanding results of CAR-T cells in

some hematologic malignancies have launched the investigation of ACT in

patients with refractory solid malignancies. However, certain characteristics of

solid tumors, such as their antigenic heterogeneity and immunosuppressive

microenvironment, hamper the efficacy of antigen-targeted treatments. Other

ACTmodalities, such as TIL therapy, have emerged as promising new strategies.

TIL therapy has shown safety and promising activity in certain immunogenic

cancers, mainly advanced melanoma, with an exciting rationale for its

combinat ion with immune checkpoint inhib i tors . However , the

implementation of TIL therapy in clinical practice is hindered by several

biological, logistic, and economic challenges. In this review, we aim to

summarize the current knowledge, available clinical results, and potential

areas of future research regarding the use of T cell therapy in patients with

solid tumors
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1 Introduction

1.1 T cells, antitumor response, and
immune evasion

The antitumor activity of our immune system is a highly

sophisticated process with several regulatory and negative

feedback pathways. When malignant cells are identified and

attacked by macrophages and natural killer (NK) cells -

components of the innate immunity-, aberrant proteins derived

from the cumulative occurrence of mutations are released and

phagocytosed by dendritic and other antigen-presenting cells

(APC) (1). In the peripheral lymph nodes, these tumor-associated

antigens (TAA) are exposed by APC through major

histocompatibility complex type I (MHC-I) molecules to the T

cell receptor (TCR) of naïve CD8+ T cells, leading to their

activation. For this ‘immune synapsis’ to be successful, other co-

stimulating receptors on the T cell membrane (such as B7) should

be activated (2). At the same time, the interaction between MHC

type II (MHC-II) molecules and the TCR of CD4+ T helper

lymphocytes leads to the activation of B cells and subsequent

production of antitumor antibodies (3), and unleashes additional

mechanisms that elicit CD8+ T cells function and differentiation,

including dendritic cell licensing and cytokine production (4). Once

CD8+ T cells are activated, they travel to the tumor site and

recognize TAA presented by MHC-II molecules on the surface of

malignant cells, unleashing the effector phase of adaptive immunity,

and ultimately leading to tumor cell death (4). The quantity and

phenotype of these tumor-infiltrating lymphocytes (TILs) have

been widely associated with the biological behavior, prognosis,

and response to anti-cancer therapies in virtually all subtypes of

solid cancers (5–7). The success of the effector phase is

compromised by the inhibition of T-cell response by

immunosuppressive cells from the tumor microenvironment

(TME), including myeloid-derived suppressor cells (MDSCs),

tumor-associated macrophages (TAMs), and regulatory T

lymphocytes (T-regs) (8). Tumor cells are able to modulate their

function and differentiation through the activation of NF-kB and

STAT3 s igna l ing pathways , induc ing the re lease of

immunosuppressive cytokines (IL-6, IL-10, TGF-b) that inhibit

TILs antitumor activity (9).

The antitumor response is controlled by negative feedback

mechanisms performed by molecules known as ‘immune

checkpoints’, both in the priming phase -including CTLA-4,

LAG-3 and TIM-3- and in the effector phase -mainly

programmed cell death protein 1 (PD-1), activated by ligands

(PD-L1) expressed both by cells from the tumor and TME- (10).

The mechanisms of the antitumor response and potential immune

biomarkers are shown in Figure 1.

The ability to avoid the immune system is a hallmark of

malignant cells (11). Some of the most relevant mechanisms of

immune evasion in solid tumors are the upregulation of immune

checkpoints (12) -which sets the rationale for the use of immune

checkpoint inhibitors (ICI)-, the loss of MHC-I or other molecules

with a key role in antigen presentation (13), the production of

cytokines (IL-6, IL-10, TGF-b) that lead to an immunosuppressive
Frontiers in Immunology 02
TME (14), and the activation of oncogenic routes that promote T-

regs infiltration -such as the indoleamine 2,3-dioxygenase (IDO)

pathway (15)- or inhibit CD8+ T-cell trafficking to the tumor site

-such as the Wnt/b-catenin pathway (16)-. Recent data suggest that

remote transference of biomolecular cargoes from malignant to

healthy cells, mediated by exosomes, may also play a crucial role in

misleading the mechanisms of antigenic recognition, thus

contributing to immune tumor evasion (17).

Since the FDA approval of anti-CTLA4 and anti-PD1 therapy

for advanced melanoma in 2011 and 2015, respectively, ICI alone or

in combination with other therapies have transformed the

therapeutic landscape of nearly all solid tumors (18). However,

there are several other emerging strategies to enhance the immune

antitumor response, some of them with promising results in ICI-

refractory tumors, which will surely increase the relevance of
A

B

C

FIGURE 1

Mechanisms of anti-tumor response; (A) Innate immunity; (B)
Adaptive immunity (priming phase); (C) Adaptive immunity (effector
phase). TAA, tumor-associated antigen; DAMPs, damage-associated
molecular patterns; TCR, T cell receptor; MHC, major
histocompatibility complex; IL-12, interleukin-12; IFN, interferons.
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immunotherapy in cancer treatment throughout the

following years.
1.2 Basis of adoptive cell therapy

Adoptive cell therapy (ACT) encompasses several techniques

that use the T lymphocytes themselves, after a process of artificial

modification or genetic engineering, to improve their antitumor

activity (19). This implies the extraction of autologous T

lymphocytes from the patient, and their manipulation and

amplification in vitro. Meanwhile, the patient undergoes

treatment with lymphodepleting chemotherapy (CT) -usually

fludarabine plus cyclophosphamide- to annihilate ineffective and

immune-suppressing lymphocytes. After this process, the improved

cell product is reinfused into the patient.

The difference between different ACT modalities lies in the

characteristics of T cell modification in vitro: CAR-T and TCR

gene-modified T cells are genetically engineered to incorporate

modified membrane receptors with a high affinity for selected

tumor antigens. However, in contrast to hematologic

malignancies, solid tumors are composed of polyclonal cell

populations with huge antigenic heterogeneity, which hampers

the efficacy of antigen-targeted therapies. TIL therapy is based on

the activation and expansion of infiltrating T cells extracted from

the tumor itself, which are intrinsically reactive against tumor

antigens, setting an interesting rationale for its use against the

changing and heterogeneous cell population of solid cancers.
2 CAR-T cells, a role in solid cancers?

2.1 Introduction

CAR-T cells are genetically modified lymphocytes that

incorporate a chimeric antigen receptor (CAR) composed by

three parts: an extracellular domain with a single-chain fragment

variable (scFv) that allows antigen recognition, a transmembrane

domain -linked to the extracellular part through a spacer-, and an

intracellular domain. This includes a CD3 complex -which activates

the downstream signaling pathways- and several costimulatory

domains (usually CD28 and/or 4-1BB) that intensify the

cytoplasmatic activity of T cells unchained by antigenic

recognition (20). In recent years, innovations in the structure and

manufacturing of CAR-T cells have led to significant improvements

in their clinical efficacy, especially with the development of fourth-

generation CAR-T cells (21). Fifth generation CARs equipped with

three costimulatory domains and able to secrete anti-PDL1 scFv

blockade molecules, targeted against B cell maturation antigen

(BCMA) have shown heightened antitumor efficacy and decrease

of T cell exhaustion in patients with multiple myeloma (22).

Nanobodies or single domain antibodies (VHH) have recently

been exploited as an alternative to scFvs for antigen-targeting

domains on T cell surface, based on numerous advantages

including their small size, high affinity, specificity and stability

(23). VHH-based CD19-redirected CAR-T cells have shown
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when compared with their scFv-based counterparts (24).

Due to their molecular structure, CAR-T cells only recognize

extracellular antigens, and are particularly efficient when their scFv

has a high affinity for the targeted protein -and it is homogeneously

expressed by tumor cells-. This explains the efficacy of CAR-T cells

in patients with leukemia and lymphoma, which comprise a clonal

population of cells that uniformly express certain antigens -such as

CD19- on their membrane (25). Since 2018, tisagenlecleucel and

axicabtagene-citoleucel have EMA approval for the treatment of B-

cell LLA and refractory non-Hodgkin lymphoma, and in 2020,

brexucabtagene-autoleucel was approved by the EMA for mantle

lymphoma, achieving complete response rates of over 50% in

heavily pre-treated patients (26).

The outstanding results of CAR-T cells in hematologic

malignancies have led to their investigation in solid tumors,

mainly using overexpressed epithelial antigens as targets. The

ep i t h e l i a l g r ow th f a c t o r r e c ep t o r (EGFR) , HER2 ,

carcinoembryonic antigen (CEA), mesothelin and soluble antigen

GD2 have been frequent targets of CAR-T therapies, although many

other antigens have been the object of preclinical studies (27).
2.2 Clinical outcomes

Nearly 500 clinical trials evaluating CAR-T cells in solid tumors

have been registered, most of them in Asian population, and many

still ongoing (28). Most completed studies are phase I/II trials that

have reported modest results, with only occasional and generally

brief clinical responses. Clinical research on CAR-T cells has mainly

focused on glioblastoma (GBM), sarcoma, neuroblastoma, and

gastrointestinal cancer.

In 2016, Brown et al. (29) reported the case of a GBM patient

with an 8-month complete response (CR) after IL13-targeted CAR-

T therapy, although further research has failed to confirm these

results (30). Her2 may be another interesting target for CAR-T cells

in GBM; in a clinical trial with 17 patients, 1 partial response (PR)

(lasting 9 months) and 7 cases of stable disease (SD) (ranging from

2 to 29 months) were reported (31). EGFR-targeted CAR-T cells

have been evaluated in GBM in two clinical trials, with negative

results (32, 33).

Her2-targeted CAR-T cells have also been tested in sarcoma

patients. In a phase I/II study including 19 patients with Her2+

recurrent or refractory sarcoma of several histological subtypes, 4

SD were observed [3 osteosarcoma and 1 small round cell

desmoplastic tumor) (34). In neuroblastoma, at least three clinical

trials have evaluated the efficacy of GD2-targeted CAR-T cells -

based on the efficacy of anti-GD2 monoclonal antibodies such as

dinutuximab- (35), with promising results (3 CR among 19 patients

(36), 4 PR among 8 patients (37), and 5 SD among 11 patients (38)].

As for gastrointestinal (GI) cancer, several antigens have been

evaluated as potential targets of CAR-T therapy. In a phase I trial

including 23 patients with several GI tumors treated with CD133-

targeted CAR-T cells, 3 PR (2 pancreatic and 1 hepatocellular

carcinoma [HCC]) and 14 SD were observed (39). Zhan et al.

(40) evaluated CAR-T therapy targeting Claudin 18.2 (CLDN 18.2)
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in 11 patients with CLDN 18.2-positive gastric or pancreatic

carcinoma, reporting 1 CR, 3 PR and 5 SD. EGFR-CAR-T

therapy has mainly been evaluated in biliopancreatic tumors, with

promising results. Liu et al. (41) conducted a phase I study

including 14 patients with refractory advanced pancreatic

carcinoma, reporting 4 PR and 8 SD; in a phase I study by Guo

et al. (42) with 19 patients (14 cholangiocarcinoma, 5 gallbladder

carcinoma), 1 CR and 10 SD were observed. Glypican-3 (GPC3)-

targeted (43) and CEA-targeted (44) CAR-T cells have shown

modest activity in HCC and colorectal cancer, respectively.

Mesothelin-targeted intrapleural CAR-T cells have been

evaluated -in combination with ICI- in 14 patients with

malignant mesothelioma and non-small cell lung cancer

(NSCLC), with promising results (2 CR, 5 PR, and 4 SD) (45). In

NSCLC, a phase I study showed clinical activity of EGFR-CAR-T

cells, with 2 PR and 5 SD among 11 patients (46), and ROR1-

directed CAR-T cells showed preliminary positive results in ROR1+

tumors (4 PR among 6 patients) (47). CAR-T therapy has obtained

modest results for metastatic castration-resistant prostate cancer

(mCRPC) -targeting prostate specific membrane antigen (PSMA)-

(48). Evidence for CAR-T therapy in other solid tumors is even

scarcer and mainly comes from preclinical studies (49).

The outcomes of the most relevant clinical trials that evaluated

CAR-T cells in solid tumors are summarized in Figure 2.
3 TCR-engineered T cells, more of
the same?

3.1 Introduction

T cells expressing an engineered T-cell receptor (TCR-T-cells)

represent an alternative modality of ACT, with several advantages

compared to CAR T therapy (50). By using engineered TCR

-instead of CAR-, T cells can recognize not only membrane
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molecules, covering a wider repertoire of tumor neoantigens and

therapeutic targets. Intrinsic features of T cells, such as high antigen

sensitivity and the use of physiological signaling pathways, improve

TCR-T-cells antitumor functions and reduce the risk of on-target

off-tumor (OTOT) toxicity.

However, TCR-T-cells also have some disadvantages compared

to CAR-T cells, such as their weaker avidity for target antigens and

their limitation to a certain human leukocyte antigen (HLA)

haplotype, which restricts the number of patients that potentially

benefit from each modified TCR. In addition, as antigen-targeted

modified T lymphocytes, all the limitations of CAR-T therapy in

solid tumors -antigenic heterogeneity, difficulty of T cell trafficking,

and detrimental effects of immunosuppressive TME- are also

applicable to TCR-T-cells (51).
3.2 Clinical outcomes

In 2006, Morgan et al. (52) published the results of the first trial

with TCR-T-cells in solid tumors, targeting MART-1 in 17 patients

with metastatic melanoma (with 2 PR). Since then, at least three

other phase I/II clinical trials have evaluated MART-1-targeted

TCR-T-cells in advanced melanoma -all using retrovirus as

vectors-, and have reported variable results, with ORR ranging

from 0% to 30% (53–55). In one of these trials (53), protein gp100

was also evaluated as a target in 16 patients, observing 1 sustained

CR (>14 months) and 2 PR (ORR: 18.8%). TCR-T-cell-related

toxicity was similar in all these studies, with a predominance of

skin toxicity (23-94%) and a low incidence of CRS (<15%).

The New York esophageal squamous cell carcinoma (NY-ESO)-

1 antigen is a promising target both in melanoma and in some

sarcoma immunogenic subtypes -particularly synovial sarcoma,

with NY-ESO-1 overexpression in 80% of patients (56)-. In a

phase II trial with 38 melanoma and synovial sarcoma patients
FIGURE 2

Clinical outcomes of the most relevant CAR-T cells phase I/II trials in solid tumors. N, number of participants in each study.
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treated with NY-ESO-1 TCR-T-cells, there was an ORR of 57.9%,

including 5 maintained CR and several long-term PR, with no

severe toxicity related to TCR-T-cells (57). Similar results were

obtained in two other phase I studies, with an incidence of CRS of

10% in one of them (58, 59). Two other phase I/II trials evaluated

NY-ESO-1 TCR-T-cells in patients with synovial sarcoma -using

lentivirus as a vector instead of retrovirus-, obtaining similar results

(ORR 30% to 50%), with an incidence of CRS of 41.7% in one of

them (60, 61). NY-ESO-1 was also used as TCR-T-cells target in a

small phase I trial including 3 patients with different solid tumors,

with negative results (62).

Other cancer-tesis antigens, such as MAGE family proteins,

have been evaluated as TCR-T-cell targets in multi-tumor phase I/II

trials. A phase I trial evaluated MAGE-A3-targeted TCR-T-cells in

17 patients with solid tumors and observed an ORR of 23.5%

(including 1 sustained CR) (63). Morgan et al. (64) treated 9 solid

tumors patients (including 7 synovial sarcomas) with MAGE-A3-

targeted cells, obtaining an ORR of 56% (including 1 sustained CR),

but with severe toxicity (ICANS in 3 patients and 2 treatment-

related deaths). In a phase I trial with 38 patients treated with

MAGE-A4-TCR-T-cells, 50% of CRS was observed (65), and

another trial with MAGE-A3-TCR-T-cells was suspended after 2

treatment-related deaths (66). Cross-reactions against proteins

normally expressed by nervous system cells -such as EPS8L2-

have been hypothesized as the source of severe neurotoxicity and

toxic deaths reported by MAGE-TCR-T-cells trials (67).

MAGE-targeted TCR-T-cells have obtained negative or modest

results in NSCLC (68) and esophageal cancer (69). Similarly,

significant toxicity has been observed in studies targeting other

proteins that are not exclusively expressed by tumor cells. For

example, a phase I trial evaluating CEA-targeted TCR-T-cells in

patients with colorectal cancer was suspended due to severe colitis

in 100% of the patients (70).

The treatment of virus-related tumors is an interesting

approach for TCR-T-cells, since targeting specific viral antigens,

which are expressed by infected tumor cells but not by normal

tissues, should avoid the problem of cross-reactions and OTOT

toxicity. In fact, two trials have evaluated TCR-T-cells targeted

against human papillomavirus (HPV) carcinogenesis-related

proteins (E6 and E7) in HPV+ tumors, without any relevant

toxicity and interesting clinical outcomes (ORR of 16.7% and

50%, respectively) (71, 72). Meng et al. evaluated TCR-T-cells

against hepatitis B virus (HBV) in 8 patients with HBV+ HCC,

observing 1 prolonged PR and only one case of liver toxicity (73).

Veatch et al. (74) tested TCR-T-cells against Merkel carcinoma

polyomavirus (MCPyV) in 5 patients with refractory Merkel cell

carcinoma, reporting 1 PR and no significant adverse events.

However, given that virus-related tumors represent a small

proportion of advanced solid cancers, other strategies are needed

to overcome TCR-T-cells cross-reactions and OTOT toxicity.

In relation to this, an exciting hypothesis is the use of

neoantigens -byproduct of tumor somatic mutations, not present

in non-malignant tissues- as tumor-restricted and immunogenic

targets of TCR-T-cells. In fact, some studies suggest that long-term

responses to immune checkpoint inhibitors are mediated by

neoantigen-reactive effector T cells (75), providing a rationale for
Frontiers in Immunology 05
combining TCR-T-cells and ICI. Unfortunately, a phase I trial

exploring the effectiveness of personalized neoantigen-targeted

TCR-T-cells in 16 patients with advanced solid tumors has

obtained disappointing results (51).

Occasional responses to TCR-T-cells have been observed in

other tumors. Leidner et al. (76) reported a partial response with

KRAS G12D-targeted TCR-T-cells (lasting >6 months) in a patient

with advanced pancreatic adenocarcinoma. Kim et al. (77) reported

a partial response to TP53-targeted TCR-T-cells in a patient with

metastatic breast cancer.

The outcomes of published TCR-T-cells clinical trials for solid

tumors have been summarized in Table 1.
4 Challenges and future strategies

4.1 Challenges and future strategies

Both CAR-T and TCR-T cells harbor inherent limitations for

the treatment of patients with solid tumors, which may explain the

significantly worse clinical outcomes than those obtained with

CAR-T therapy in hematologic malignancies.

4.1.1 Antigenic heterogeneity
In contrast to the clonal nature of lymphomas and leukemias,

solid tumors -particularly in the context of metastatic disease- are

characterized by the progressive acquisition of somatic mutations

that lead to polyclonal expansion of different cellular lineages,

giving rise to genomic instability and antigenic heterogeneity.

Significant intratumoral heterogeneity in neo-epitope

expression and clonal expansion of the adaptive immune system

in distant regions of the same disease have also been demonstrated

in hepatitis B virus (HBV)-related liver cancer (78). In Her2+ breast

cancer, spatial transcriptomic studies have shown intra-patient

heterogeneity in the expression of gene signatures that determine

cellular interactions with T lymphocytes and other immune cells

(79). O’Rourke et al. (33) studied the expression of several antigens

in tumor cells from 7 GBM patients, before and after a single

infusion of EGFR-targeted CAR-T cells, observing in all of them a

significant decrease in EGFR expression, but an important increase

in several other antigens with known immunosuppressor functions

(CD8, GRZMB, CD25, IDO1, PDL1, and FoxP3). These results shed

light on how antigen-specific T cell therapies might quickly

promote the selection of resistant cellular subclones with

immunosuppressive activity.

T cells with multi-antigenic recognition have been proposed as

a potential strategy to overcome this problem. Some preclinical

studies have suggested that CAR-T cells with bispecific adapters can

facilitate the eradication of antigenically different tumors (80).

Moving a step forward, CAR-T cells equipped with synthetic

Notch (synNotch) receptors might be able to induce CAR

expression only after the recognition of tumor-specific antigens,

creating precise prime-and-kill recognition circuits (81). Although

these are promising strategies, they have not yet been evaluated in

clinical trials, and further research is required to assess

their feasibility.
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TABLE 1 Clinical trials with published results of TCR-T-cells in solid tumors.

Clinical trial Target Vector N
Age
range

Clinical responses AEs related to TCR-T-cells

Melanoma

Morgan et al. (phase
I) (52)

MART-1 Retrovirus 17 20-58 2 PR (20-21 m); ORR: 11.8% None

Johnson et al. (phase
II) (53)

MART-1 Retrovirus 20 24-60 6 PR (3-17 m); ORR: 30%
Skin rash (70%), uveitis (55%), hearing

loss (50%)

Gp100 Retrovirus 16 25-62
1 CR (>14 m), 2 PR (3-4 m);

ORR: 18.8%
Skin rash (94%), hearing loss (31%),

uveitis (25%)

Chodon et al. (phase
II) (54)

MART-1 Retrovirus 13 40-61 7 SD (3-6 m); ORR: 0% Skin rash (23%), CRS (15%)

Rohaan et al. (phase I/
II) (55)

MART-1 Retrovirus 12 43-74 2 PR (4-7 m); ORR: 16.7%
Skin rash (83%), hearing loss (33%), uveitis

(17%), CRS (8%)

Melanoma and sarcoma

Robbins et al. (phase
I) (57)

NY-ESO1 Retrovirus 17 19-61
2 CR (>20 m), 7 PR (3-18 m);

ORR: 52.9%
None

Robbins et al. (phase
II) (58)

NY-ESO1 Retrovirus 38 19-65
5 CR (24 to >58 m), 17 PR
(3 to >47 m); ORR: 57.9%

None

Nowicki et al. (phase
I) (59)

NY-ESO1 Retrovirus 10 24-66 2 PR (9-51 m); ORR: 20% CRS (10%)

Synovial sarcoma

D’Angelo et al. (phase I/
II) (60)

NY-ESO1 Lentivirus 12 18-51
1 CR (8 m), 5 PR (4-18 m);

ORR: 50%
CRS (41.7%)

Ramachandran et al.
(phase I/II) (61)

NY-ESO1 Lentivirus 30 NE 9 PR (2-13 m); ORR: 30% NE

Gastrointestinal cancer

Parkhurst et al. (phase
I) (70)

CEA Retrovirus 3 43-55 1 PR (6 m); ORR: 33% Severe colitis (100%)

Kageyama et al. (phase
I) (69)

MAGE-A4 Retrovirus 10 43-73 ORR: 0% None

Leidner et al. (phase
I) (76)

KRAS
G12D

Retrovirus 1 71 1 PR (> 6 m); ORR: 100% None

HPV+ tumors (cervical cancer, HNSCC)

Doran et al. (phase I/
II) (71)

HPV16-E6 Retrovirus 12 32-70 2 PR (3-6 m); ORR: 16.7% None

Nagarsheth et al. (phase
I) (72)

HPV16-E7 Retrovirus 12 31-65 6 PR (3-9 m); ORR: 50% None

NSCLC

Blumenschein et al.
(phase I) (68)

MAGE-A10 Lentivirus 11 46-72 1 PR (6 m); ORR: 9% ICANS (9.1%)

HBV-related hepatocellular carcinoma (HCC)

Meng et al. (phase I) (73) HBV Electroporation 8 46-67 1 PR (27 m); ORR: 12.5% Liver toxicity (12.5%)

Merkel cell carcinoma

Veatch et al. (phase
I) (74)

MCPyV Lentivirus 5 NE 1 PR (NE); ORR: 20% None

Metastatic breast cancer

Kim et al. (phase I) (77) TP53 Retrovirus 1 NE 1 PR (6 m); ORR: 100% CRS

(Continued)
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4.1.2 On-target off-tumor toxicity
Most antigens targeted by CAR-T or TCR-T cells in solid

tumors are not specific to cancer cells and are also expressed on

non-malignant tissues, leading to potential OTOT toxicity. In

addition to the usual adverse events observed in patients with

hematologic malignancies, such as cytokine release syndrome

(CRS) and immune effector cell-associated neurotoxicity

syndrome (ICANS), which are generally manageable (82), the

OTOT effects of these cell therapies add significant toxicity and

are usually dose-limiting in patients with solid tumors.

The release of perforin and granzymes following T cell

activation is assumed to play a key role in OTOT cytotoxicity,

although the upregulation of T cell-surface pro-apoptotic molecules

(such as FAS ligands) might also contribute to tissue destruction

(83). Acute respiratory distress, digestive hemorrhage, and severe

mucocutaneous toxicity have been reported as OTOT effects in

several clinical trials, particularly with Her2 (84)-, CLDN18.2 (85)-

and EGFR (41, 42)-targeted CAR-T cells. Interestingly, no OTOT

toxicity has been reported for anti-GD2 CAR-T cells in patients

with diffuse midline gliomas (86) despite the fact that GD2 is

expressed in healthy brain tissue (87). Although little is known

about the threshold for antigen recognition (88), this suggests that

CAR-T therapy may be feasible without significant OTOT effects in

cases with different levels of antigen expression between tumor and

healthy cells.

Some additional theoretical strategies to overcome OTOT

toxicity include the modulation of scFv affinity and/or CAR

architecture, the locoregional administration of CAR-T cells to

avoid systemic effects, the development of engineering approaches

to exogenously control CAR-T cell activity, and the design of

protein-based logic-circuit strategies to restrict CAR-T cell

activation (89). Further research is needed to assess the clinical

feasibility of these approaches and discover predictive biomarkers of

severe toxicity.
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4.1.3 T cells trafficking
Ensuring contact between CAR-T cells and tumor cells is not a

problem in leukemias and lymphomas, since malignant cells

concentrate within the blood and lymph nodes; however, it is a

significant obstacle in solid metastatic tumors, particularly those

with infiltration of immune-privileged organs -such as the central

nervous system-. Several studies have shown that metastatic lesions

from solid cancers have significantly lower lymphocytic infiltration

than primary tumors, suggesting that the loss of T cell trafficking to

the tumor site is a relevant mechanism for immune escape and may

facilitate tumor progression (90).

In patients with metastatic melanoma, Harlin et al. (91) showed

that the expression of certain cytokines (CCL2, CCL3, CCL4, CCL5,

CXCL9, and CXCL10) is significantly higher in lesions enriched

with TILs than in those with poor lymphocytic infiltration,

suggesting that these molecules play an important role in T cell

r e c ru i tment . Ta rge t ing the tumor va s cu l a tu r e and

microenvironment to modulate the chemotactic response is an

exciting research topic to improve CAR-T cell trafficking to solid

tumors (92).

4.1.4 Immunosuppressive TME
In addition to hampering T cell trafficking, the TME has

inhibitory effects on the lymphocytes that get to infiltrate the

tumor site, which is an obstacle for CAR T cell function. In

addition, sustained exposure to tumor antigens and inflammatory

signals is thought to progressively mitigate the function and

proliferation of modified T cells, leading to CAR T cell

‘exhaustion’. Targeting T cell intrinsic pathways (PD-1/PD-L1

axis, TOX/NR4A, TGF-b, CBL-B), using CRISPR technology to

modulate the surface expression of CAR, and uncoupling antigen

recognition from CAR activation signaling, are exciting approaches

under research to overcome exhaustion and improve CAR T cells

clinical outcomes in solid tumors (93).
TABLE 1 Continued

Clinical trial Target Vector N
Age
range

Clinical responses AEs related to TCR-T-cells

Multi-tumor

Morgan et al. (phase I/
II) (64)

MAGE-A3 Retrovirus 9 21-71
1 CR (>15 m), 4 PR (4 to >12m);

ORR: 56%
ICANS (33%) (2 deaths)

Linette et al. (phase
I) (66)

MAGE-A3 Lentivirus 2 57-63 ORR: 0% Toxic death (100%)

Lu et al. (phase I) (63) MAGE-A3 Retrovirus 17 25-66
1 CR (>29 M), 3 PR (4 to >18

m); ORR: 23.5%
Hepatitis (12%)

Hong et al. (phase I) (65) MAGE-A4 Lentivirus 38 31-78 9 PR (NE); ORR: 23.7% CRS (50%)

Stadtmauer et al. (phase
I) (62)

NY-ESO1 Lentivirus 3 62-66 ORR: 0% None

Foy et al. (phase I) (51) Neoantigens Electroporation 16 36-70 ORR: 0% CRS (6%), ICANS (6%)
AEs, adverse events; CR, complete responses; PR, partial responses; ORR, objective response rate; NE, not specified; m, months; CRS, cytokine release syndrome; ICANS, immune effector cell-
associated neurotoxicity syndrome; HPV, human papillomavirus; HNSCC, head and neck squamous cell carcinoma; HBV, hepatitis B virus; MCPyV, Merkel carcinoma polyomavirus.
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5 TIL therapy, the hope for ACT in
solid tumors?

5.1 Introduction

Ex vivo expanded tumor-infiltrating lymphocytes (TILs) from

different solid cancers share a composition of oligoclonal effector T

cells that are reactive against a heterogeneous repertoire of tumor-

associated antigens (94). This establishes the rationale for TILs

artificial expansion and activation in vitro (out of the TME

detrimental influence) and their subsequent reinfusion -together

with stimulating cytokine IL-2- into a more favorable environment,

after chemical depletion of immunosuppressive cells.

Not being a specific antigen-targeted therapy and using

naturally ‘selected’ tumor-reactive lymphocytes, TIL therapy may

theoretically overcome the problems of antigenic heterogeneity,

tumor trafficking, and on target off tumor toxicity that limit the

effectiveness of CAR-T and TCR-T therapies against advanced

solid tumors.
5.2 Clinical outcomes in melanoma

TIL therapy has mainly been evaluated in advanced melanoma.

Since the first positive studies conducted by Rosenberg (95–97),

several phase I/II trials have obtained clinical responses with

expanded TILs -alone or in combination with total body

irradiation- with a significant variability in the IL2 dosage, the

number of infused cells, and the intensity of lymphodepletion (98–

101). All these studies were performed before the large-scale

expansion of ICI and targeted therapy as the standard of care for

advanced melanoma.

In ASCO 2020, Sarnaik et al. (102) communicated the results of

a phase II trial evaluating cryopreserved autologous TIL therapy

lifileucel (LN-144) in patients with metastatic melanoma in

progression to anti-PD1 +/- anti-CTLA4 therapy (and BRAF/

MEK inhibitors in BRAF-mutant tumors). Among the 66

evaluable patients, there were 2 CR and 22 PR (ORR 36.4%), with

the median duration of response not reached at 18.7 months. A
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reduction in tumor burden was observed in 81% of patients.

Responses were demonstrated regardless of the BRAF mutational

status, PD-L1 expression, and tumor location. Objective responses

were observed in patients with brain and liver metastases, baseline

bulky disease, elevated lactate dehydrogenase (LDH) levels, and

prior anti-PD1 treatment. The safety profile was consistent with the

known toxicities of the lymphodepletion and IL-2 regimens.

Two years later, Rohaan et al. (103) published the first phase III

trial of ACT for solid tumors, comparing TIL therapy with

ipilimumab in patients with stage IIIC/IV melanoma. A total of

168 patients were randomly assigned in a 1:1 ratio to receive TILs

(at least 5 x 109 cells, preceded by lymphodepleting CT, followed by

IL2 at high-doses of 600.000 IU/kg) or ipilimumab (84 patients in

each group). 89% of the patients had received previous systemic

therapy, most of them adjuvant or first-line anti-PD1 antibodies.

Median progression-free survival (mPFS) was significantly higher

in the TIL group (7.2 vs 3.1 months; hazard ratio [HR] 0.50;

p <0.001), as well as the ORR (49% vs 21%). The median overall

su rv i va l was 25 .8 months (v s 18 .9 months in the

ipilimumab group).

All the above-mentioned studies have been conducted on

patients with cutaneous melanoma. A phase II trial evaluated

TILs in 21 patients with metastatic uveal melanoma, with 1

sustained CR and 6 PR (ORR of 35%) (104). Interestingly, 3 of

these responders (43%) had previously received immunotherapy

with anti-PD1 and/or anti-CTLA4 agents, without any clinical

benefit. These results demonstrate that TIL therapy merits further

research in non-cutaneous melanoma, especially considering its

refractory nature to ICI and other systemic treatments.

The outcomes of the published clinical trials of TIL therapy

have been summarized in Table 2.
5.3 Clinical outcomes in other solid tumors

Although TIL therapy has not yet achieved robust results in

non-melanoma tumors, some phase I/II clinical trials have shown

promising data in other immunogenic malignancies, such as

NSCLC, cervical cancer, and HNSCC.
TABLE 2 Clinical trials with published results of TIL therapy in solid tumors.

Clinical trial Treatment
IL-2
dose

N
Age
range

Clinical responses AEs related to TIL therapy

Melanoma

Rosenberg et al.
(phase I) (95)

TILs (*no LD) High 20 21-59
1 CR (>13 m), 10 PR
(2-9 m); ORR: 55%

Nausea (55%), CRS (50%), ICANS (30%), respiratory
distress (10%)

Rosenberg et al.
(phase I) (96)

TILs
(*partial LD)

High 86 11-70
5 CR (>20 m), 24 PR (mDR: 4

m); ORR: 34%
Nausea (43%), CRS (28%), ICANS (21%), respiratory

distress (8%), toxic death (1.2%)

Rosenberg et al.
(phase II) (97)

TILs +/- TBI High 93 16-75
20 CR (37 to >82 m), 32 PR

(NE); ORR: 56%
1 toxic death (1.1%) (other data NE)

Dudley et al. (phase
I) (98)

TILs +/- TBI High 35 11-70
3 CR (>7 to >14 m), 15 PR (2 to

>30 m); ORR: 51%
Vitiligo* (37%), uveitis* (14%), respiratory distress* (9%),

ICANS* (3%) (*only G3/G4)

(Continued)
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In a phase I/II trial, Creelan et al. (105) evaluated the efficacy of

autologous TILs in combination with anti-PD1 nivolumab in 20

patients with advanced NSCLC following progression to nivolumab

monotherapy. Among the 13 evaluable patients, there were 3
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objective responses (2 CR -both ongoing >18 months-, 1 PR, and

8 SD with tumor reduction). Interestingly, one of the patients with

sustained CR was EGFR-mutant (exon 19 deletion), which is a

known predictor of anti-PD1 failure (113), suggesting that NSCLC
TABLE 2 Continued

Clinical trial Treatment
IL-2
dose

N
Age
range

Clinical responses AEs related to TIL therapy

Melanoma

Ellebaek et al.
(phase I/II) (99)

TILs Low 6 36-62
2 CR (>10 and >30 m),

0 PR; ORR: 33%
Fatigue (100%), nausea (83%), diarrhea (83%), dermatitis

(50%), allergic reaction (50%)

Andersen et al.
(phase I/II) (100)

TILs Dec 24 25-68
3 CR (>22 to >47 m), 7 PR (>17

to >45 m); ORR: 42%

ICANS (8.3%), vitiligo (8.3%), respiratory distress (4.2%),
renal failure (4.2%), diarrhea (4.2%), uveitis (4.2%),

vasculitis (4.2%), 1 toxic death (4.2%)

Goff et al. (phase
II) (101)

TILs +/- TBI High 101 18-65
24 CR (NE), 30 PR (NE);

ORR: 54%
CRS (6.1%), cardiac arrhythmia (5.1%), RRT (3%),

intubation (2%), 1 toxic death (1%)

Sarnaik et al.
(phase II) (102)

TILs High 66 20-79
2 CR, 22 PR; ORR: 36.4%; mDR

not reached at 18.7 m
Pyrexia* (16.7%), hypotension* (10.6%), CRS* (6.1%),

fatigue* (1.5%) (*only G3-G4 events)

Rohaan et al.
(phase III) (103)

TILs (vs ipi) High 84 26-74
17 CR, 24 PR; ORR: 49% vs 21%;

mPFS: 7.2 m vs 3.1 m

100% G3-G4 AEs (vs 57%); CRS (84%), fatigue (68%),
hypotension (41%), CLS (30%), vitiligo (11%), uveitis

(8%), hearing loss (4%)

Chandran et al.
(phase II) (uveal
melanoma) (104)

TILs High 21 32-63
1 CR (>21 m), 6 PR (4-9 m);

ORR: 35%

Dyspnea* (10%), cardiac arrhythmia* (5%), renal failure*
(5%), thrombosis* (5%) (*only G3-G4 events). 1 toxic

death (infection)

NSCLC

Creelan et al.
(phase I/II) (105)

TILs + nivo
(after PD
on nivo)

Dec 13 38-75
1 CR (>18 m), 2 PR (>12 to >23
m) (*plus 11 SD with tumor

reduction); ORR: 23%

Nausea (86%), skin rash (55%), diarrhea (55%), CRS
(45%); total severe toxicity: 12.5%

Schoenfeld et al.
(phase II) (106)

TILs NE 24 40-74
1 CR (>21 m), 5 PR (4 of them

>8 m); ORR: 25%
NE

Cervical cancer

Jazaeri et al. (phase
II) (107)

TILs NE 27 NE
1 CR (NE), 9 PR (*plus 2

unconfirmed PR); ORR: 44%
NE

HNSCC

Jimeno et al. (phase
II) (108)

TILs + pembro NE 9 NE
1 CR, 3 PR; ORR: 44%; mDR not

reached at 6.9 m
NE

HPV+ epithelial tumors (HNSCC, cervical and anal cancer)

Stevanovic et al.
(phase II) (109)

TILs High 29 30-63
2 CR (>53 and >67 m), 5 PR (3-5

m); ORR: 24%
Metabolic disorders (41.4%), nausea (20.7%), hypoxia

(27.6%), dyspnea (13.8%), ICANS (3.4%)

Breast cancer

Zacharakis et al.
(phase II) (110)

Pembro > TILs
> pembro

High 6 35-67
1 CR (>66 m), 2 PR (6-10 m);

ORR: 50%
NE

Multi-tumor

Kverneland et al.
(phase I/II) (111)

Ipi > TILs
> nivo

Low 25 39-66 2 PR (3-7 m); ORR: 8%
Fever* (16%), PS drop* (12%), dyspnea* (8%),
transaminase elevation* (4%) (*only G3-G4)

O’Malley et al.
(phase II) (112)

TILs + pembro NE 31 24-73

Melanoma (n: 8): 3 CR, 4 PR;
ORR: 87.5%

HNSCC (n: 13): 1 CR, 5 PR;
ORR: 46.2%

Cervical (n: 10): 1 CR, 4 PR;
ORR: 50%

NE
AEs, adverse events; CR, complete responses; PR, partial responses; ORR, objective response rate; mDR, median duration of response; NE, not specified; m, months; CRS, cytokine release
syndrome; ICANS, immune effector cell-associated neurotoxicity syndrome; LD, lymphodepletion; TBI, total body irradiation; dec, decrescendo; RRT, renal replacement therapy; ipi, ipilimumab;
CLS, capillary leak syndrome.
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subtypes that are commonly refractory to ICI might not be resistant

to TIL therapy. Further research is required to assess whether TIL

therapy could have a re-sensitizing effect for ICI use.

A phase II trial evaluated TIL monotherapy (LN-145) in 28

patients with advanced pretreated NSCLC, observing 1 CR (>21

months) and 5 PR (4 of them >8 months) among 24 evaluable

patients (ORR 25%) (106).

TIL therapy also has promising results in a phase II trial with

patients with advanced cervical cancer, observing 1 CR and 11 PR (2

of them unconfirmed by study criteria) (ORR: 44%) (107). Another

study evaluated TILs in 29 patients with HPV+ epithelial tumors

(HNSCC, cervical and anal cancer), with an ORR of 24% (including

2 CR, ongoing after 53 and 67 months) (109).

O’Malley et al. (112) conducted a multi-tumor trial with TIL

therapy plus pembrolizumab in 31 patients (13 HNSCC, 10 cervical

cancers, and 8 melanoma), with positive results (ORR 46.2%, 50%,

and 87.5%, respectively). This TIL+ICI combination has also been

evaluated in small phase II trials in HNSCC (108) and metastatic

breast cancer (110), with promising results (ORR 44% and 50%,

respectively). Interestingly, the second study included a patient with

hormone-positive breast cancer who achieved a sustained CR (>5

years). However, a limitation of these trials is that some patients,

especially those with ICI-responding tumors such as melanoma and

HNSCC, might have responded to anti-PD1 blockade itself, making

the role of TIL therapy difficult to assess. The sequential use of

ipilimumab, TIL therapy, and nivolumab in different solid tumors

was evaluated in a phase I/II trial of 25 patients, with modest results

(2 PR ranging from 3 to 7 months) (111).
5.4 Challenges for clinical practice

Despite the promising results of TIL therapy in clinical trials,

many practical and economic challenges have limited its large-scale

implementation (114).

TIL manufacturing begins with a surgical resection of tumor

tissue, preferably from metastases accessible with minimally invasive

surgery. To date, the generation of TILs has been equally successful

regardless of the resected lesion site (115). Enzymatic digestion and/

or mechanical fragmentation of the surgical sample is followed by

culture of the fragments in IL-2 containing media, a process that

might take 2-6 weeks. This minimally expanded or “young” TILs are

massively expanded using high doses of IL-2, anti-CD3,

and irradiated peripheral blood mononuclear cells (PBMCs) or

‘feeder cells’, within a 2-weeks rapid expansion protocol (REP). The

expanded TILs are eventually reinfused into the lymphodepleted

patients, followed by high-dose bolus IL2 (114).

This is an expensive and logistically complex process that

requires highly specialized facilities, protocolized procedures, and

qualified technical staff. These are important limitations for the

widespread application of TIL therapy, particularly in developing

countries. Grade 3-4 adverse events, which appear in virtually

all patients treated with TIL therapy, mainly following

lymphodepletion and IL2 administration, also require highly

specialized management. The significant treatment toxicity,

together with the long duration of the manufacturing process, are
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patients with refractory metastatic tumors that often lead to rapid

clinical deterioration.

To date, TIL therapy has been evaluated in young, fit patients

with an ECOG performance status (PS) of 0-1. Even in this selected

population from clinical trials, it is often found that only a small

proportion of the screened patients can finally receive treatment.

For example, in a phase II trial of TIL therapy in advanced breast

cancer, only 6 of the 46 screened patients (13%) received TILs

infusion (110). No residual or evaluable disease after resection,

inadequate material for screening, negative or weak isolation of

lymphocytes in the resected samples, clinical progression, PS

deterioration, and lymphodepletion-related severe toxicity were

common causes of treatment failure.

Lastly, not only the economic expenses but also the

individualized nature of TIL therapy, which differs from

conventional commercial drugs, are important challenges for TIL

therapy regulatory approval. Previous experience with CAR-T cells

in hematologic malignancies will surely smooth the way for dealing

with the health-economic aspects of TIL therapy and its

implementation in clinical practice.
6 Conclusion

The clinical outcomes of adoptive cell therapy (ACT) in

solid tumors are conditioned by biological aspects that

substantially differ from those of hematologic malignancies,

such as their antigenic heterogeneity, immunosuppressive

microenvironment, and immune scape ability. Dozens of phase

I/II trials with CAR-T cells have only led to sporadic, usually

short-term clinical responses, although novel strategies, such as

multiantigenic recognition, SynNotch receptors, and CAR

modulation through CRISPR technology, are promising

approaches to improve their efficacy. Despite the inherent

limitations of antigen-targeted treatments, TCR-engineered T-

cells have several advantages over CAR-T cells and have shown

promising results in certain tumors, such as melanoma and

synovial sarcoma with NY-ESO1 overexpression. In the opinion

of the authors, the treatment of HPV+ and other virus-related

malignancies, as well as the use of neoantigens as targets, are

exciting fields of TCR-T-cells research.

Conceptually different from other ACT modalities, TIL therapy

is based on the extraction, ex vivo expansion, and stimulation of

naturally reactive tumor-infiltrating lymphocytes, followed by their

reinfusion into lymphodepleted patients. TILs have shown positive

results in advanced melanoma, with a recent positive phase III trial

that has proved their superiority to ipilimumab in anti-PD1

refractory disease. The efficacy of TIL therapy, alone or in

combination with checkpoint inhibitors, has also been

demonstrated in other solid tumors including NSCLC, cervical

cancer, and HNSCC. Strategies to selectively expand neoantigen-

reactive TILs or genetically modify the expanding cells through

CRISPR technology are exciting lines of research, to improve the

efficacy of TIL therapy in patients with melanoma and extend its

clinical benefit to other malignancies. However, numerous clinical
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and practical limitations that currently hinder its large-scale

implementation still need to be overcome.
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