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Investigating the ability of deep
learning-based structure
prediction to extrapolate and/or
enrich the set of antibody CDR
canonical forms
Alexander Greenshields-Watson , Brennan Abanades
and Charlotte M. Deane *

Oxford Protein Informatics Group, Department of Statistics, University of Oxford,
Oxford, United Kingdom
Deep learning models have been shown to accurately predict protein structure

from sequence, allowing researchers to explore protein space from the structural

viewpoint. In this paper we explore whether “novel” features, such as distinct loop

conformations can arise from these predictions despite not being present in the

training data. Here we have used ABodyBuilder2, a deep learning antibody

structure predictor, to predict the structures of ~1.5M paired antibody

sequences. We examined the predicted structures of the canonical CDR loops

and found that most of these predictions fall into the already described CDR

canonical form structural space. We also found a small number of “new”

canonical clusters composed of heterogeneous sequences united by a

common sequence motif and loop conformation. Analysis of these novel

clusters showed their origins to be either shapes seen in the training data at

very low frequency or shapes seen at high frequency but at a shorter sequence

length. To evaluate explicitly the ability of ABodyBuilder2 to extrapolate, we

retrained several models whilst withholding all antibody structures of a specific

CDR loop length or canonical form. These “starved” models showed evidence of

generalisation across CDRs of different lengths, but they did not extrapolate to

loop conformations which were highly distinct from those present in the training

data. However, the models were able to accurately predict a canonical form even

if only a very small number of examples of that shape were in the training data.

Our results suggest that deep learning protein structure prediction methods are

unable to make completely out-of-domain predictions for CDR loops. However,

in our analysis we also found that even minimal amounts of data of a structural

shape allow the method to recover its original predictive abilities. We have made

the ~1.5 M predicted structures used in this study available to download at

https://doi.org/10.5281/zenodo.10280181.
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Introduction

Deep learning has revolutionised the field of structural biology

with tools such as AlphaFold2 (AF2) (1), RosettaFold (2) and

ESMFold (3) that can accurately predict protein tertiary structure

from primary sequence. These tools are all trained on the known

protein structure landscape derived from the PDB (4) and have

been shown to generalise well to proteins that were not seen during

training. Several studies have used these models to enrich the

existing protein structure landscape by making extensive

predictions from the larger available sequence space. Analysis of

these predictions revealed many examples of structures that are very

different from the closest available match in experimentally defined

data (3, 5).

By analysing over 365,000 high confidence structures predicted by

AF2, Bordin et al. were able to define 25 novel superfamilies which did

not cluster into any existing CATH classifications using their CATH-

Assign protocol (5). A second example of new knowledge arising from

structural predictions was provided by ESMFold (3). Here, Lin et al.

predicted the structures of over 600Mmetagenomic sequences isolated

from diverse environmental and clinical samples. The use of these

metagenomic sequences increased the probability of finding examples

that were highly distant from the sequence and structural data used to

train ESM2 and ESMFold respectively (3). Within a sample of 1M

modelled structures defined as high confidence (predicted local

distance difference test score, pLDDT > 0.7 and predicted template

modelling score, pTM > 0.7), the authors found over 125,000

predictions with no close match in the PDB [defined as pTM > 0.5

carried out using Foldseek (6)] and in close alignment to the

corresponding predictions from AF2. While both studies

demonstrate that structure prediction tools can confidently generate

novel structures, X-ray crystallography data was not obtained to

conclusively validate the predictions. It is also not clear if the novel

structures generated are composites of large substructural fragments

present in the training data.

To attempt to explicitly address whether models can generalise

to unseen regions of structural space, Ahdritz et al. carried out ‘out-

of-domain’ experiments using OpenFold (7). In particular,

examining if OpenFold can generalise from limited data to

accurately predict alpha helices or beta sheets despite their

omission from training datasets. However, they were not able to

completely remove all signal of these secondary structures from

their training data, and hence the models were likely still learning

from a much-reduced set of examples, rather than extrapolating to a

completely unknown structure based on their induction of

biophysical rules.
Abbreviations: ABB2, ABodyBuilder2; AF2 AlphaFold2; AFM AlphaFold-

Multimer; CDR, complementarity determining region; DBSCAN, density-based

spatial clustering of applications with noise, DBS, DBSCAN-based selection;

DTW, dynamic time warping; KNN, K-nearest neighbours; IMGT, the

international ImMunoGeneTics information system; MDS, multidimensional

scaling; OAS, observed antibody space; OPIG, Oxford protein informatics

group; PDB, protein data bank; RMSD, root mean-squared deviation; SAbDab,

the structural antibody database; SCFV, single chain variable fragment.
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These analyses raise the question of whether current deep

learning-based models are truly capable of predicting

conformations which are never present in training data. While

extrapolation by deep neural networks is theoretically plausible (8,

9) searching for evidence of this is difficult and requires extensive

classification of training data and the resulting predictions.

One limitation of deep learning based protein structure

predictors is their poor performance on stretches of sequence that

are intrinsically disordered (10, 11) or explore diverse

conformational space (12). The loops of adaptive immune

receptors, antibodies, and T cell receptors, fall into the latter

category. These loops form the majority of the binding site

(paratope) of these proteins and are termed complementarity

determining regions (CDRs) (13).

The protein sequences that make up the CDR loops arise from

two genetic mechanisms, termed V(D)J recombination (14, 15) and

somatic hypermutation (16). In antibodies, the process of V(D)J

recombination randomly pairs V-, D- and J-genes (VJ genes for

light chains and VDJ genes for heavy chains) and introduces

junctional diversity through insertion and deletion of nucleotides.

Further diversity is introduced to the V-gene region of the antibody

by somatic hypermutation, where point mutations that modify the

amino acid sequence and improve binding affinity are positively

selected and progressively dominate the immune response to a

pathogen. These mechanisms create high levels of sequence

diversity and are evolutionarily advantageous as they combine to

provide a nearly limitless potential of binding solutions which allow

antibodies to neutralise the correspondingly limitless diversity of

pathogens to which humans can be exposed (17). Of the six CDR

loops on an antibody, diversity is highest within the CDRH3, the

residues of which often disproportionally govern paratope-epitope

interactions (18). Structure predictors have been found to perform

poorly on this region of antibodies, for example with average RMSD

values between predictions and ground truth that exceed 2.5 Å for

state-of-the-art models such as AlphaFold-Multimer (AFM) (19)

and ABodyBuilder2 (ABB2) (20).

The predictive performance on the remaining five loops,

CDRL1-3 and CDRH1-2, is far better (average RMSD <1Å),

despite these being subject to the genetic process of somatic

hypermutation and being influenced by neighbouring

hypervariable loops (21). The ability to accurately model these

can be explained by canonical forms, the term given to sets of CDR

loops of the same length that adopt similar backbone conformations

and share a sequence motif (22). These canonical forms were first

observed in crystallographic datasets of available antibody

structures before 1986 (23). With the deposition of more

structural data both the number of canonical conformations and

the sequences that could be assigned to each were continuously

expanded and redefined (24–29). This information linked diverse

sets of sequences to distinct loop conformations and thus was

increasingly useful to antibody researchers, by providing a form

of sequence-to-structure prediction that could be automated by

template search and homology modelling tools (27, 30).

The latest CDR structure and sequence pairings harvested from

antibody structural data are defined in PyIgClassify2 (28). The

definitions were released as the ‘penultimate classification of
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canonical forms’ in reference to the breakthroughs in structure

prediction research that may soon render the predictive power of

this relationship obsolete. While structure prediction methods are

still being evaluated, especially in the domain of adaptive immune

receptors, PyIgClassify2 can serve as a map of the known

conformational space explored by antibody CDRs.

Using the rigorous definitions from PyIgClassify2 as a reference

point in structural space, we set out to test whether the predicted

structures from all available paired antibody sequences in observed

antibody space, OAS, (31, 32) reveal novel canonical clusters or

highlight conformations not explored by existing experimental data.

We then assess these new areas to determine whether they represent

evidence of extrapolation or had direct origins in the training data.

ABodyBuilder2 (ABB2) is a structure prediction tool specific to

antibodies (20). It uses an ensemble of four deep learning models

trained on the structures of over 3500 antibodies as well as a fast

minimisation in the AMBER14 forcefield (33, 34) to make

predictions with comparable accuracy to AFM in a fraction of the

time. We used ABB2 to predict the structures of ~1.5M paired

antibody sequences. We mapped the conformational space of the

CDRL1-3 and CDRH1-2 loops and used existing classifications of

the canonical forms in experimental data as reference points. By

comparing the loop conformations of canonical clusters to clusters

found in predictions derived from the ~1.5M heterogeneous

sequences we were able to redefine and identify new

canonical clusters.

These new clusters (potential canonical forms) were defined by

unique sequence motifs and shared loop conformations and

typically arose from enrichment of a small number of examples

in the experimental data. We also observed apparently novel

clusters (canonical forms) that derived from similar shapes (and

sequences) of a different loop length, a phenomenon that has been

previously described within the structural dataset (26), termed

length independence.

Using our mapping of structural space and the definitions of

canonical forms we designed out-of-domain retraining experiments

which explicitly tested the capability of ABB2 to both generalise and

extrapolate. We found that with zero examples of a given CDR

shape ABB2 was consistently unable to predict it. However, with the

introduction of very small numbers of a shape, the predictive ability

was restored. Overall, these analyses exemplify the power of

augmenting experimental data with predictions and provide

simple tests for extrapolation and effective data recapitulation that

may help inform the next generation of structure predictors.
Methods

Selection of paired antibodies sequences
for ABodyBuilder2

Paired antibody sequences were retrieved from observed

antibody space (OAS) (31, 32) (1-March-2023, https://

opig.stats.ox.ac.uk/webapps/oas/). Non-redundant sequence pairs

were filtered by minimum lengths defined in the ABB2 workflow

such as minimum residue length of 70, starting IMGT residue
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number less than 8, and end residue number greater than 120, (see

sequence checks https://github.com/oxpig/ImmuneBuilder).

Sequences containing any gaps or ambiguities were removed to

leave 1,492,044 pairs for processing. ABB2 was run on all sequences

and 1,492,031 structures were successfully predicted.
Annotation of CDR loops in paired
antibody sequences

To group the relevant modelled structures for conformational

analyses, the CDR loops of all input sequences were annotated with

information on their sequence composition and length. The CDRs

were defined according to the IMGT numbering scheme (CDR1:

27-38, CDR2: 56-65, CDR3: 105-117) (35). This numbering system

was chosen as the anchor residues and CDR locations are consistent

for both heavy and light chains, as well as being the standard

reference point for V(D)J gene annotation. Each sequence was

IMGT numbered using ANARCI (36) and the CDR sequences

checked against corresponding information from IgBLAST

annotations (37). For a given heavy or light chain, if there was

any discrepancy between IgBLAST and ANARCI CDR definitions

then this chain was not taken forward for conformational analysis

(resulting in the exclusion of 6414 light chains and 9822 heavy

chains from the structures predicted above).
Retrieval and selection of experimental
structures from SAbDab

The structural antibody database (SAbDab) (38, 39) is a curated

database which contains all antibody, single chain variable fragment

(SCFV) and nanobody structures available in the PDB (4). IMGT

numbered structures used in ABB2 test, train and validation

datasets were downloaded from SAbDab. These structures were

derived by X-ray crystallography or cryogenic electron microscopy

(cryo-EM) and with a resolution better than 3.5 Å (full list given in

SI of 20).
Annotation of SAbDab structures with
PyIgClassify2 information

The information on CDR loop canonical forms was obtained

from the pyig_cdr_data.txt file downloaded from the PyIgClassify2

website (http://dunbrack2.fccc.edu/PyIgClassify2/, 21-Feb-2023).

This provides complete information for all CDR loops on each

structure within a given PDB file, including information on

sequence identical but structurally distinct members of the

asymmetric unit which are distinguished by their PDB chain

identifier. For each loop the relevant information includes the

length, sequence, canonical form assignment (both with and

without an electron density confidence cut off), PDB identifier of

the parent chain and information on whether the CDR is

structurally complete or is missing any backbone coordinates.

This data was used to filter the relevant structures and their CDR
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loops for each analysis, and to annotate the experimental data

points by canonical cluster membership.
Alignment of IMGT and AHo
numbering systems

PyIgClassify2 CDR lengths are defined according to the AHo

numbering scheme (40) which symmetrically places insertions and

deletions around positions defined as key residues in each CDR.

This deviates from the IMGT numbering scheme (35) which places

insertions centrally within each CDR at fixed positions. The

different approaches to defining the CDRs mean that IMGT
Frontiers in Immunology 04
defined lengths for CDRL1-2 and CDRH1-2 are shorter than

those defined in the AHo numbering scheme used in

PyIgClassify2. Therefore, for each CDR and length combination

analysed in this study, we have listed the corresponding AHo CDR

lengths in Table 1, along with the PyIgClassify2 defined canonical

forms and sequence motifs described in (28).
Pre-processing of SAbDab datasets

SAbDab files included SCFV structures where the heavy and

light chain are part of a single continuous sequence, as well as

datasets with multiple sequence-identical copies in the asymmetric
TABLE 1 Alignment of IGMT CDR numbering, AHo CDR numbering and PyIgClassify2 Canonical Forms.

CDR IMGT Length Aho Length PyIgClassify2 Defined Canonical Forms (sequence motifs)

L1 6 11 L1-11-1 (RASQsISsyLA)
L1-11-2 (RASQDIsnYLA)

L1-11-3 (gGDniGDKsVH)
L1-11-4 (SGDaLpKKYAY)

7 12 L1-12-1 (RASqSVSSSYLa)
L1-12-2 (RASQSVSSNYLA)

8 13 L1-13-1 (SGSSSNIGsNYVS)
L1-13-2 (TRSSGsIaSNYVq)

L1-13-3 (QSSQSVYNNNNLA)

9 14 L1-14-1 (RSStGAVTtSNyAN)
L1-14-2 (TGTSSDvGgYNYVS)

L1-14-3 (TGSSSNIGAGYDVH)

11 16 L1-16-1 (RSSQSLVHSNGNTYLe)

12 17 L1-17-1 (KSSQSLLySSNqKNYLA)

L2 3 8 L2-8-1 (YdaSnrAS)

L3 8 8 L3-8-1 (qQYyNlWT)
L3-8-3 (QQYYSSPT)

L3-8-4 (QQYdssPT)

9 9 L3-9-1 (QqWDSshwv)
L3-9-2 (QQyystPYT)
L3-9-3 (QsydsSsvv)

L3-9-4 (ALWYSsHWV)
L3-9-cis7-1 (QQyYsYPyT)
L3-9-cis7-2 (QHFWgTPRT)

10 10 L3-10-1 (sSYtSSsTwV)
L3-10-2 (cSYAGSstwV)
L3-10-3 (QvWDSssdVV)

L3-10-cis78-1 (qQrTHwPPLT)

11 11 L3-11-1 (QaWDSSlsgvV)
L3-11-2 (QStDSSGTYwV)

H1 8 13 H1-13-1 (aASGfTFssYwmH)
H1-13-3 (aASGRTFSSYaMG)

H1-13-4 (aaSGGtFsgYYWS)
H1-13-5 (AASGRTFSIYaMG)

9 14 H1-14-1 (TVtGYSITSdYaWN)
H1-14-2 (AVSGGSISssYyWS)

10 15 H1-15-1 (tFSGFSLSTSGMGVG)
H1-15-2 (tvSGDSiSssdyyWg)

H2 7 9 H2-9-1 (YIYYSGSTY)

8 10 H2-10-1 (wInPgNGdTN)
H2-10-2 (AISsdGssTY)
H2-10-3 (EIyPGsGSTn)

H2-10-4 (gISSGGgYty)
H2-10-6 (WINPsGGsTy)

10 11 H2-12-1 (RTYYRSKWYNd)
For each CDR, the IMGT lengths used in these analyses are presented alongside the corresponding AHo lengths and PyIgClassify2 defined canonical forms for that CDR. PyIgClassify2 canonical
forms are named according to the CDR (e.g. L1) followed by the Aho length (e.g. -6), and the form number (e.g. -1) to form a unique identifier for each form (e.g. L1-11-6). For each canonical
form the consensus sequence motif, as defined in (28) is given in brackets. Uppercase letters of the consensus sequence indicate highly conserved amino acids at a given position, while lowercase
letters indicate a less conserved amino acid that was still observed in the cluster of loops found in the PyIgClassify2 analyses. Information is only provided for the loops analysed in this study, i.e.,
those which corresponded to the most dominant non-redundant sequences in OAS, (see Figure 1B).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1352703
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Greenshields-Watson et al. 10.3389/fimmu.2024.1352703
unit. To ensure all CDR loops could be correctly identified and

consistently aligned, the relevant chains in each dataset were

isolated, IMGT numbered and then saved as individual files

linked to the corresponding PyIgClassify2 meta data. For SCFV

structures the continuous sequence was broken and each fragment

treated as an individual chain. If a chain within a dataset could not

be numbered with ANARCI, or a specific CDR loop was missing

residues (as indicated by the PyIgClassify2 ‘cdr_ordered’ flag), they

were not included in structural analyses. This processing resulted in

11821 heavy and light chains from 3355 PDB files which were used

for further analyses. As ABB2 predicted structures were all correctly

numbered and contained only a single copy in the asymmetric unit,

they did not require any pre-processing for downstream analyses.
Structural analysis of CDR loops of the
same length

To perform structural analysis, CDR loops of predicted

structures were grouped according to their CDR type (i.e.,

CDRL1 or CDRH2), amino acid length and sequence

composition (non-redundant sequences only). These were

analysed alongside all relevant loop structures from SAbDab, for

these experimental data points redundant sequences were included

as they may contain alternate conformations of the same sequence.

To provide a consistent frame of reference for each CDR length,

a loop template was chosen from the highest resolution PDB

structure available, this structure also had to be classified as

representative of a PyIgClassify2 defined canonical form

(‘is_representative’ flag) and thus was not likely to be an outlier

or exhibit any structural features that set it apart. All CDR loops in

the analysis were aligned to this template by superimposition of the

alpha carbon atoms of the 10 framework residues either side of the

loop (CDR1: 22-26 & 39-43, CDR2: 51-55 & 66-70, CDR3: 100-104

& 118-122). If superimposition resulted in RMSD values greater

than 1.5 Å then these were not taken forward for loop comparisons.

For predicted structures, the framework regions were highly

consistent and less than 5 loops per analysis were eliminated. For

experimental data points the number eliminated due to framework

misalignments ranged from 0 to a maximum of 31 for CDRL1-Len-

6 (out of 2499 chains), with a median number of 3 data points

eliminated across all analyses.

The carbon and nitrogen backbone atom coordinates of the

aligned loops were extracted and saved (CDR1: 27-38, CDR2: 56-

65, CDR3: 105-117). Atom counts were checked and then all

pairwise RMSD values calculated. This resulted in an N-by-N

pairwise distance matrix of RMSD values including both

predicted and experimental datapoints for each CDR loop type

at every length. To limit the size of pairwise matrices, loops of

predicted structures were analysed in batches of 42,000. Where a

CDR and length had more than this number of non-redundant

sequences (see Table 2) subsequent batches of a maximum size of

42,000 were run until all relevant loop structures were analysed.

All batches were run through the clustering and visualisation

pipeline (see sections below) and then inspected to ensure results

were consistent across all analyses. For multi-batch CDRs,
Frontiers in Immunology 05
graphs of the first batch are shown in main figures and graphs

of subsequent batches are provided in the Supplementary

Information (Supplementary Figure 7).
Analysis of CDRH3 loops

We do not present CDRH3 analyses due to the comparatively

poor prediction accuracy in this region by ABB2, and other tools

such as AFM (20). This uncertainty meant had we found “novel”

canonical forms or observations in the CDRH3 region, we could not

have confidence that they reflected real loop conformations.

Furthermore, when we performed CDRH3 clustering on the

high frequency shorter sequences (CDRH3 lengths 12, 13, 14,

Supplementary Figure 8), there was a lack of high-density

clusters. This was likely related to the more evenly distributed

occupancy of structural space as seen from the multidimensional

scaling plots. When density-based clusters were found, the logo

plots were uninformative with no apparent motif present in the

middle of the CDRH3, and enrichments localised to the beginning

and end of the loops (Supplementary Figure 8). Given the

heterogeneity of CDRH3 we felt these results were to be expected

and this region did not warrant further exploration for novel

canonical forms.
Structural analysis of CDR loops of
different length

For later analyses aimed at discovering length independent

conformations, we also calculated the distance between loops of

different lengths. The normalised dynamic time warping (DTW)

scores were used to quantify the relative distance in groups of loops

that included both length matched and mismatched pairs. Loops

were aligned as described above to a high-resolution template, then

raw DTW scores calculated between the coordinates using the

‘dtaidistance’ library in python (41). Normalisation was applied

by squaring the score, dividing by the number of atoms being

compared, and taking the square root (this resulted in a DTW score

that is equivalent to RMSD when lengths are matched). The squared

score was divided by the maximum number of atoms (i.e., for length

9 versus 8, the score was divided by 27 to account for 9 residues,

each comprised of two carbon and one nitrogen backbone atoms).
Density based clustering

The pairwise distance matrices of RMSD or DTW values

contain information that represents the structural relationships

between all loop conformations in an analysis. To identify

clusters of loops with similar conformations within this high-

dimensional data, we employed density-based clustering, using

the density-based spatial clustering of applications with noise

(DBSCAN) function from the scikit-learn library (SK learn) (42).

The DBSCAN function takes the input distance matrix and two

parameters: the minimum number of data points required to form a
frontiersin.org
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cluster (min points) and the minimum distance between any two

points in the same cluster (epsilon). The number and size of clusters

identified in each analysis is highly sensitive to these values and

must be optimised based on the input data. Therefore, we

systematically calculated these values in a consistent manner for

all analyses, allowing us to find the maximum number of clusters

within high-dimensional space and assess whether any cluster

related to a novel canonical form. Min point values were

calculated by taking the square root of either the number of loops

being compared, or the same number divided by 2. For epsilon

values we performed a K-nearest neighbours (KNN) analysis on the

distance matrix for values of K ranging from 2 to 5. For each value

of K, the elbow point was taken from a scree plot of all KNN

distances, and this elbow point value used as epsilon in subsequent

DBSCAN analyses. This resulted in four separate DBSCAN analyses

(one for each value of K from 2 to 5). To select the most appropriate

analysis for cluster inspection and visualisation, we matched the K

value used to determine epsilon with the number of clusters

identified by DBSCAN. If there was no match, then the next

closest match was taken for the highest value of K. While

dominant clusters were often evident and easily found using

multiple values of epsilon, the impact of optimising these

parameters was most apparent when identifying smaller or
Frontiers in Immunology 06
overlapping clusters. We call the clusters generated in this way

DBS clusters (short for DBSCAN-based selection). Code is available

at: https://github.com/oxpig/OAS-CanonicalForms
Inspection of density-based cluster
structures and sequences

We manually inspected the loops comprising each DBS cluster

by visualisation of both structures and sequences. This allowed us to

assess the structural difference between each cluster and relate the

sequence logos back to the defined sequences of PyIgClassify2

canonical clusters. The aligned 3D loops that were assigned to

each DBS cluster were visualised using PyMol (43). We selected

random samples of up to 20 loops from the predicted structures, all

of which belonged to a specific DBS cluster. Samples were coloured

according to cluster membership and viewed in the same frame.

These loops were presented in multiple orientations to highlight

backbone differences that led to distinct cluster assignment. For

sequence logo plots, sequences from the predicted structures which

had been assigned to a DBS cluster were plotted in R using the

ggseqlogo package (44). Logo plots are shown in the bitwise format

(opposed to the proportion format) to maximise identification of
TABLE 2 Results of RMSD and DBS cluster analysis in high frequency CDR lengths.

CDR IMGT
Length

Number of Unique
Sequences in OAS

New information arising
from predictions?

Origin of novel canonical cluster?

L1 6 21,707 No N/A

7 10,212 New canonical cluster Extra density matching existing unassigned exp data

8 7,596 No N/A

9 13,846 New canonical cluster Extra density matching existing unassigned exp data

11 6,992 Sub-division of existing cluster Uneven distribution of density within existing form

12 10,565 No N/A

L2 3 2,280 No N/A

L3 8 15,805 No N/A

9 76,087 No N/A

10 56,599 New canonical cluster Density derived from length- independent
conformation and existing data

11 51,277 New canonical cluster Density derived from length-
independent conformation

H1 8 61,617 Sub-division of existing cluster Uneven distribution of density within existing form

9 5,655 No N/A

10 25,000 Sub-division of existing cluster Extra density matching existing unassigned exp data

H2 7 27,769 Sub-division of existing cluster Uneven distribution of density within existing form

8 99,003 No N/A

10 13,114 No N/A
For each CDR and IMGT length explored in this study, details of the number of non-redundant sequences (and hence loops structurally analysed) and the corresponding results of structural
analyses are given. The new information arising from analysis of the predicted structures could be defined as either the identification of a new canonical cluster, or the sub-division of an existing
cluster of loops that had previously been defined as belonging to a single canonical form. Further details are given on whether these clusters arose from length independent conformations and/or
existing experimental data points classified as unassigned by PyIgClassify2 (28).
N/A, not applicable.
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the dominant amino acid enrichments and motifs specific to

each cluster.
Multidimensional scaling visualisation

To simplify the complex high-dimensional pairwise distance

matr ix and al low for easy visual isat ion, we appl ied

multidimensional scaling (MDS) to create a 2D representation.

The axes of these plots are labelled as MDS1 and MDS2 and

represent unitless scales that capture the spatial differences

between data points. We used the parallelised MDS function from

the ‘lmds’ R package, before processing and plotting the output data

using tidyverse packages (45). These plots were then annotated

according to the DBS cluster membership of each data point, or the

canonical cluster assignment of only the experimentally derived

data points.
ABodyBuilder2 out-of-domain experiments

Out-of-domain experiments involved the removal of all data

points related to a specific CDR length, or a specific canonical

cluster, from both the training and test datasets of ABB2. The model

was then trained on this modified dataset from scratch. The criteria

for removing data from ABB2 training samples involved dividing

the MDS map into quadrants and selecting the quadrant with the

most distinct canonical cluster, i.e. clearly separated from other data

points. All experimental data points in this quadrant were excluded.

To ensure the removal of all relevant data points from the training

data, any samples defined as the excluded canonical form by

PyIgClassify2 without an electron density cutoff (using the

‘cluster_nocutoff’ flag) were also eliminated.
Data inclusion experiments

For out-of-domain experiments where small numbers of the

excluded canonical form were reintroduced into the training data,

we first added the highest-resolution datasets identified as

representative of the missing canonical form (determined by the

‘is_representative’ flag in PyIgClassify2). Subsequently, we

progressively reintroduced the next highest-resolution datasets

not designated as representative but still belonging to the high-

confidence canonical cluster.
Retraining of ABodyBuilder2

The original ABodyBuilder2 model consists of an ensemble of

four models each trained independently. To make a prediction the

outputs from each model are averaged and the prediction closest to

average is selected as the final output. Of the four models, one

utilised a 128-dimensional embedding and three utilised a 256-
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dimensional embedding. Models were trained until no further

improvement was seen in the validation loss after 100 epochs.

To facilitate the training of multiple models, for the initial

experiments in this study we retrained a single model with a 128-

dimensional embedding (not an ensemble). Each model was trained

on either a Nvidia GeForce GTX-1080 Ti GPU or Quadro RTX

6000/8000 GPUs for 150-340 epochs for each training stage (see

training methods 20), continuing until no further improvement in

validation loss was observed after 50 epochs (half the number used

to train original ABB2 models). For specific retraining experiments

(those used to confirm data inclusion thresholds important for

prediction), an ensemble of models was created, each consisting of

one model with a 128-dimensional embedding and three models

with a 256-dimensional embedding. Each model followed the

original ABB2 protocol (training until no improvement after 100

epochs). This process allowed us to carry out a larger number of

experimental runs and only build full models when we had

identified the data cutoffs that significantly affected prediction

accuracy (assessed by RMSD between predictions and

experimental data points).
Results

Dominant CDR lengths in paired sequence
space are matched by comparable
distributions in structural data

We predicted the structures of ~1.5M paired antibody sequences

from OAS (31, 32) using ABodyBuilder2 (ABB2) (20), a state of the

art deep learning antibody structure predictor. We examined this

structural space for evidence of novel canonical forms.

We analysed the length distributions of the CDRL1, CDRL2,

CDRL3, CDRH1 and CDRH2 loops in this dataset by both absolute

frequency (Figure 1A) and by non-redundant CDR sequence

frequency (Figure 1B). This revealed that many loops belonging

to a specific length were dominated by a smaller number of unique

sequences. For example, CDRL1 IMGT length 6 had a frequency of

753,690 in 1.49M, of which only 21,700 were unique. Therefore, we

decided to focus our structural analysis on the CDR loops and

length combinations (e.g. CDRL3 loops of length 9, after this point

referred to as CDRL3-Len-9) which had the highest number of non-

redundant sequences within the dataset (bars marked with an

asterisk in Figure 1B, details and numbers given in Table 2).

The length distributions of the experimentally derived SAbDab

(38, 39) structures used to develop ABB2 are shown in Figure 1C.

Only structures from the train, test and validation datasets which

had information on canonical forms detailed in PyIgClassify2 were

analysed (28) (38 datasets used in development of ABB2 were not

categorised in PyIgClassify2). The CDR loop and length

combinations taken forward for further analysis were also

enriched in the structural units used to train ABB2 (Figure 1C),

with the minimum number of examples seen by ABB2 during

training being 268 for CDRH1-Len-9.
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We next analysed the high confidence PyIgClassify2 canonical

form assignments of each CDR loop length marked for further

investigation by plotting the proportions of each canonical form

within all experimental units (Figure 1D, an experimental unit

refers to the fact that one PDB file may have multiple copies in the

asymmetric unit). This analysis demonstrated a similar bias, with a

single canonical cluster dominating over 50% of assignments for 13

out of the 17 CDR loop and length combinations. Some canonical

forms had a very small proportion of examples contained in the

ABB2 development data, with the minimum number being 8

examples for CDRH1-Len-8 (Figure 1D). The biases in both the

length and canonical clusters distributions of the experimental data

indicate that some data-poor areas may benefit from augmentation

with predicted structures.

Having selected the CDRs and lengths which dominated our

predicted structures, we next built structural clusters for these and

explored whether the predicted structures gave rise to new

canonical forms or provided insights which were not evident

from experimental data alone.
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Predicted structures fall into dense regions
of conformational space defined by
existing canonical forms

We created a map of the structural space for each of the

dominant CDR loop and length combinations, identified above,

using the predicted antibody structural data. Each map was

analysed to find clusters of CDR loops that shared the same

backbone conformation. If a SAbDab structure belonged to a

cluster this allowed us to annotate the clusters canonical form

according to PyIgClassify2. These annotated maps of canonical

form structural space enabled us to navigate the predicted structural

space and identify highly occupied regions of space not currently

defined by a canonical form.

A full description of how these structural space maps were

generated is given in the methods. In brief, each map is a 2D

representation of the 3D clustered space of a CDR type at a given

length. Data points representing loops from both experimental and

predicted structures are coloured by their DBS cluster membership.
A

B

D

C

FIGURE 1

Dominant CDR lengths in paired sequence space are matched by comparable distributions in structural data. Frequency distributions of sequences
present in OAS by CDR and loop length, for the total number, including all redundant sequences (A), and unique sequences only (B). Asterisks above
certain bars in (B) indicate the lengths with the most unique sequences, the predicted structures of which were analysed. (C, D) show data for the
antibodies used to develop ABB2. The loop length frequency for each CDR including all structural units (all copies in the asymmetric unit) which
have information in PyIgClassify2 (28) are shown (C). Breakdown of canonical form assignments for corresponding CDR loops present in structures
of ABB2 training data (D). Each colour within a bar represents a distinct canonical form, red portions indicate loops that could not be assigned to any
canonical form with high confidence in PyIgClassify2 analyses (not labelled with a number in the colour legend).
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All data points which are not assigned to a DBS cluster are coloured

black. For canonical form annotation the experimental data points

are coloured according to their PyIgClassify2 high confidence

canonical cluster assignment. Any loops that do not belong to a

high confidence PyIgClassify2 cluster (defined by an asterisk in the

canonical cluster label) are coloured in red.

Figures 2A, B show the structural space map for CDRL1-Len-6.

The projections are overlaid with either DBS cluster membership

information (Figure 2A), or canonical cluster classifications from

PyIgClassify2 (Figure 2B). The sequences of the loops which

comprised these clusters are visualised using logo plots

(Figure 2C) to identify the motifs and amino acid enrichments

which should match to the canonical sequence motifs described in

PyIgClassify2 (Table 1). Samples of loops were also inspected in 3D

to assess differences in backbone conformations that give rise to the

distinct clusters (Figure 2D).

For many of the CDR and length combinations analysed in this

way, the clusters arising from predicted structures aligned well with

the dominant clusters of experimentally defined canonical forms

and did not highlight any new areas of density without canonical

cluster assignment (Figure 2; Supplementary Figure 1; Table 2).

Inspection of loop alignments revealed that our RMSD and DBS

analysis method could distinguish between backbone kinks, peptide

flips and minor variations that equated to less than 1 Å RMSD
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between data points (Supplementary Figures 2A–C). These minor

differences in conformation were also detected by the dihedral angle

metric used to compile PyIgClassify2 clusters resulting in similar

global divisions of structural space. Before exploring areas that were

not accounted for by existing definitions of canonical forms, we

next inspected any inconsistencies between our RMSD/DBS

analysis and PyIgClassify2.
Differences between PyIgClassify2
definitions and density based
structural clusters

While most DBS clusters detected in our analysis could be

mapped to experimental data points that adhered to a high

confidence canonical form, several of the more subtle PyIgClassify2

definitions were assimilated into a single DBS cluster.We investigated

these assimilated data points to assess whether our method was

missing important conformational differences.

The loop which best exemplified this was CDRL3-Len-8

(Supplementary Figure 1A). Our analysis pipeline identified two

DBS clusters, the centroids of which were 1.45 Å apart and had

distinct sequence motifs (Supplementary Figure 1A). Inspection of

the PyIgClassify2 canonical clusters demonstrated that cluster 1
A B

D

C

FIGURE 2

Predicted Structures fall into dense regions of conformational space defined by existing canonical classes. Analysis of CDRL1 length 6 loops. Multi-
dimensional scaling plots derived from pairwise RMSD data (A, B). Data points in (A) are coloured according to density-based clustering (DBS)
membership, with the cluster centroid marked by an X. Those data points which do not belong to a DBS cluster in (A) are coloured black. In (B) all
experimental data points present in the MDS analysis are coloured according to their high confidence PyIgClassify2 canonical form annotation. Any
loops that do not belong to a high confidence PyIgClassify2 cluster (defined by an asterisk in the label, e.g. L1-11-*) are coloured in red. The
predicted data points are coloured in black and underly the experimental annotations. Logo plots are shown for all sequences in each DBS cluster
(C). For a sample of 20 loops in each cluster, the framework aligned backbone conformations are shown in three different orientations (D). The logo
plots (C) and backbone (D) colours of blue, green and red correspond to the numbered DBS cluster colours in (A).
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(coloured blue in Supplementary Figure 1A) defined by the logo

motif of QQYysxxT was subdivided into two canonical clusters, of

which one had a proline at position 7 (see Table 1, canonical forms

L3-8-1 and L3-8-3). We reran our DBS clustering method using an

alternate min points term (square root of N data points, opposed to

square root of N/2) and found this was able to subdivide the major

cluster into two distinct clusters (Supplementary Figure 2E)

distinguished by the proline at position 7 (Supplementary

Figure 2F). These two clusters are only 0.4 Å apart and

exhibited a large degree of overlap in conformational space

(Supplementary Figure 2G).

We found additional examples of this within the clusters of

loops for CDRL1-Len-6 (Figure 2B) and CDRH2-Len-8

(Supplementary Figure 1C) where the effect was apparent from

the smaller number of DBS clusters annotated by a larger number of

canonical cluster labels. However, these were often canonical forms

assigned to a comparatively low proportion of experimental data

points, with more dominant canonical clusters showing greater

overlap with our analyses (see later figures). We reasoned that such

subtle shifts in conformation would not serve as strong evidence of

extrapolation, despite being valid definitions of canonical forms

from the dihedral angle perspective. Therefore, their detection was

not crucial to our exploratory search for new knowledge arising

from structure prediction tools.
Predicted structures enrich the
experimental landscape revealing
subdivisions of existing classes with
defined sequence motifs

Having confirmed that our clustering pipeline was able to pick

out major differences in loop conformations across large datasets,

we next investigated the structural clusters and sequence logos

which did not sit within with PyIgClassify2 defined canonical

forms. These ambiguous clusters could be divided into two

categories, those which contained experimental data points

defined by a canonical form but could be further subdivided into

new clusters with distinct sequence motifs and loop conformations,

and those which contained experimental data points that were not

assigned to a canonical form.

Firstly, the enrichment of the existing structural space with

predicted structures led to subdivisions of existing canonical

clusters. For example, in CDRH1-Len-8 (Figures 3A, B) and

CDRH1-Len-10 (Figures 3C, D) as well as CDRL1-Len-11 and

CDRH2-Len-7 (Supplementary Figures 3A, B), we observed DBS

clusters with distinct amino acid motifs and loop conformations.

These were resolved from the increased structural dataset. The four

subclusters observed in CDRH1-Len-8 (Figure 3A) and derived

from the PyIgClassify2 canonical form H1-13-5 (Figure 3B, for

motifs and length comparisons see Table 1) showed different amino

acid patterns at position 2, 4 and 5 of the loops. These subclusters

had conformations which differed by RMSD of between 0.79-1.43 Å

for cluster centroids. Meanwhile the two subclusters identified from

the canonical formH1-15-2 (Figure 3D; Table 1) in CDRH1-Len-10
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loops exhibited a difference of 1.09 Å and had sequence patterns

that differed at six of the ten positions (Figure 3C).

For all four CDR loops where predictions gave rise to sub

clusters, the RMSD between new cluster centroids were often close

to the mean value of each analysis (range of mean values from all

pairwise comparisons: 0.96 – 1.03 Å, range of distances between

cluster centroids: 0.27 – 1.64 Å) and originated from examples

present in the training data. Hence the novel canonical classes

arising here did not come from generalisation or extrapolation, but

simply by statistical power - the increased sensitivity of density-

based clustering on the far larger structural set (number of

experimental data units versus predicted structures for CDRL1-

Len-11: 768 vs 6,992, CDRH1-Len-8: 5,196 vs 61,617, CDRH1-Len-

10: 314 vs 2,500 and CDRH2-Len-7: 1298 vs 27,769).
Enrichment of unassigned areas of
structural space defines new canonical
forms within heterogeneous sequences

The second set of novel clusters identified related to dense areas

of predicted structural space where a smaller number of

experimental structures existed but were defined as “unassigned”

to any canonical form in PyIgClassify2. For example, for CDRL1-

Len-7 a cluster made up of 909 predicted data points (and 32

experimental data points) was identified which was distinct from

the centroid of two existing canonical clusters by RMSD values of

3.94 and 4.31 Å respectively (Figure 4A). This “new” canonical form

has a sequence motif with a strong preference for SGH at positions

1-3 of the loop, in contrast to QSV in both existing forms (see logo

plot in Figure 4A, PyIgClassify2 annotations in Figure 4B and

corresponding motifs in Table 1). A second example, CDRL1-Len-9

(Figure 4C), had fewer experimental structures within that area (13

were present in training data) and comprised of 673 predictions.

The central motif of INV at positions 3-5 showed no overlap with

the enriched residues at the same positions within the three existing

canonical forms (Figure 4D, see Table 1), with RMSD values

between the corresponding cluster centroids of 2.99-3.51 Å. Both

observations were enabled by increased population of structural

space with ABB2 predictions from heterogeneous sequences,

however they are not evidence of extrapolation given their origins

in the training data.
New forms exemplify length independent
canonical classes arising from
somatic hypermutation

Within the CDRL3 loops we found two further examples of

highly populated DBS clusters that did not fit with any PyIgClassify2

definitions. These clusters were identified in the analyses of CDRL3

loops of lengths 10 and 11. Both areas of density contained

experimental structures that were classified as unassigned to any

high confidence canonical cluster by PyIgClassify2 (CDRL3-10

Figures 5A,B, and CDRL3-11 Figures 5D, E).
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However, these loop shapes are potentially derived from

somatic hypermutation (SHM) insertions into CDR loop

sequences classified as canonical forms at a shorter length

(Supplementary Figures 4A–C). These were evident from

inspection of logo plots of CDRL3-Len-10 cluster 3 position 8

(Figure 5C), and CDRL3-Len-11 clusters 1 and 5 at position 9

(Figure 5F), where the motif was nearly identical to that of a highly

populated cluster in the CDR one amino acid length below

(PyIgClassify2 canonical forms of L3-9-2 and L-10-cis78-1, see

Table 1). The SHM insertions were clearly visible on each logo

plot as they resulted in no consensus amino acid enrichment at a

fixed position in the loop (positions are marked by an arrow in

Figures 5C, F respectively).

Given we could identify the corresponding canonical cluster at

the shorter length (we termed this the ‘origin cluster’)

(Supplementary Figure 4), we decided to quantify and compare

the conformation differences between the two sets of loops. To

obtain distance scores that could be used for comparison, both for

loops of the same length and differing lengths, we substituted

pairwise RMSD calculations with dynamic time warping (DTW)
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calculations which can be performed on coordinate arrays of

differing dimensions (see methods for details).

We represented the structural relationships between CDRL3

loops of length 9 and 10 (Supplementary Figure 5A), and CDRL3

loops of length 10 and 11 (Supplementary Figure 5B) using DTW.

The cluster of loops representing the novel conformation in

CDRL3-10 (cluster 4: QQYxxxPxxT, coloured yellow in

Supplementary Figure 5A) was closest in 3D space (DTW

distance between cluster centroids of 0.68 Å) to a cluster

composed of CDRL3-Len-9 loops (cluster 1: QQYysxxxT,

coloured blue in Supplementary Figure 5A), and only 1.21 Å

away from the proposed origin cluster (CDRL3-Len-9 cluster 2:

QQyxxxPxT, coloured red in Supplementary Figure 5A). These

distances were less than, or comparable to both clusters present at

the same length of 10 (distances of 1.83 Å and 1.12 Å

apart respectively).

The same effect was more pronounced for the novel

conformation in CDRL3-Len-11 (cluster 5: QQYxxxPPxxT,

coloured pink in Supplementary Figure 5B). Here the centroids of

clusters found at the same length were 2.48 Å and 2.94 Å away,
A B

DC

FIGURE 3

Subdivisions of existing canonical classes into clusters with distinct sequence motifs and backbone conformations. For CDR loops of CDRH1 length
8 (A, B) and CDRH1 length 10 (C, D), distinct DBS clusters contained multiple experimental data points sharing the same canonical form. (A, C) show
colour coded DBS cluster logo plots, MDS plots coloured by DBS cluster membership and framework aligned backbone conformations of a sample
of 20 loops from each cluster in three different orientations. Data points in the MDS plots which do not belong to a DBS cluster are coloured black.
(B, D) show all experimental data points present in the MDS analysis coloured according to their high confidence PyIgClassify2 canonical form
annotation. Any loops that do not belong to a high confidence PyIgClassify2 cluster (defined by an asterisk in the label, e.g., H1-13-* and H-15-*) are
coloured in red. The predicted data points are coloured in black and underly the experimental annotations.
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while the cluster at the shorter length was only 2.07 Å away. Visual

inspection of the loop backbones from different clusters shows how

similar conformations of mismatched lengths (Figures 5H, J) can be

closer in 3D space than matched lengths from different DBS clusters

(Figures 5G, I).

These observations fit with the previously described idea of

length independence in canonical forms (26), where the closest

partner of a structural cluster, or CDR loop, is another cluster, or

loop, present at a different length. We hypothesise that the high

frequency of predicted structures derived from heterogenous

sequences in OAS altered by SHM, helped to reveal these length

independent patterns.
ABB2 can generalise across CDRL3 loops
which differ in length by one amino acid

To explicitly test whether the training and test data points with

a specific CDR length influence the predictions of CDR loops of a
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different length we performed several out-of-domain experiments.

These involved modifying the ABB2 training and test data to

remove all data points containing CDRL3 loops length of 8, 9 or

10 (one length per experiment). In each case a new instance of the

ABB2 model was trained on a reduced dataset. The resulting models

were used to make predictions from sequences of the withheld

length which could be assessed individually for accuracy, and

together for occupancy of structural space.

The first model tested was trained in the absence of all 392

datapoints (referring to all copies in the asymmetric unit of each

PDB file) that had CDRL3 length 8 loops. Prediction accuracy was

poor (Supplementary Figures 6A, B), with median RMSD values

(prediction versus ground truth) of 1.41 Å compared to 0.46 Å for

the fully trained ABB2 model (Figure 5K). There was no clear

separation of canonical clusters in conformational space, with

median values for each form above 1 Å from the ground truth

structure (Supplementary Figure 6B).

In contrast the model trained in the absence of CDRL3-Len-9

data had better prediction accuracy on the withheld structures
A B

DC

FIGURE 4

Novel canonical classes revealed by structure prediction. Breakdown of analyses where regions of structural space populated by *unassigned
experimental data (denoted by red data points with an asterisk in the PyIgClassify2 annotations) resolved to DBS clusters with distinct sequence logo
plots for CDRL1 length 7 (A, B) and CDRL1 length 9 (C, D). (A, C) show colour coded DBS cluster logo plots, MDS plots coloured by DBS cluster
membership and framework aligned backbone conformations of a sample of 20 loops from each cluster in three different orientations. Data points
in the MDS plots which do not belong to a DBS cluster are coloured black. (B, D) show all experimental data points present in the MDS analysis
coloured according to their high confidence PyIgClassify2 canonical form annotation. Any loops that do not belong to a high confidence
PyIgClassify2 cluster (defined by an asterisk in the label, e.g., L1-12-* and L-14-*) are coloured in red. The predicted data points are coloured in black
and underly the experimental annotations.
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FIGURE 5

ABB2 can generalise across CDRL3 loops which differ in length by one amino acid. Novel DBS clusters were identified for CDRL3 length 10 (A–C)
and CDRL3 length 11 (D–F). (A, D) show experimental data points coloured according to their high confidence PyIgClassify2 canonical form
annotation. Any loops that do not belong to a high confidence PyIgClassify2 cluster (defined by an asterisk in the label, e.g. L3-10-* and L3-11-*) are
coloured in red. The predicted data points are coloured in black and underly the experimental annotations. Data points in (B, E) are coloured
according to density-based clustering (DBS) membership, with the data points which do not belong to a DBS cluster coloured black. The areas
circled in yellow on all four MDS plots (A, B, D, E) relate to the DBS clusters of predicted data points, containing experimental data not assigned to
any canonical form that were likely to have arisen from length independence. Logo plots were shown with an arrow indicating the high entropy
position with no consistent enrichment (C, F) and likely somatic insertion into a shorter canonical cluster (see Supplementary Figure 5). Dynamic
time warping analysis permitted quantification of cluster distances between CDR loops of different length as well as clusters of the same length.
Clusters of the same length for CDRL3 length 10 are compared by visualising the backbone atoms and sequence logo plots (G), while the novel
cluster (coloured yellow) is compared against the proposed origin cluster that the short length of 9 in (H). The DTW distance between cluster
centroids is given below each logo plot. CDRL11 clusters of the same length are compared in (I), then the novel cluster and proposed origin cluster
in CDRL3 length 10 are compared in (J). Out-of-domain experiments were carried out by retraining ABB2 in the absence of all experimental data
points for each of the CDRL3 lengths 8, 9 and 10 [(K–M), also see Supplementary Figure 6]. Boxplots (median and upper and lower quartiles) and dot
plots of RMSD values between predictions and ground truth for each starved model versus the original ABB2 ensemble are compared (K), each dot
corresponds to the RMSD value of one comparison. The global conformational space of predictions on withheld data points specific to each model
are shown for the CDRL3 length 9 (L) and CDRL3 length 10 (M) starved models. The separation of data points according to canonical form
classification was compared to true conformational space and ABB2 ensemble predictions in Supplementary Figure 6 (for each length MDS
calculation was performed all data points in the same analysis to allow comparison).
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(3865 datapoints, median RMSD 1.05 Å) but still worse than the

fully trained ABB2 ensemble (median RMSD 0.46 Å). However, the

MDS representation of conformational space showed early

separation of data points defined by similar canonical clusters

(Figure 5L; Supplementary Figures 6C, D), indicating some

rationalisation of the sequence to structure relationship via length

offset data. Accuracy for the CDRL3-Len-10 model was the worst

(median RMSD 1.66 Å Figure 5K), however a higher standard

deviation reflected the correct separation of global conformational

space for data points of some canonical forms where loops were

close to 1 Å RMSD from the ground truth structure (Figure 5M;

Supplementary Figures 6E, F).

There are only 9 data points of CDRL3 length 7, and this may

explain why all predictions of CDRL3 length 8 for the starved model

fell into a single cluster. In contrast, models starved of CDRL3

lengths 9 and 10 were able to separate some predictions into areas of

conformational space close their ground truth structure. This may

have been due the abundance of data points either side of the

missing length in training data. These experiments, in addition to

the structural overlap of predictions of different lengths, provided

evidence of generalisation by ABB2 with origins in CDR length

independence. Furthermore, these out-of-domain experiments

serve as a powerful method to further explore the ability of deep

learning-based structure prediction methods to extrapolate and find

evidence of truly novel predictions.
Retraining whilst withholding canonical
conformations highlights limited ability
to extrapolate

Our analyses so far have not found any evidence of structural

clusters representing novel conformations within the CDR loops of

predicted antibody structures. Therefore, we set out to explicitly test

whether ABB2 could predict a loop conformation not seen in the

training data and without a parallel example at a different length. We

ran out-of-domain experiments to train models in the absence of all

examples of a specific canonical cluster and any close conformations

(see methods). We focused on CDRL1 lengths 6-9 as these analyses

showed the clearest cluster separation and the smallest proportion of

data points that did not fall into a DBS cluster. This helped to avoid

any ambiguity in the contents of the training data.
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Separate models were trained for each withheld canonical class

(numbers and training details given in Table 3). Each model was

analysed as before, by predicting the structures of sequences in the

withheld data and assessing the individual prediction accuracy as

well as total occupancy of structural space.

For the ‘starved’ model trained in the absence of CDRL1-Len-6

canonical cluster L1-11-3 (blue dots in Figure 6A, for sequence

motif see Table 1), all predictions failed to match the ground truth

conformation (Figure 6A) with mean (SD) RMSD difference of 1.54

(0.51) Å. The high standard deviation reflects how some predictions

were closer (less than 0.5 Å) to the ground truth structure, however

the majority adopted a similar conformation to the closest canonical

form L1-11-4 (pink dots in Figure 6A, cluster centroid distance of

1.81 Å) rather than the more distant forms of L1-11-1 or L1-11-2

(green and mustard dots Figure 6A, combined into one cluster by

our method, centroid distance: 2.75 Å).

A more pronounced loss of the ability to extrapolate was

observed for models starved of a canonical form in the remaining

experiments using CDRL1-Len-7 (Figure 6B) and CDRL1-Len-9

(Figure 6D). Here all withheld data points fell into a more distant

region of conformation space associated with mean prediction

accuracies that were much lower, at mean (SD) RMSD values of

1.98 (0.09) Å RMSD for length 7, and 3.34 (0.19) Å for length 9.

For CDRL1-Len-7 the low prediction accuracy may have been

due to very similar sequence motifs (DBS cluster: QSVSSSY,

corresponding PyIgClassify2 cluster L1-12-1: RASqSVSSSYLa,

versus DBS: QSVSSNY, PyIgClassify2 cluster L1-12-2:

RASQSVSSNYLA, see Table 1), as well as a small number of

examples within the training data (63 examples of the withheld

canonical form). In the case of CDRL1-Len-8, the model made

predictions of L1-13-3 (purple dots Figure 6C) that were in a similar

region of structural space, however they were still 2.43 (0.19) Å

away from ground truth values (Figure 6C).

These out-of-domain tests clearly demonstrated that the models

trained in the absence of a canonical class were unable to

recapitulate the correct conformations which could be predicted

by the fully trained ABB2 ensemble. The extent of the distance

between predictions and ground truth differed for each starved

model and related to both sequence similarity as well as structural

deviation. This led us to investigate whether prediction accuracy

could be recovered by adding very small amounts of training

examples back into the model.
TABLE 3 Details of retraining in the absence of canonical clusters.

Original
Model

CDRL1-6
Starved

CDRL1-7
Starved

CDRL1-8
Starved

CDRL1-9
Starved

FV structural units seen in training (including all copies in the asymmetric unit) 5771 5459 5556 5671 5554

Dropped units (corresponding to a specific canonical form) 0 312 215 100 217

Total units with CDR and length tested (before withholding a specific form) _ 2636 532 428 565

Remaining units with CDR tested (after removal) _ 2324 317 328 348
f

Breakdown of the number of antibody variable fragment (FV) structural units used to train ABB2 and the subsequent ‘starved’ models where all units containing a specific canonical form were
withheld. The term structural unit is used to account for multiple copies being present in the asymmetric unit of the same PDB file. For each model, the total number of units seen in training is
given, followed by the number of removed units. Then the total number of units related to the CDR being withheld is given (for example all units with CDRL1 IMGT length 6), followed by the
number of those units remaining after withholding those related to a specific canonical form.
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A

B

D

C

FIGURE 6

Retraining whilst withholding canonical clusters highlights limited ability to extrapolate. Results of out-of-domain experiments where ABB2 was
retrained in the absence of all experimental data points assigned to a specific canonical form in PyIgClassify2 (both high and low confidence) for
CDRL1 lengths 6-9 (A–D). MDS plots show experimental data points coloured according to their high confidence PyIgClassify2 canonical form
annotation. Any loops that do not belong to a high confidence PyIgClassify2 cluster (defined by an asterisk in the label, e.g., L1-11-*) are coloured in
red. CDRL1 length 6 was retrained in the absence of all data points assigned to the PyIgClassify2 cluster ‘L1-11-3’ [coloured blue in (A)]. For CDRL1
length 7 ‘L1-12-2’ was dropped [coloured blue in (B)]. For CDRL1 length 8 cluster ‘L1-13-3’ was dropped [coloured purple in (C)], and for CDRL1
length 9 cluster ‘L1-14-1’ was dropped [coloured green in (D)]. For each panel, the MDS of experimental data points found in SAbDab are shown in
the far-left panel. The MDS plot of ABB2 model predictions of the corresponding sequences are shown in the middle panel (labelled ‘ABB2’), and
predictions of the starved model are shown in the right panel (labelled ‘Starved’). The area of structural space investigated through exclusion during
training is highlighted in a red box. The boxplots (median and upper and lower quartiles) and dot plots on the far right of each panel indicate the
RMSD values for each predicted data point from the starved model from its target structure in predictions from the fully trained ABB2 ensemble (top
graph) or the ground truth structure (bottom graph) with each sub graph labelled accordingly.
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Inclusion of a small number of examples in
training is sufficient to recover
predictive capacity

We set out to assess whether limited amounts of training data

could recover missing predictions and thus quantify the level of

representation needed to produce more accurate models. We chose

CDRL1-Len-6 and CDRL1-Len-7 as these had the largest standard

deviations in prediction accuracy (see box plots Figure 6). For each

we progressively added increasing numbers of data points back into

the initial out-of-domain tests resulting in separate models for each
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addition of data (CDRL1-Len-6 Figures 7A, B and CDRL1-Len-7

Figures 7C, D).

pt?>As there were different total numbers of examples of

CDRL1-Len-6 and CDRL1-Len-7 loops in training data (Table 3),

the absolute number of PDB structures added back for each

experiment did not represent the same proportion of datapoints.

Therefore, we calculated the included loops as a percentage of all

CDRL1 loops seen for each model (Table 4). Using these values

(Table 4) and inspection of the corresponding model performance

(Figure 7), we could see that very small percentages of training data

(less than 1%) were enough to allow the models to accurately
A

B

D

C

FIGURE 7

Data points that make up less than 1% of training data are sufficient to recover predictive capacity. Out-of-domain experiments were performed as
in Figure 6, however for each model a specified number of experimental data points relating to the withheld canonical form were added into the
training data (left to right for each panel, graphs are labelled with the percentages of data points added). Separate models were trained for each of
the incrementally increasing data additions until the prediction accuracy came close to the fully trained ABB2 ensemble predictions and the ground
truth experimental data. MDS plots for CDRL1 length 6 models (A) and CDRL1 length 7 (C). The amount of data being included is labelled at the top
of each panel as a percentage of the total number of unique structures out of all data points seen in training (see Table 4). The corresponding ABB2
predictions and ground truth data are shown in the far-right MDS plots in each panel. RMSD distance values are plotted in (B, D) for the predicted
data points relating to the dropped canonical form from each model relative to the ABB2 ensemble predictions (top graph) or ground truth data
(bottom graph). For each model, the mean RMSD is given above the box plots, with standard deviation given in brackets. For (B, D), the top, far-right
graph RMSD values are zero as the ABB2 model predictions are being compared to itself, with the comparison of ABB2 to ground truth data
shown below.
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recapitulate the cluster corresponding to the missing

canonical form.

To check that these small proportions of data were enough to

facilitate accurate predictions within the original ensemble

architecture of ABB2, instead of a single model, we trained

ensembles on two inclusion proportions (one above and one

below the proportion where we first saw improvement ~ 0.6%,

see Table 4) and analysed the resulting final output (the average

structure from all four predictions). This demonstrated that the

ensemble models still failed to recapitulate at the lower percentage,

while the higher percentages were sufficient for the ensemble to

progressively populate the missing structural space despite still

being below 1% of total examples of that CDR loop (RMSD plots

marked as ‘ensemble’ in Figures 7B, D).

These analyses underline the importance of sufficient data

representation and suggest that even small numbers of datapoints

can influence the predictive capacity drawn from large datasets.

Ultimately the inability of models to truly extrapolate from physical

principles means researchers must pay close attention to the

contents of their datasets and continue to collect experimental

data that explores lesser studied areas of structural space.
Discussion

In this study we analysed the predicted structures for paired

sequences present in OAS generated by ABodyBuilder2 (ABB2)

(20). Our data driven approach allowed identification of structural

clusters within CDR loops of the same length and subsequent
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linkage to existing definitions of canonical forms. Our analyses

aimed to explore the ability of structure predictors to enrich the

experimentally defined landscape of canonical forms and identify

novel conformations that would reflect generalisation or

extrapolation arising from a deep learning method.

The augmentation of existing data with predicted structures

enabled us to define new canonical clusters composed of

heterogeneous CDR sequences which were united by the same

loop backbone conformation and a sequence motif. These arose

from both subdivision of areas of conformational space with

uniform PyIgClassify2 annotation, as well as within highly

populated areas of conformational space not assigned to any

existing canonical form definition. Novel clusters of predicted

loop conformations were also produced via the phenomenon of

length independence (26). We observed areas of new density which

had sequence enrichments identical to those of canonical forms at a

shorter CDR length but contained a positionally fixed high entropy

residue likely indicative of somatic hypermutation insertion. We

analysed the distances between loop conformations at both the

shorter and longer lengths by dynamic time warping. This revealed

that different length loop clusters were indeed closer in

conformational space than any of those of the same length. Out-

of-domain experiments confirmed that ABB2 was able to generalise

across loops of different lengths and suggested predictions were

influenced by high frequency experimental datapoints seen in

shorter CDR loops.

However, our analyses could not find new clusters which had no

origin in training data and thus represented true extrapolation.

Therefore, we performed further out-of-domain experiments by

retraining our ABB2 structure predictor whilst withholding data

points which belonged to specific canonical forms. These ‘starved’

models were then challenged with correctly predicting the unseen

CDR loop conformation. We found that ABB2 retrained in this way

was unable to predict conformations not seen during training, but

this inability could be resolved by inclusion of a small number of

examples representing between 0.5-1.0% of the total data used in

development. This suggests that effective prediction accuracy by

structure predictors can be achieved for conformations even when

they have very poor representation in the dataset.

Our study highlights important limitations regarding the

current capabilities of deep learning structure prediction tools

specific to the domain of immune receptor CDR loops. Whilst

numerous studies have performed out-of-domain experiments and

exploratory analysis on protein folds, the conformational space of

CDR loops may offer greater challenges, particularly in regions that

are inherently flexible or adopt distinct structures in bound and

unbound states.

These challenges emphasise that if we wish to predict outside

current known structure space, new structure prediction tools that

have learnt the underlying rules which govern tertiary structure,

instead of just patterns in the training data, will be required. While

AlphaFold2 was heralded as a huge advance in structural biology

and machine learning, the higher goal of building models that can

capture biophysical laws has still not been reached (46, 47). In the
frontiersin.or
TABLE 4 Inclusion data points as a proportion of total CDRL1 data units
in training.

Number of included
PDB structures of
withheld canoni-
cal form

CDRL1-6
Number of
structural
units included
(percentage
of all data
points
of CDRL1)

CDRL1-7
Number of
structural
units
included
(percentage
of all data
points
of CDRL1)

All 2636 (45.7%) 532 (9.2%)

0 _ _

5 9 (0.16%) 8 (0.14%)

10 21 (0.38%) 15 (0.27%)

19 _ 33 (0.59%)

20 43 (0.79%) _

21 _ 38 (0.68%)

22 _ 40 (0.72%)
For inclusion experiments a specific number of PDB structures were gradually reintroduced to
training data for a series of models. As PDB files may contain more than one structure in the
asymmetric unit, the number of exact structural units is given for each experiment, as well as
the corresponding percentage of all CDRL1 data points present in each training run.
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absence of architectures that can extrapolate, greater amounts of

training data, particularly in regions of structure space with poor

coverage, may help improve predictive accuracy. Our

demonstration that a small number of examples can address gaps

means that a critical mass of data could be achieved to overcome the

limitations of current models. However, this does place a large

burden on experimental researchers to collect more data.

Finally, our results focused on an area of structural immunology

relatively abundant with data and analyses, that of antibodies. As T cell

receptors become more important in both immunotherapy research

and the clinic, a need to better classify and understand this protein for

the purpose of structure prediction may supersede that of antibodies.

Therefore, the questions posed in this study may take on more

relevance in a field with a relative paucity of structure and paired

sequencing data (48), as well as several unanswered questions on TCR

loop flexibility and comparative conformational freedom (29).

The original purpose of canonical forms was their ability to

predict structure from sequence, however these use cases have been

superseded by the improved performance of ML methods for

structure prediction. For experimental techniques such as X-ray

crystallography to be rendered redundant in immunology we must

have confidence that structure prediction algorithms faithfully

replicate the most important region of immune receptors, the

CDR loops.
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