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Early dynamic changes to
monocytes following major
surgery are associated with
subsequent infections
Timothy Arthur Chandos Snow1, Alessia V. Waller1,
Richard Loye1, Francis Ryckaert1, Antonio Cesar1,
Naveed Saleem1, Rudra Roy1, John Whittle2,
Ahmed Al-Hindawi1, Abhishek Das3, Mervyn Singer1,
David Brealey1,4†, Nishkantha Arulkumaran1*† and the University
College London Hospitals Critical Care Research Team
1Bloomsbury Institute of Intensive Care Medicine, University College London, London, United
Kingdom, 2Centre for Anaesthesia, Critical Care & Pain Medicine, University College London,
London, United Kingdom, 3Division of Infection & Immunity, University College London,
London, United Kingdom, 4National Institute for Health and Care Research, University
College London Hospitals Biomedical Research Centre, University College London Hospitals,
London, United Kingdom
Background: Post-operative infections are a common cause of morbidity

following major surgery. Little is understood about how major surgery perturbs

immune function leading to heightened risk of subsequent infection. Through

analysis of paired blood samples obtained immediately before and 24 h following

surgery, we evaluated changes in circulating immune cell phenotype and

function across the first 24 h, to identify early immune changes associated

with subsequent infection.

Methods: We conducted a prospective observational study of adult patients

undergoing major elective gastrointestinal, gynecological, or maxillofacial

surgery requiring planned admission to the post-anesthetic care unit. Patients

were followed up to hospital discharge or death. Outcome data collected

included mortality, length of stay, unplanned intensive care unit admission, and

post-operative infections (using the standardized endpoints in perioperative

medicine–core outcome measures for perioperative and anesthetic care

criteria). Peripheral blood mononuclear cells were isolated prior to and 24 h

following surgery from which cellular immune traits including activation and

functional status were assessed by multi-parameter flow cytometry and serum

immune analytes compared by enzyme-linked immunosorbent assay (ELISA).

Results: Forty-eight patients were recruited, 26 (54%) of whom developed a

post-operative infection. We observed reduced baseline pre- and post-operative

monocyte CXCR4 and CD80 expression (chemokine receptors and co-

stimulation markers, respectively) in patients who subsequently developed an

infection as well as a profound and selective post-operative increase in CD4+

lymphocyte IL-7 receptor expression in the infection group only. Higher post-

operative monocyte count was significantly associated with the development of

post-operative infection (false discovery rate < 1%; adjusted p-value = 0.001) with

an area under the receiver operating characteristic curve of 0.84 (p < 0.0001).
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Conclusion: Lower monocyte chemotaxis markers, higher post-operative

circulating monocyte counts, and reduced co-stimulatory signals are

associated with subsequent post-operative infections. Identifying the

underlying mechanisms and therapeutics to reverse defects in immune cell

function requires further exploration.
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Introduction

Post-operative infections are a significant cause of morbidity,

affecting up to 40% of patients undergoing major surgery (1, 2).

Surgery activates the immune system in response to physical

damage to tissues (“sterile inflammation”), with many similarities

with infections (3). This response is influenced by a myriad of

factors including patient age, medical conditions (e.g., cancer), and

medications. A number of immune responses following surgery are

associated with subsequent infections (4, 5). Two well-characterized

changes associated with post-operative infections are a reduction in

monocyte HLA-DR (human leukocyte antigen–DR isotype) and

persistent lymphopenia (6, 7). Similar changes are seen in patients

who die from sepsis (8).

Despite these known associations, the duration, intensity, and

characteristics of the immune response to surgery and its impact on

the response to infections remain poorly characterized. Better

understanding may facilitate identification of high-risk patients,

the risk period, and preventative therapies.

We hypothesized that immune pathways that are reproducibly

perturbed early after major surgery may guide approaches to

modulate immune responses to mitigate the risk of subsequent

infections. We therefore evaluated if there were differences in

changes to immune cell phenotype before and 24 h following

surgery between patients who did and did not develop a post-

operative infection. We also investigated the in vitro immune

response to an infectious challenge before and after surgery, to

determine if surgery altered the immune response to a subsequent

infectious challenge, and if this was different between patients who

did and did not develop a post-operative infection.

The commonality in the immune response to surgery and sepsis

focused our analysis to a panel of druggable immune targets and

associated pathways typically associated with immunosuppression

in sepsis (3, 8, 9). This included receptors commonly associated

with monocyte antigen presentation and co-stimulation (HLA-DR,

CD80, and CD86), immune checkpoint inhibition [lymphocyte PD-

1 (programmed cell death protein-1) and monocyte PD-L1

(programmed death-ligand 1)], lymphocyte proliferation/

maturation [interleukin-2 (IL-2) and IL-7 receptors], lymphocyte

activation [CD28 and cytotoxic T-lymphocyte–associated protein 4
02
(CTLA-4)], and lymphocyte viability. We also assessed monocyte

chemokine receptors (CCR2 and CXCR4) and intracellular

cytokines for a more comprehensive analysis (Figure 1).
Materials and methods

Ethics

Ethical approval for obtaining clinical samples and data was

received from the London – Queen Square Research Ethics

Committee (REC reference 20/LO/1024). Ethics for obtaining

healthy volunteer samples and data was obtained from University

College London Research Ethics Committee (REC reference

19181/001).
Clinical study participants

We conducted a prospective observational study of patients

aged ≥18 years who were undergoing major elective surgery at

University College London (UCL) Hospitals between 1 August 2021

and 31 July 2022 requiring planned admission to the post-

anesthetic care unit (10). Patient demographics, clinical data

(physiology and diagnoses), laboratory data, and clinical

outcomes were recorded from electronic healthcare records. We

calculated the post-operative risk of death using the surgical

outcome risk tool (SORT) score (11). The presence of a post-

operative infection was adjudged by the treating clinical team based

on clinical and laboratory data. We retrospectively assessed if

patients met objective criteria of post-operative infections as

defined by the standardized endpoints in perioperative medicine–

core outcome measures for perioperative and anesthetic care (StEP-

COMPAC) criteria (12). Patients were followed up to hospital

discharge/death.

We conducted an exploratory sub-study of patients undergoing

major surgery as part of a larger study investigating biomarkers in

sepsis (REC reference 20/LO/1024). Based on healthy volunteers

demonstrating a mean monocyte HLA-DR median fluorescence

intensity (MFI) of 10,000 ± 2,500, with a power of 80%, and alpha of
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0.05, a sample size of 25 would be required to detect a statistically

significant difference of 20% between the two groups. We estimated

sample size based on monocyte HLA-DR being reproducibly

associated with mortality among critically ill patients with

sepsis (8).

Sample processing
Following patient recruitment, venesection was performed at

induction of anesthesia and 24 h after surgery and 8 mL of blood

drawn into a cell preparation tube with sodium heparin (CPT™)

vacutainer and a further 5 mL drawn into a serum tube [Beckton

Dickinson (BD), Wokingham, UK]. Samples were processed within

1 h of venesection. CPT™ vacutainers were centrifuged at 1,500 g

for 15 min at room temperature and the peripheral blood

mononuclear cell (PBMC) layer extracted, washed twice in 2 mL

of phosphate-buffered saline (PBS) before being resuspended in

freezing media (fetal bovine serum [FBS; Gibco, Thermo Fisher

(TF), Cambridge, UK] with 10% dimethyl sulfoxide (Sigma) and

frozen to −80°C in a Mr Frosty™ and transferred to liquid nitrogen

within 48 h for long-term storage.

Samples were analyzed in batches. Frozen PBMCs were

defrosted by resuspension in RPMI Glutamax medium (Gibco)

with 10% FBS (TF), washed once in media, counted (Countess 3

Automated cell counter, TF), and diluted to a concentration of 1 ×

106/mL. PBMCs were either labeled with antibodies for flow

cytometry or cultured for in vitro stimulation.
In vitro stimulation

For in vitro stimulation, PBMCs (1 × 106/mL) were plated into

96-well plates (VWR, Lutterworth, UK) and incubated at 37°C, 5%

CO2 with either heat-killed E. coli 0111:B4 (HKB, TF) at a

concentration of 1 × 108/mL for 12 h (for monocyte analysis) or

CD3-28 beads (Miltenyi Biotec, Woking, UK) at a concentration of

4:1 for 48 h (for lymphocyte analysis). Following incubation, plates
Frontiers in Immunology 03
were centrifuged at 400 g for 5 min at room temperature in

preparation for cell staining.
Flow cytometry

To assess monocyte cell surface antigens, PBMCs were

resuspended in PBS and incubated with relevant antibodies

[CD14, CD16, HLA-DR, CD-80, CD-86, and CD274 (PD-L1)]

and viability stain (Aqua UV Live/Dead). To assess lymphocyte

viability and cell surface antigens, PBMCs were resuspended in

annexin buffer (BD) and relevant antibodies [CD3, CD4, CD8,

CD19, CD25 (IL-2RA), CD28, CD127 (IL-7RA), CD152 (CTLA-4),

CD274 (PD-L1), and CD279 (PD-1)] with viability stain (Aqua UV

Live/Dead and Annexin V). Details of products and concentrations

used are detailed in Supplementary Table 1.

Intracellular cytokines were assessed by resuspending PBMCs

in PBS and incubated with relevant cell surface antibodies and

viability stain (Blue UV Live/Dead). After 30 min, PBMCs were

fixed and permeabilized using the CytoFix/Perm kit (BD) after

which they were resuspended and incubated in Cytoperm/Wash

(BD) with antibodies to intracellular cytokines. Cells were acquired

on an LSR II or Fortessa X20 flow cytometer (BD) running BD

FACSDiva version 9.

Calibrations beads (BD) were run prior to each experiment, and

compensation controls were applied to all samples prior to analysis.

Single-stained unstimulated healthy donor cells were used as

compensation controls for cell surface markers. Healthy donor

cells were heat-treated at 60°C for 10 min as a positive control for

cell death. Compensation beads (BD) were used as positive controls

for intracellular cytokines. Fluorescence-minus-one samples for all

fluorophores were used to identify cell populations. Cell

populations of interest were identified using the following

Boolean gating strategy: lymphocytes or PBMCs, singlets, live

cells, and cell surface markers and stopping gate set at 10,000

events for either CD14+ monocytes or CD4+ lymphocytes.
FIGURE 1

Summary of potential druggable monocyte and T-lymphocyte immune pathway targets assessed. Assessment of a panel of druggable immune
targets and associated pathways typically associated with immunosuppression in sepsis underpinning the commonality in the immune response to
surgery and sepsis. CD, cluster of differentiation; HLA-DR, human leukocyte antigen–DR isotype; LD, live/dead; CCR2, C-C motif chemokine
receptor 2; CXCR4, CXC motif chemokine receptor 4; IL, interleukin; CTLA-4, cytotoxic T-lymphocyte–associated protein 4; TCR, T-cell receptor,
PD-1, programmed cell death protein-1; PD-L1, programmed death-ligand 1.
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Flow cytometry data were analyzed using FlowJo (version

10.7.1, BD). Samples with cell counts fewer than 50 in the

population of interest were excluded.
ELISA

We measured levels of IL-1b, IL-6 IL-10, TNF-a, PD-1, and
PD-L1 in patient serum using Duoset ELISA kits (R&D Systems,

Minneapolis, MN) as per the manufacturer’s instructions. Samples

were diluted 1:2 in reagent dilutant. Optical densities were acquired

on a SPECTROstar Nano microplate reader (BMG Labtech,

Aylesbury, UK).
Statistics

Clinical and demographic data are presented either as median

(inter-quartile range) or number (percentage). Flow cytometry data

are presented as either MFI (arbitrary units) or percentage positive

cells with interquartile ranges. Continuous data were analyzed using

Kruskal–Wallis test or Mann–Whitney U-test for comparison of

more than two or two groups, respectively, whereas chi-squared test

was used for analysis of categorical data.

Mixed-effects two-way ANOVA was used to assess the

difference in continuous data over time (before and 24 h after

surgery) between patients with and without subsequent infections.

Data are presented as differences over time, between groups, and the

difference in the change over time between the two groups

(interaction term).

To assess if patients undergoing surgery demonstrate an immune

signature, we undertook a principal component analysis (PCA) of 62

immune markers, age, and body mass index (BMI) for all patients for

whom full datasets were available. Immune markers consisted of nine

serological markers, nine monocyte markers, six CD4 lymphocyte

markers, and six CD8 lymphocyte markers. Each immunological

marker was assessed prior to and 24 h following surgery.

To identify statistically significant discriminators between patients

with and without subsequent infections, we conducted multiple

comparisons using a Mann–Whitney test and calculated a corrected

p-value (−log10) with a false discovery rate (FDR) of 1% using a two-

stage step-up method of Benjamini, Krieger, and Yekutieli, and area

under the receiver operating characteristic curve (AUROC); and data

are presented using a volcano plot. Graphs were constructed, and

statistical analysis was performed using Prism (version 10, GraphPad,

San Diego, CA). We conducted a regression analysis to assess

independent risk factors associated with post-operative infection,

using SPSS version 29.0 (IBM, Armonk, NY).
Results

Study participants

Forty-eight patients and 16 healthy volunteers were recruited

(Figure 2). Details of missing data are provided in Supplementary
Frontiers in Immunology 04
Table 2. There was no difference in age (68 vs. 66), sex (64% vs. 79%

male), BMI (24.73 vs. 25.23), American Society of Anesthesiologists

(ASA) grade (2 vs. 3), co-morbidities, surgical site, use of

dexamethasone for postoperative nausea and vomiting

prophylaxis, or use of or duration of peri-operative antibiotics

between patients who did or did not develop a post-operative

infection. All patients received their first dose of prophylaxis

within 30 min prior to skin incision (Table 1). Compared to

healthy volunteers, patients were older (67 vs. 36; p < 0.0001),

although sex (72% vs. 66%) and BMI were similar (25.0 vs. 23.54).

Twenty-six (54%) patients developed a post-operative infection

as defined by the StEP-COMPAC criteria (12). Site of infection

included pneumonia (n = 17), wound (n = 4), anastomotic leak (n =

2), urinary tract (n = 2), and unknown (n = 1; this patient had

clinical features consistent with an infection including fever;

however, the source of the infection was unknown). Infections

were diagnosed a median of 3 (2–4) days following surgery, with 10

patients having positive microbial cultures (Supplementary

Table 3). Patients who developed an infection were more likely to

have cancer (p = 0.0822), with distant spread (p = 0.0261), and

receiving neoadjuvant chemotherapy (p = 0.0822). Their

perioperative risk of mortality as measured by SORT score was

higher (p = 0.0169) and operative times were longer (p = 0.0138).

Patients who developed an infection had a longer hospital length of

stay (p = 0.0001) although there were no differences in unplanned

ICU readmission or mortality (Table 1). Antibiotic duration was a

median of 5 (3–12) days for treatment of post-operative infections.
FIGURE 2

Flow diagram of patients screened and included in the study.
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TABLE 1 Baseline demographics.

Variable Healthy volunteer (n
= 16)

No post-op infection
(n = 22)

Post-op infection (n
= 26)

p-value (patient
groups only)

Age (years) 36 (35–38) 68 (56–72) 66 (56–72) 0.9556

Gender (% male) 66% 64% 79% 0.7749

BMI 23.54 24.73 25.23 0.5426

Co-morbidities

Hypertension (%) – 41% 27% 0.3057

Cardiovascular disease (%) - 23% 19% 0.7663

Respiratory disease (%) – 27% 38% 0.4126

Type 2 diabetes (%) - 9% 19% 0.3213

ASA Grade (%) – 2 (2–3) 3 (2–3) 0.3561

Active cancer (%) - 64% 96% 0.0822

Cancer staging – 1 (2–3) 2 (2–3) 0.0261

Neoadjuvant
chemotherapy (%)

- 36% 67% 0.0822

Other immunosuppressive
medication (%)

– 9% 8% 0.8613

Long-term steroids - 9% 4% 0.4545

SORT score (%) – 0.47 (0.25–0.87) 1.48 (0.37–3.17) 0.0169

Type of surgery

Upper GI (%) – 50% 75% 0.3218

Lower GU (%) - 27% 21%

Maxillofacial (%) – 9% 13%

Gynecological (%) - 9% 0%

Other (%) – 5% 0%

Peri-operative antibiotics

Prophylaxis
administered (%)

– 95% 100% 0.2931

Duration of
prophylaxis (days)

- 1 (0–1) 1 (0–1) 0.7640

Intra-operative
dexamethasone use (%)

– 95% 84% 0.2206

Operation duration (min) - 174 (112–280) 287 (204–350) 0.0138

Blood loss (mL) – 500 (500–500) 500 (100–500) 0.2019

Peri-operative blood
transfusion (%)

- 5% 4% 0.9038

Unplanned ICU
readmission (%)

– 5% 19% 0.1253

Clavien–Dindo classification - 1 (0–1) 2 (2–3a) <0.0001

Hospital length of stay (days) – 8 (7–13) 15 (11–27) 0.0001

Death (%) - 9% 4% 0.4545
F
rontiers in Immunology
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Continuous data were analyzed using Mann–Whitney U-test for comparison of two groups, whereas chi-squared test was used for analysis of categorical data. BMI, body mass index; ASA,
American Society of Anesthesiologists; GI, gastrointestinal; GU, genitourinary; ICU, intensive care unit. Blood loss was categorized as <100, 100–500, 500–1,000, 1,000–2,000, or >2,000 mL. For
analysis, the higher value of the range was used.
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Changes to immune cell phenotype 24 h
following major surgery

Twenty-four hours following surgery, there was a significant

fall in lymphocyte count (p < 0.0001) and rise in neutrophil

count (p < 0.0001), neutrophil:lymphocyte ratio (p < 0.0001), C-

reactive protein (CRP) (p < 0.0001), serum IL-7 (p = 0.0020), and

serum IL-6 (p = 0.0031) among patients with and without post-

operative infections. There was a significant increase in monocyte

CCR2 (p < 0.0001) expression and decreased CXCR4 (p < 0.0001),

PD-L1 (p = 0.0009), HLA-DR (p < 0.0001), and CD86 (p < 0.0001)

expression. CD4+ lymphocytes demonstrated a decrease

in CD28 expression (p = 0.0002) and an increase in IL-7R (p =

0.0001) expression, whereas CD8+ lymphocyte expression of CD28

was decreased (p = 0.0317) (Figures 3–5; Supplementary Table 4).

Compared to patients who did not have a post-operative

infection, patients who developed an infection had a higher

monocyte count (p = 0.0487), higher CD4+ lymphocyte IL-7R (p

< 0.0001) and CD8+ lymphocyte IL-2R (p = 0.0114) expression, and

lower monocyte CCR2 (p = 0.0079) and PD-L1 (p = 0.0028)

expression before and after surgery.

We next assessed surgery-induced immune perturbations across

24 h in patients who did and did not develop a post-operative

infection. Compared to patients who did not have any post-operative

infection, patients who developed an infection had an increase in

monocyte count (p = 0.0037) and CD4+ lymphocyte IL-7R (p <

0.0001) and a decrease in monocyte CD80 (p = 0.0279) and CXCR4

expression (p = 0.0220) (Figures 4, 5; Supplementary Table 4).

PCA was conducted in 25 of 48 patients for whom full datasets

were available. PCA provided reasonable separation between patients

with and without subsequent infections with the first two

components providing 30% cumulative proportion of variance.

Monocyte chemokine receptors (pre- and post-operative monocyte

CXCR4) and receptors involved in antigen presentation (CD80) were

the greatest discriminators between patients with and without post-

operative infections (loading vector coefficient of > 0.8). Post-

operative monocyte count was significantly associated with the

development of post-operative infection (FDR < 1%; adjusted p-

value = 0.001) with an AUROC of 0.84 (p < 0.0001) (Figure 6).

Covariates included in the multivariate analysis to assess for risk

factors associated with post-operative infection were based on

univariate analyses. We included post-operative monocyte count,

age, the presence of active cancer, and surgical time in the

regression analysis. Active cancer (OR = 24.6; p = 0.056) and

post-operative monocyte count (OR = 8.9, p = 0.056) were

associated with increased risk of post-operative infections, albeit

not statistically significant. Age (OR = 1.019; p = 0.593) and surgical

time (OR = 1.004; p = 0.327), however, were not independently

associated with post-operative infections (Supplementary Table 5).
In vitro functional capacity of PBMCs
before and after surgery

Analysis of immune cell phenotype before and after surgery

provided insight into changes associated with surgery. Next, we
Frontiers in Immunology 06
sought to investigate the effect of surgery on the ability of immune

cells to respond to an in vitro stimulus (i.e., their functional

capacity). PBMCs isolated from healthy volunteers were used as

a reference.
Monocyte stimulation

Following 24 h of stimulation with HKB, there was an increase

in CD86 (p = 0.052), IL-1b (p = 0.005), and tumour necrosis factor

alpha (TNF-a) (p = 0.0049) and a reduction in CXCR4 (p = 0.0005)

and HLA-DR (p = 0.001) in healthy volunteer monocytes. Among

patients without a post-operative infection, there was an increase in

monocyte IL-1b (p = 0.0141) and a reduction in CXCR4 (p = 0.004)

in pre-operative samples. Following surgery, there were no changes

in monocyte phenotype following HKB stimulus. Among patients

with a post-operative infection, there were no changes in monocyte

phenotype following HKB stimulus in pre-operative samples.

Following surgery, HKB induced an increase in monocyte PD-L1

expression (p = 0.003) and reduction in IL-10 (p = 0.0255)

(Figure 7; Supplementary Table 4, Supplementary Figure 1).
CD4+ lymphocyte stimulation

Following PBMC stimulation with CD3-CD28 beads, an

increase in CD4+ lymphocyte IL-2R expression and a reduction

in IL-7R expression were consistent between healthy volunteers,

pre-operative and post-operative samples (in patients with and

without post- operative infections) (p < 0.05 for all). An increase

in CD4+ lymphocyte CD28 expression was seen in all groups (p <

0.05 for all) apart from pre-operative samples from patients with

post-operative infections. CTLA-4 expression increased only in pre-

operative PBMCs isolated from patients with (p = 0.0322) and

without (p = 0.0283) subsequent infections.

An increase in CD4+ lymphocyte PD-1 was limited to healthy

volunteers (p = 0.0024) and in pre-operative PBMCs from patients

without post-operative infection (p = 0.0032), although an increase

in CD4+ lymphocyte apoptosis was not observed. In contrast, there

was in increase in CD4+ lymphocyte % apoptosis (p = 0.0059)

among pre-operative samples from patients with post-operative

infections, but no increase in PD-1 expression (Figure 7;

Supplementary Figure 2).
CD8+ lymphocyte stimulation

Following PBMC stimulation with CD3-CD28 beads, an

increase in CD8+ lymphocyte IL-2R expression was consistent

between healthy volunteers, pre-operative and post-operative

samples (in patients with and without post-operative infections)

(p < 0.05 for all). An increase in CD8+ lymphocyte CD28 expression

was seen in patients before and after surgery (with and without

post-operative infections) (p < 0.05 for all), but not in healthy

volunteers. In contrast, an increase in CTLA-4 was seen in healthy
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volunteers (p = 0.0210) but not in PBMCs isolated from patients

before and after surgery. A reduction in IL-7R expression was

evident only in healthy volunteers (p = 0.0005) and in pre-operative

PBMCs isolated from patients with (p = 0.0277) and without (p =

0.0275) subsequent infections. An increase in CD8+ lymphocyte

PD-1 expression was seen in healthy volunteers (p = 0.001), in pre-

operative CD8+ lymphocytes from patients without infectious

complications (p = 0.0082) and post-operative CD8+ lymphocytes

from patients with infectious complications (p = 0.0060) (Figure 7;

Supplementary Table 4; Supplementary Figure 2).
Frontiers in Immunology 07
Discussion

We demonstrate reduced baseline pre- and post-operative

monocyte CXCR4 and CD80 expression (chemokine receptors

and co-stimulation markers, respectively) in patients who

subsequently developed an infection as well as a profound and

selective post-operative increase in CD4+ lymphocyte IL-7 receptor

expression in the infection group only. Higher post-operative

monocyte count was significantly associated with the

development of post-operative infection (FDR < 1%; adjusted p-
FIGURE 3

Serum and hematological variables identify an immunosuppressive phenotype both pre- and post-operatively, which is associated with the
development of subsequent perioperative infections. Whole blood and serum were taken from patients undergoing major surgery at induction of
anesthesia [pre-op (PO)] and 24 h post-operatively (D1) and analyzed by clinical laboratory evaluation whole-blood monocyte count (a.i.),
lymphocyte count (a.ii.), neutrophil count (a.iii.) and neutrophil/lymphocyte ratio (NLR) (a.iv.), and CRP (b.i.). The following serum levels were
measured by ELISA: TNF-a (b.ii.), IL-1b (b.iii.), IL-10 (b.iv.), PD-1 (c.i.), IL-7 (c.ii.), PD-L1 (c.iii.), and IL-6 (c.iv.). Data are expressed as either count or
concentration. Dots represent individual patients, horizontal bar represents the median, box represents the interquartile range, and whisker
represents the range. Data are analyzed using mixed-effects two-way ANOVA. Data are presented as differences over time, between groups, and the
difference in the change over time between the two groups (interaction term). Only p-values < 0.05 shown. ns, not significant.
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value = 0.001) with an area under the receiver operating

characteristic curve of 0.84 (p < 0.0001).

Major surgery represents a significant and prolonged

physiological and inflammatory insult. Our understanding of how

the immune response becomes perturbed in this context remains

limited, although several reports how shown that innate and
Frontiers in Immunology 08
adaptive cells can mount opposing pro-inflammatory functions

and anti-inflammatory functions (13–15). We therefore

hypothesize that patients in whom immunosuppression is

profound are those most likely to develop infection. We found

that changes in immune phenotype within 24 h of major surgery

were associated with the development of a subsequent infection.
FIGURE 4

Monocytes express an immunosuppressive phenotype both pre- and post-operatively, which is associated with the development of subsequent
perioperative infections. PBMCs were isolated from patients undergoing major surgery at induction of anesthesia [pre-op (PO)] and 24 h post-
operatively (D1) and analyzed by flow cytometry with the following gating strategy: PBMCs, single cells, Live HLA-DR+ cells, and CD14/CD16
differentiation (a.i.–a.iv.). The following data were analyzed: whole-blood monocyte count (a.v), percentage dead (a.vi), percentage classical
population (a.vii.), HLA-DR (b.i.), CD80 (b.ii.), CD86 (b.iii.), IL-1b (b.iv.), TNF-a (b.v.), IL-10 (b.vi.), CCR2 (c.i.–c.v.), CXCR4 (d.i.–d.v.), and PD-L1 (e.i.–
e.v.). Data are expressed as either median fluorescence intensity (MFI) measured in arbitrary units (A.U.) or percentage of population (%). Dots
represent individual patients, horizontal bar represents the median, box represents the interquartile range, and whisker represents the range. Data are
analyzed using mixed-effects two-way ANOVA. Data are presented as differences over time, between groups, and the difference in the change over
time between the two groups (interaction term). Only p-values < 0.05 shown. ns, not significant.
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A significant reduction in receptors involved in monocyte

antigen presentation (CD80) and chemokine receptors (CXCR4)

was associated with infectious complications. Monocyte CCR2

expression increased following surgery, in patients with and

without post-operative infections. However, patients who

developed post-operative infections had lower levels of CCR2

expression pre- and post-operatively compared to patients

without post-operative infections. Circulating monocyte counts

fell in patients who did not develop any post-operative infections,

whereas this was not evident in patients who developed a post-

operative infection. Together, these findings suggest an impairment

in monocyte chemotaxis to sites of inflammation or infection are

associated with post-operative infections. Post-operative

complications in high risk and cancer surgery are associated with

higher peripheral monocyte counts (16, 17). The mechanism

underpinning this observation is unclear, but may represent an

impairment in ability of monocytes to migrate to sites of
Frontiers in Immunology 09
inflammation/infection akin to impairments in neutrophil

chemotaxis associated with post-operative infections (18–21).

Lymphopenia and impaired lymphocyte function are associated

with increased risk of developing post-operative infections (22). We

found a significant reduction in lymphocyte count and expression

of lymphocyte co-stimulatory receptor (CD28) following surgery,

although this did not discriminate between patients with and

without post-operative infections. Alternative pathways associated

with lymphocyte dysfunction may be contributary (22).

Several studies have investigated the change in immunophenotype

of patients following surgery (4, 5, 13–15, 23, 24). However, few studies

have investigated the effect on the dynamic immune response to a

subsequent in vitro challenge before and after surgery and how this

differs between patients who develop post-operative infections and

those who do not.

In comparison to healthy volunteer monocytes, there was

paucity of changes in immune phenotype following in vitro HKB
FIGURE 5

Lymphocytes express an immunosuppressive phenotype both pre- and post-operatively which is associated with the development of subsequent
perioperative infections. PBMCs were isolated from patients undergoing major surgery at induction of anesthesia (pre-op; PO) and 24 h post-
operatively (D1) and analyzed by flow cytometry with the following gating strategy: Lymphocytes, single cells, CD3+ or CD19+ cells, CD4+/CD8+

differentiation (a.i.–a.v.). The following data were analyzed: whole-blood lymphocyte count (a.vi), CD4+:CD8+ ratio (a.vii), CD4+ (row b.) and CD8+

(row c.) apoptosis (i.), CD28 (ii.), IL-2R (iii.), CTLA-4 (iv.), PD-1 (v.), and IL-7R (vi.). Data are expressed as either median fluorescence intensity (MFI)
measured in arbitrary units (A.U.) or percentage of population (%). Dots represent individual patients, horizontal bar represents the median, box
represents the interquartile range, and whisker represents the range. Data are analyzed using mixed-effects two-way ANOVA. Data are presented as
differences over time, between groups, and the difference in the change over time between the two groups (interaction term). Only p-values < 0.05
shown. ns, not significant.
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stimulus in patients undergoing surgery. Although patients who did

not develop post-operative infections demonstrated few changes

consistent with healthy volunteers in the pre-operative period,

monocytes failed to demonstrate any response to in vitro HKB

stimulus following surgery, suggestive of decreased monocyte

functional reserve seen after other major surgery (25–27).

Among patients who had a subsequent post-operative infection,

there were no changes to monocyte phenotype following HKB

stimulus in cells isolated pre-operatively. In contrast, post-operative

monocyte PD-L1 expression increased following HKB stimulus in

patients with post-operative infections, which was not evident in
Frontiers in Immunology 10
healthy volunteers or patients without post-operative infections. An

increase in monocyte PD-L1 expression is associated with CD4+

lymphocyte inhibition via the PD-1/PD-L1 pathway suggesting a

plausible mechanism (28). Elevated monocyte PD-L1 expression in

critically ill patients is associated with lymphocyte anergy and

increased risk of secondary infections (28, 29). Monocyte PD-L1

is less well characterized in surgery although elevated monocyte and

serum PD-L1 are associated with increased risk of infection in other

inflammatory processes such as pancreatitis (30, 31).

In contrast to monocytes, many changes to CD4+ and CD8+

lymphocyte immune phenotype following CD3-CD28 bead
B

C

D

EA

FIGURE 6

Impaired monocyte chemotaxis and antigen presentation are associated with the development of perioperative infection. Principal component
analysis (PCA) demonstrated reasonable separation between patients with and without subsequent infections (A) with the first two components
providing 30% cumulative proportion of variance (B). The volcano plot demonstrated that post-operative monocyte count correlated with the
development of post-operative infection (C) with an area under the receiving operator characteristic curve (AUROC) of 0.84 (p < 0.0001). The PCA
loading plot (E) identified markers of monocyte chemotaxis (pre- and post-operative monocyte CXCR4) and antigen presentation (CD80) were
greatest discriminators between patients with and without post-operative infections (loading vector coefficient of > 0.8). Pre-operative variables
represented by stripes, and post-operative variables represented by solid fill. Dark blue represents clinical, serum, and hematological variables; purple
represents monocyte variables; and orange represents T-lymphocyte variables. Data are analyzed by multiple Mann–Whitney tests (volcano plot) or
principal component analysis (remaining plots).
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stimulation in healthy volunteer cells were seen in patient cells. This

was more evident in pre-operative lymphocytes from patients

without post-operative infections. Fewer changes were seen in

post-operative samples compared to pre-operative samples,

suggestive of reduced functional capacity following surgery.

Impaired lymphocyte functional responses may be mediated by a

hypometabolic phenotype which occurs following surgery (22).

A number of approaches have been attempted to reverse post-

operative immunosuppression including granulocyte colony

stimulating factor (G-CSF) (32), interferon gamma (IFN-g) (33),
IL-10 pathways (34) but with no conclusive benefit. Attempted

modulation of a single immunomodulatory target is unlikely to

yield results as related co-stimulatory or inhibitory pathways may

be simultaneously affected.

We acknowledge limitations in our study. Assessment of the

trajectory of immune phenotype over a longer duration would

provide greater insight into the recovery following surgery. Majority

of our patients had underlying solid organ malignancies, a

proportion of who received chemotherapy. It is not possible to

extrapolate our findings to other cohorts of patients. All in vitro

experiments were performed using a single concentration and strain

of HKB or CD3-CD28 beads. The percentage of T-lymphocyte

apoptosis was high compared to healthy populations; however, this

was consistent with other high-risk surgical cohorts (35). We have

not investigated neutrophil function, which is also known to be

impaired in surgery (18–21). Similarly, we have not investigated the

role of B cells. We have not presented data on intermediate and

non-classical monocyte subsets as cell counts from patients were

limited. However, quantification of cell surface markers on

monocyte subsets is rarely, if ever, used to stratify immune status

in critically ill patients.

We assessed levels of ligands and receptors (e.g., PD-L1 and

PD-1) on flow cytometry but were unable to assess their interaction
Frontiers in Immunology 11
or associated pathways. Specifically, monocyte chemokine receptor

expression could be further explored using chemotaxis assays.

However, typical cell counts required for such assays exceed that

obtained from patients. The response to an in vitro stimulus (HKB

of CD3-CD28 beads) may not represent in vitro changes in patients

with infections.

We found that post-operative monocyte count is, by far, the

most differentiating feature on the volcano plot although not a

major discriminator on PCA. This might be explained by the fact

that PCA includes only patients with complete datasets. We

included 62 immune markers, age, and BMI; full datasets were

available in 25 of 47 patients. However, for multiple comparisons

using a Mann–Whitney test, data from all patients were used.

We conducted a multivariate analysis to assess the independent

effects of different covariates on infectious complications. Due to the

relatively small sample size, we were limited in the number of

covariates in our analysis. However, the multivariate analysis

supports the findings of our other analyses, demonstrating that

post-operative monocyte count may be independently associated

with post-operative infections.

An unsupervised analysis of a wider panel of markers may

reveal other druggable targets. Several studies have assessed the

transcriptomic profile of immune cells in the perioperative period,

although transcriptional changes may not be reflected in cell surface

proteins/receptor expression, and bulk transcriptomics do not

directly assess the phenotype of specific cell subsets (4, 24).

A major strength of our study is the assessment of dynamic

immune function, in addition to basal immune phenotype (36). We

have demonstrated important differences in host response to

surgery between patients who do and do not develop a

subsequent infection. Given the numbers of patients who undergo

major surgery globally and the proportion who develop post-

operative infections, our findings warrant further investigations.
FIGURE 7

Heat maps of effect of ex vivo stimulus on volunteer and patient immune cells. Heat maps illustrating percentage changes in immune cell phenotype
following HKB (monocyte) or CD3-CD28 bead (lymphocyte) stimulation in PBMCs isolated from healthy volunteers (HV) or from pre- and post-
operative samples obtained from patients who did or did not succumb to post- operative infectious complications. Difference between HKB-
stimulated compared to unstimulated cells analyzed using Mann–Whitney U-test, and displayed as percentage change, only p < 0.05 shown
indicated by *.
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Specifically, the underlying mechanisms and potential therapeutics

to reverse defects in immune cell function require exploration.
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