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The inappropriate and inconsistent use of antibiotics in combating multidrug-

resistant bacteria exacerbates their drug resistance through a few distinct

pathways. Firstly, these bacteria can accumulate multiple genes, each

conferring resistance to a specific drug, within a single cell. This accumulation

usually takes place on resistance plasmids (R). Secondly, multidrug resistance can

arise from the heightened expression of genes encoding multidrug efflux pumps,

which expel a broad spectrum of drugs from the bacterial cells. Additionally,

bacteria can also eliminate or destroy antibiotic molecules bymodifying enzymes

or cell walls and removing porins. A significant limitation of traditional multidrug

therapy lies in its inability to guarantee the simultaneous delivery of various drug

molecules to a specific bacterial cell, thereby fostering incremental drug

resistance in either of these paths. Consequently, this approach prolongs the

treatment duration. Rather than using a biologically unimportant coformer in

forming cocrystals, another drug molecule can be selected either for protecting

another drug molecule or, can be selected for its complementary activities to kill

a bacteria cell synergistically. The development of a multidrug cocrystal not only

improves tabletability and plasticity but also enables the simultaneous delivery of

multiple drugs to a specific bacterial cell, philosophically perfecting multidrug

therapy. By adhering to the fundamental tenets of multidrug therapy, the

synergistic effects of these drug molecules can effectively eradicate bacteria,

even before they have the chance to develop resistance. This approach has the

potential to shorten treatment periods, reduce costs, and mitigate drug

resistance. Herein, four hypotheses are presented to create complementary

drug cocrystals capable of simultaneously reaching bacterial cells, effectively

destroying them before multidrug resistance can develop. The ongoing surge in

the development of novel drugs provides another opportunity in the fight against

bacteria that are constantly gaining resistance to existing treatments. This

endeavour holds the potential to combat a wide array of multidrug-

resistant bacteria.
KEYWORDS
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1 Introduction

The ongoing battle between bacteria and the constant

emergence of new drugs contributes to the rising issue of drug

resistance, a problem exacerbated by the unregulated and

irresponsible use of antibiotics. This has created an era where

bacteria have gained immunity against multiple drugs. The

consequences of this widespread antimicrobial resistance are

alarming, with an estimated 4.95 million lives lost globally in

2019 due to bacterial resistance against 88 specific pathogen-drug

combinations in 204 countries (1). According to a global survey

conducted in 2019, it was revealed that antimicrobial resistance

claimed more lives than HIV/AIDS or malaria (2). Within bacterial

cells, multidrug resistance (MDR) manifests in two distinct forms:

either through the accumulation of diverse drug-resistant

components in multiple genes or by upregulating genetic

expression for multidrug efflux pumps (3, 4).

Tackling this challenge is daunting. The heart of the problem

lies in the intricacies of multidrug therapy. The absence of chemical

bonds between different drug molecules means that when

administered, these molecules reach individual bacteria separately.

This isolated delivery inadvertently enhances resistance against

each drug, amplifying the complexities of conventional multidrug

therapy. Consequently, eradicating multidrug-resistant bacteria

becomes an uphill battle, prolonging treatment times and

inadvertently promoting further resistance. As a result, the

extended duration of treatment carries an insidious risk: the

potential escalation of multidrug-resistant infections within

society. This, in turn, heightens the possibility of a widespread

epidemic. Addressing these critical issues is paramount in our quest

to confront the escalating threat of antibiotic resistance.

In the battle against multidrug-resistant bacteria, this hypothesis

introduces an unprecedented novel approach, aiming to deliver all

the drug molecules to every targeted bacteria cell in a conjugative
Frontiers in Immunology 02
manner. The cocrystals (5, 6) are formed by exploiting

supramolecular synthons (7–9) to form the bond between two or

more molecules and crystallizing them together. The use of coformer

with a drug molecule while crystallization generally helps promote

permeability, solubility, and thermal stability, while reducing

brittleness (5, 10). Various supramolecular bonds such as p-p
stacking (11), halogen bonding (12–14), hydrogen bonding (15,

16), ion interactions (17), and van der Waals’ interactions (18) can

facilitate cocrystal formation. By creating cocrystals of different drugs

tailored (19, 20) for the same type of bacteria, it becomes possible to

administer all drug molecules simultaneously to a single bacterium.

This simultaneous attack by multiple drug molecules on a single

bacterium can be more effective than the traditional multidrug

therapy protocol. Cocrystal formation (19) enhances the solubility

and flexibility of drug molecules (19), negating the requirement for

pharmaceutical excipients (19). Pharmaceutical excipients are

essential for safely delivering medication molecules to specific

organs. By combining essential pharmacological molecules with

their complementary counterparts, we can enhance plasticity,

solubility, and tabletability (21). This innovative approach could

entirely replace the need for excipients, particularly in cases of

multidrug cocrystallization (20). By adopting this strategy, we aim

to enhance patient outcomes by bolstering the efficacy of medications

against bacterial infections.

The formation of these cocrystals involves employing

techniques like slow evaporation, hydrothermal procedures, and

solvent diffusion (19) in different solvent mediums, ensuring the

necessary conditions for cocrystal development (Scheme 1).

Notably, six major pathogens, including Escherichia coli,

Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus

pneumoniae, Acinetobacter baumannii, and Pseudomonas

aeruginosa, were collectively responsible for approximately

929,000 deaths in 2019, underscoring the urgency of innovative

solutions in combatting multidrug-resistant bacteria (1).
SCHEME 1

A schematic presentation depicts how multidrug therapy can be improved. The complementary tuberculosis drugs with the potentiality of forming
carboxylic acid–carboxamide synthon may form cocrystals in certain solutions and possibly can be codelivered to treat tuberculosis.
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2 Multidrug resistant bacteria

The development of drug-resistant bacteria poses a significant

challenge in their eradication. Here, a selection of bacteria is used to

demonstrate the effectiveness of cocrystal therapy in combating

them as well. The Gram-negative pathogens have raised various

levels of drug resistance like multidrug resistance (MDR), pan drug

resistance (PDR), and extensive drug resistance (XDR) (22), making

them highly lethal in epidemic scenarios. To establish standardized

terminology, the Centers for Disease Control and Prevention

(CDC) and the European Centre for Disease Prevention and

Control (ECDC) collaborated to provide clear definitions. XDR is

characterized by non-susceptibility to one or more antimicrobial

classes out of the two available. MDR occurs when drug resistance is

observed in at least one agent from three or more antimicrobial

groups. PDR is defined when drug resistance is present across all

antimicrobial classes, leaving no agents vulnerable to the organism.

Infections caused by Gram-negative bacteria such as

Acinetobacter baumannii, Escherichia coli, Pseudomonas

aeruginosa, and Klebsiella pneumonia have alarmingly high

mortality rates. The extensive and prolonged treatments, along

with meticulous medical care and infection prevention measures,

result in substantial financial expenditure. Providing optimal care

for critical patients involves understanding the geographical

patterns of resistance and individual factors contributing to

resistance. Despite global initiatives to discover new treatments

for MDR Gram-negative infections, progress has been limited.

Addressing the challenges posed by MDR requires exploring

novel combinations of existing antibiotics, b-lactamase inhibitors

like relebactam, avibactam, or vaborbactam are often combined

with conventional antibiotics such as cephalosporins or

carbapenems to enhance their effectiveness against targeted

bacteria (23).
2.1 Acinetobacter baumannii

Acinetobacter baumannii is another gram-negative

nonfermenting genus, that lives in diverse environments such as

soil, water, vegetables, various animals, and human hosts. It is an

almost round, rod-shaped bacteria, that resides in the flora of

mucous membranes and human skin. Both community and

hospital-acquired infections are primarily attributed to A.

calcoaceticus-A. baumannii complex (24). Within the United

States, A. baumannii instigates approximately 12,000 healthcare-

associated infections annually, with 7,200 cases evolving into

multidrug-resistant strains, leading to 500 fatalities (25).

Equipment within hospitals, such as mechanical ventilation

systems, dialysis machines, and water sources, frequently

harbours A. baumannii, despite its presence in the mucous

membranes and skin of healthcare professionals or patients (26).

Previously deemed an opportunistic organism with minimal

pathogenicity, Acinetobacter was perceived as having low impact.
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However, the World Health Organization (WHO) has recently

categorized it as a top-priority pathogen, emphasizing the urgent

need for antibiotic development targeting this bacterium (27). A.

baumannii is considered an extremely life-threatening pathogen.

This bacterium commonly exhibits substantial resistance to

antimicrobial agents. Multidrug-resistant strains of A. baumannii

frequently exacerbate patient conditions due to inadequate initial

therapy, limited treatment alternatives, and the heightened toxicity

of available treatments. Drug resistance, either acquired or intrinsic,

is facilitated by various factors, such as alterations in membrane

permeability or the production of beta-lactamases, which degrade

beta-lactam antibiotics.

Among gram-negative bacilli, beta-lactamases stand as the

foremost contributor to bacterial resistance (28). Carbapenem

resistance stems from changes in penicillin-binding proteins and

the action of efflux pumps. Newer medications like eravacycline,

cefiderocol, and ETX2514, alongside established ones such as

aminoglycosides (29), polymyxins E and B, piperacillin/

tazobactam, carbapenems, sulbactam, tigecycline, and could be

co-administered to create complementary drug-based cocrystals

as a potential strategy.
2.2 Pseudomonas aeruginosa

Pseudomonas aeruginosa, a rod-shaped multidrug-resistant

Gram-negative aerobic–facultatively anaerobic, bacterium

prevalent in soil, water, and healthcare settings, poses a significant

threat as a source of nosocomial infections. Through the

denitrification enzyme, P. aeruginosa reduces nitrate to molecular

nitrogen under anaerobic respiration. It targets various systems,

including the bloodstream, urinary tract, and ventilators (leading to

pneumonia) (30). Its adaptability in acquiring new genetic elements

enables resistance to multiple antimicrobials. The bacterium’s cell

wall’s low permeability hampers antibiotic uptake, contributing to

its resistance profile. Typically, it targets individuals with weakened

immune systems; however, it can also infect those with a fully

functional immune system, as seen in cases like hot tub folliculitis.

Carbapenems, initially the primary line of defense, face

challenges due to mechanisms such as efflux pumps, loss of porin,

and reduced drug permeability, leading to resistance (31).

Carbapenem-resistant P. aeruginosa (PARC) has emerged as a

critical concern, contributing to hospital outbreaks in multiple

countries (32). To address this, novel drugs like Cefiderocol,

Ceftolozane-tazobactam, and Ceftazidime-avibactam are being

utilized against Pseudomonas species (33). The genome structure

of Pseudomonas aeruginosa comprises a notably large circular

chromosome (ranging from 5.5 to 6.8 Mb) housing between 5,500

and 6,000 open reading frames. Additionally, depending on the

strain, it may contain plasmids of varying sizes (34). A comparison

of 389 genomes from diverse P. aeruginosa strains revealed that

only 17.5% of the genome is commonly shared, constituting the P.

aeruginosa core genome (35).
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2.3 Staphylococcus aureus

Staphylococcus aureus, a resilient gram-positive bacterium

resistant to multiple drugs, lives in diverse environments such as

soil, air, and water, and colonizes at skin and human nose. It causes

severe illnesses like pneumonia, septicemia, endocarditis,

meningitis, and systemic infections, posing a considerable risk of

mortality (36). Initially, S. aureus infections responded well to

penicillin until the bacterium swiftly acquired beta-lactamase

through plasmid-encoded instructions, rendering penicillin

ineffective in clinical settings.

To tackle this challenge, methicillin, a semisynthetic beta-

lactamase-resistant antibiotic, was developed and employed in

1959 against penicillin-resistant strains. However, methicillin

resistance emerged rapidly (37). By 1961, methicillin-resistant S.

aureus had triggered a global outbreak, ranking among the top three

threatening infectious diseases for human health.

In 2011, the Centers for Disease Control and Prevention

reported over 80,000 illnesses and 11,000 fatalities attributed to

Methicillin-resistant S. aureus (MRSA) (38). Initially confined

within hospital boundaries, MRSA transitioned to community

settings by the 1990s. Certain strains have been identified in pet

animals such as cattle, chickens, pigs and horses, leading to

conditions like pneumonia, necrotizing fasciitis and endocarditis

since 1975 (39, 40). Presently, daptomycin and Vancomycin stand

as common antibiotics used against S. aureus infections (41), but

methicillin-resistant strains are beginning to display an MDan

phenotype, exhibiting resistance or susceptibility to such

antibiotics. Certain penicillin-derived narrow-spectrum beta-

lactam antibiotics—such as cloxacillin, flucloxacillin, dicloxacillin,

Methicillin, nafcillin and oxacillin, —hold potential for treating S.

aureus infections and may be utilized in cocrystallized forms to

address multidrug-resistant bacterial strains.
2.4 Mycobacterium tuberculosis

Following the aftermath of the COVID-19 pandemic,

tuberculosis (TB) has emerged as a looming threat due to the

scarcity of medicines in remote regions. The focus on immediate

COVID-19 treatment led to the neglect of other chronic diseases

such as TB and malignancies. As a result, TB patients inconsistently

received their medications, leading to the emergence of multidrug

resistance in the TB-causing bacteriaMycobacterium tuberculosis. It

is noteworthy that TB has claimed more lives than any other

infectious disease over the past 2000 years. Instead of

continuously synthesizing new TB drugs, a more efficient

approach lies in preparing cocrystals of existing drug molecules.

This approach minimizes scientific efforts and time. In addition to

this primary threat, other major multidrug-resistant bacteria are

also raising concerns regarding the certainty of life (21). Individuals

infected with HIV are particularly vulnerable to mycobacterial

diseases (42). By gaining a comprehensive understanding of the

defense mechanisms of M. Tuberculosis and countering them with

complementary drug molecules, researchers can identify suitable

drugs for the development of cocrystals. M. tuberculosis, classified
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as weakly Gram-positive (43), is a pathogenic bacterium prevalent in

a series of animals, including humans, goats, cats, dogs, rabbits, pigs,

deer, and badgers (42). Identification methods involve acid-fast stains

like Ziehl-Neelsen or fluorescent stains such as auramine (44). This

bacterium has the capacity to infect diverse body regions, like the

spine, brain, and kidneys. It’s noteworthy that in certain individuals,

M. tuberculosis can remain asymptomatic, leading to the condition

termed latent TB. In the 2022 Global Tuberculosis Report released by

the World Health Organization (WHO) (45), findings revealed

450,000 fresh instances of RR-TB worldwide in 2021, with China

accounting for 33,000 new cases of MDR-TB/RR-TB.

Tuberculosis (TB) medications are broadly categorized into

first-line drugs (Figure 1A), (eg. rifampicin, isoniazid, ethambutol,

pyrazinamide, and streptomycin, second-line drugs (Figure 1B),

(amikacin bedaquiline, clofazimine, cycloserine, linezolid,

moxifloxacin, levofloxacin, para-aminosalicylic acid, and

propylthiouracil (46). The treatment duration for rifampicin-

resistant TB (RR-TB) typically spans 18–20 months (46),

comprising a 6-month intensive phase followed by a 12–14-

month continuation phase. Tailoring the treatment strategy to the

patient’s drug resistance status is customary (47, 48). The first- and

second-line tuberculosis drug molecules are presented in Figure 1.

As treatment for susceptible TB has remained largely unchanged for

the past four decades and with the emergence of drug resistance,

there is an urgent need for new drugs and treatment regimens. A

tremendous effort is going on in developing the new drugs or

regimens for the TB treatment (21, 49–55).
3 Multidrug resistive mechanism

It becomes important to know the multidrug resistance

mechanism of every different bacterium to design both molecular

drugs or complementary supramolecular drug associates. The

molecular drug has to be quite new to the bacteria so that the

unexperienced bacteria will be clueless and can be destroyed

consequently. However, in the case of a supramolecular drug

associate, two associated drugs should complementarily work to

destroy the bacterial defense mechanism. Bacterial multidrug

resistivity works under a few certain pathways (56). In the 1st

case, the bacteria obtain numerous drug-resistant genes via the

horizontal plasmid transferring through the bacterial conjugation.

The 2nd category works by increasing the genetic expression, coded

with multidrug efflux pumps. However, the organisms have evolved

increasingly complex mechanisms of resistance (57).
3.1 Transferring plasmid through
horizontal conjugation

The host-plasmid pairs promote multidrug resistance in both

Gram-negative and Gram-positive bacteria (58). MDR bacteria

disseminate their drug resistance to neighboring bacteria via the

horizontal transfer of plasmids, which harbour antibiotic-resistance

genes. The stabilizing factors within plasmids during bacterial

conjugation further enhance multidrug resistance, as bacteria
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acquire not only their plasmids but also novel drug-resistant

plasmids (Figure 2) (59). After removing the antibiotics, the

emergence of MDR is facilitated by a crucial stabilizing factor: the

coevolution of host-plasmid pairs under antibiotic selection. This

process involves the exchange of two distinct plasmids from

different bacteria (Escherichia coli and Klebsiella pneumonia). In

this scenario, evolution favoured the increased stability of a plasmid.
3.2 Efflux pumps

The cell membrane that houses efflux pumps (Figure 3) (56) is

the inner membrane transporter, which not only expels antibiotics
Frontiers in Immunology 05
(60) but also discharges various harmful substances, such as

pollutants, heavy metals, and antimicrobial agents produced by

competing organisms (61). Bacteria employ antibiotic efflux as a key

defense mechanism, expelling antibiotics from their cellular interior

into the external environment through specialized transporter

proteins known as efflux pumps. Given the decline in novel

antibiotic discovery, targeting these pumps has emerged as an

appealing strategy. Efflux pump inhibitors (EPIs) are molecules

capable of blocking these pumps, offering promise as therapeutic

agents to reinvigorate the effectiveness of antibiotics that have lost

their potency against bacterial pathogens. These inhibitors operate

via diverse mechanisms, sourced from both natural and synthetic

origins. Figure 4 schematically represents the compares the cell
B

A

FIGURE 1

Various first- and second-line tuberculosis drugs are presented.
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membranes of both Gram-positive (Figure 4A) and Gram-negative

(Figure 4B) bacteria. Multidrug efflux pumps play a pivotal role in

conferring resistance among bacterial pathogens, encompassing

acquired, intrinsic, and phenotypic traits. Their expression is

usually tightly regulated, offering the possibility of achieving

heightened and temporary levels of expression via specific

biological triggers or effectors.
Frontiers in Immunology 06
3.3 Bacterial enzymes

Another significant drug-resistant mechanism prevalent in

multidrug-resistant strains involves bacterial enzymes (62). Based

on the drug-resistive mechanism; the enzymes can be classified can

be classified further (62). The bacteria can i) modify their enzymes

to target the antibiotic agents (63); ii) improve the enzymes to target
frontiersin.org
FIGURE 3

Five major families of efflux pumps are schematically presented here. (i) resistance-nodulation-division (RND), (ii) small multidrug resistance (SMR),
(iii) major facilitator superfamily (MFS), (iv) multidrug and toxic compound extrusion (MATE), and (v) ATP-binding cassette (ABC) superfamily. The
abbreviations used in this context expand as follows: OMP, Outer membrane protein; OM, Outer membrane; ATP, Adenosine triphosphate; ADP,
Adenosine diphosphate; IM, Inner membrane.
B

C

D

A

FIGURE 2

Schematically conjugational transfer of the F plasmid from the donor to the recipient cell is represented here. The backbone of the F plasmid
consists of various components: the tra regions, encompassing all genes responsible for conjugational transfer (depicted in light blue); the origin of
transfer (oriT) highlighted in red; the leading region (depicted in green), which is the initial segment transferred into the recipient cell; and the
maintenance region (depicted in dark blue), playing a role in plasmid replication and partition. (i) The conjugation gets started by the expression of
the tra gene. Certain Tra proteins are responsible for assembling both the T4SS and the conjugative pilus. These structures play a pivotal role in
attracting recipient cells and facilitating the stabilization of mating pairs during the process of conjugation. (ii) Additional Tra proteins, namely TraI,
TraM, and TraY, make up the relaxosome complex. Working in tandem with the integration host factor (IHF), they specifically bind to the oriT site on
the plasmid. Their role is crucial in preparing the plasmid for transfer by initiating the nicking reaction through the TraI relaxase enzyme. (iii) The
transfer of the T-strand through the T4SS is triggered by the interaction between the Type IV Coupling Protein (T4CP) and Relaxosome. This
interaction marks the initiation point for the transfer process. (iv, v) As the TraI-bound T-strand moves to the recipient, the donor undergoes Rolling
Circle Replication (RCR), converting single-stranded DNA (ssDNA) into double-stranded DNA (dsDNA) concurrently. (A) Upon entering the recipient,
the single-stranded DNA (ssDNA) T-strand becomes enveloped by the host chromosomal SSB. Simultaneously, the single-stranded promoter Frpo
takes on a stem-loop structure that the host RNA polymerase identifies to kickstart RNA primer synthesis. (B) TraI facilitates the circularization
process of the completely internalized T-strand. (C) The host DNA polymerase identifies the RNA-DNA duplex, triggering the initiation of the
complementary strand synthesis. (D) Upon completion of the conversion from ssDNA to dsDNA within the plasmid, the expression of plasmid genes
triggers a phenotypic transformation in the recipient cell, turning it into a transconjugant cell. (Ref 3).
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intracellular sites; iii) exploit the cellular metabolic reactions and iii)

carry out the enzymatic transformation of antibiotics. All the

antibiotic-resistant genes are denoted as resistome (64). Gene-

encoded enzymes on the chromosome shield pathogens,

safeguarding antibiotics from modifying their intended targets (62).
3.4 Losing porins

Certain antibiotics and drugs can be readily administered to

Gram-positive bacteria due to their lack of an outer membrane (65).

While the outer membrane is resistant to many antibiotics, the

presence of porins in Gram-negative bacteria makes this membrane

permeable, allowing easy access to essential needs such as nutrition,

water, food, or ions. Antibiotics can also come through this way.
Frontiers in Immunology 07
The Gram-negative bacteria enhance their resistance to antibiotics

by losing porins, hindering the entry of antibiotics into the cell and

strengthening the bacteria’s defense against them.

Besides these major antibiotic resistance mechanisms, the bacteria

can raise the drug resistance through some other alternative process as

well (Figure 5). For example, it can modify cell walls and ribosomes.
4 The limitations and challenges of
present therapies

The rise of resistance to antimicrobial agents has become a

significant contributor to global morbidity and mortality. In the

early 1900s, the introduction of antibiotics initially appeared to

signal victory against microorganisms. However, it became evident
B

A

FIGURE 4

The figure illustrates the cell membrane structures of Gram-positive and Gram-negative bacteria.
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that these microorganisms could develop resistance to the drugs

being utilized. As a result, scientists across various fields have been

striving to create new drugs or treatment regimens, emphasizing

multidrug therapy. Yet, observing the challenges faced, it’s crucial to

introspect the current treatment approaches and refine the

philosophy driving multidrug therapy’s advancement.
4.1 Limitations of multidrug therapy

Multidrug-resistant bacteria enhance their resistance by

exchanging multiple genes through conjugation between bacterial

cells or by utilizing multidrug efflux pumps. Consequently, these

bacteria can develop resistance against previously unknown drugs

within a few years through these mechanisms. To counter this

challenge, a combination of multiple drugs can be administered

concurrently. In this approach, a combination of multiple drugs is

administered simultaneously. Each drug acts independently, targeting

the bacteria one after another until the bacterium is effectively

eliminated. Out of the philosophy of using multiple drugs, one very

common multidrug-resistant bacterium-killing regimen is multidrug

therapy. Though at present it is one of the most convincing ways to

fight against drug-resistant bacteria, the following drawbacks urge the

scientific society to surge the new regimen (66).

4.1.1 Development of resistance
As multiple drug molecules do not have their mutual bonds,

they reach the bacteria cells one by one. In this process, a bacterium

often gets enough time to gain drug resistance (21). It enhances the

treatment time and raises the risk of spreading multidrug-resistant

bacteria in society. As the strains acquire drug resistance, they

gradually transition from MDR or XDR to PDR, making it

increasingly challenging over time to identify the remaining

effective drugs.
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4.1.2 Toxicity
Using multiple drugs simultaneously can increase the risk of

adverse side effects and toxicity in patients. Some drugs may have

overlapping toxic effects, leading to complications and limiting the

dosage that can be administered safely. Oral, abbreviated multi-

drug resistant tuberculosis (MDR-TB) treatments have the potential

to lessen the inconvenience, discomfort, and side effects associated

with these regimens. This could enhance adherence rates and

improve the chances of successful completion of the treatment (67).

4.1.3 Complexity of administration
Coordinating the administration of multiple drugs, each with

specific dosages and schedules, can be challenging. This complexity

can lead to errors in medication adherence, reducing the overall

effectiveness of the therapy. Medication errors include

inappropriate medication, wrong dose, drug-drug interaction,

allergic reaction, incorrect delivery path, lack of proper education

in patients etc. Annually, in the United States, approximately 7,000

to 9,000 individuals lose their lives due to medication errors (68).

4.1.4 Cost
Procuring multiple drugs and conducting extensive testing to

determine the most effective combination can be financially

burdensome. This cost factor can limit the accessibility of

multidrug therapy, especially in resource-limited healthcare

settings. We may have to spend $16.7 trillion by 2050 for the

Multidrug-resistant TB only (69).
4.1.5 Potential drug-drug interaction
When multiple drugs are used simultaneously, there is a risk of

drug interactions. These interactions can alter the effectiveness of

the drugs or exacerbate side effects, complicating the treatment

process (70).
FIGURE 5

Several antibiotic resistance mechanisms in bacteria are presented here schematically. The left and right sides denote the presentation of Gram-
positive and Gram-negative bacteria, respectively. Bacteria acquire enzymes that neutralize the drugs, efflux pumps actively move particular or
multiple antibiotics out of the cell, alternative metabolic routes replace those blocked by the medication, the antibiotic’s target site undergoes
modification, reducing the drug’s affinity to the binding sites, and decreased permeability results in reduced drug accumulation within the cell.
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The use of multiple drugs can exert selective pressure on

bacteria, favouring the survival and proliferation of resistant

strains. This phenomenon can further exacerbate the problem of

antibiotic resistance in the long term.
4.2 Limitations of universal drug regimen

One seminal paper on the short-course regimens for treating

tuberculosis raised the hope of discovering the universal drug

regimen in 1986 (71). Regrettably, the Mycobacterium tuberculosis

strains developed rifampicin resistivity and the treatment policy

became ineffective for a significant number of patients (72). The

WHO expressed deep concern over the fact that in 2016, over

600,000 individuals were affected by rifampicin-resistant

tuberculosis. According to their recent report, 17,000 mutant

varieties of tuberculosis have been published, along with their

corresponding drug resistance profiles (73). The identification of

the variants and selecting their corresponding drug regimen is a

daunting task. It results in the consumption of unwanted drugs and

generates side effects. To address this issue, we need to find a

universal drug regimen, by which every drug-resistant bacterium

can be addressed. Inspired by this hypothesis, universal drug

regimen preparation has been on the way since the last decade

(74). Identifying a handful of complementary drugs for universal

drug therapy is a topic of debate, but once the universal drug

regimen is developed, all TB patients can be treated in the same way

and the patients can be treated in a general way without

‘personalized medicinal’ selection according to the M. tuberculosis

variant in the body. However, developing a perfect combination of

several novel drugs in preparing a universal drug regimen still fails

to address a series of medical concerns even if it comes to society.

The determination of potency, unknown interactions between

drugs, excessive medication side effects, and the overall cost of

treatment continue to pose challenges similar to the multidrug

treatment protocol.

Administering drug molecules individually to bacteria may

gradually increase drug resistance. Attaining universal therapy

goes beyond simply combining complementary drug molecules; it

necessitates the development of cocrystals involving these

complementary candidates to ensure the effective delivery of drug

molecules to the bacterial cells.
4.3 AI for designing multidrug-
resistant drug

Like other sectors (75–77), the drug molecules, including the

antibiotic are also designed with the help of artificial intelligence

(78). Acinetobacter baumannii, a resilient Gram-negative pathogen

commonly found in healthcare settings, often resists multiple drugs,

making it difficult to find effective antibiotics through traditional

methods. However, leveraging machine learning has significantly

accelerated the exploration of chemical space, increasing the

chances of discovering new compounds to combat this bacterium.
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In a recent study, Liu et al. screened around 7,500 molecules to

identify those capable of inhibiting A. baumannii growth in vitro

and discovered the antibiotic abaucin. Using a neural network

trained on this dataset, they predicted the efficacy of structurally

unique compounds against A. baumannii, leading to the discovery

of abaucin—an antibacterial agent demonstrating a specific impact

on A. baumannii (79).

In a similar study, Talat et al. (80) employed AI in uncovering

various beta-lactamase inhibitors and alternative antibiotics derived

from antimicrobial peptides (AMPs), nonribosomal peptides,

bacteriocins, and marine natural products. With the expansion of

next-generation sequencing, the volume of data obtained is

skyrocketing, making manual extraction of low-risk antimicrobial

resistance drugs from such vast datasets nearly impossible. Raban

et al. illustrate AI’s exceptional efficacy in developing antibiotics,

serving as a robust response to the concerning rise in antimicrobial

resistance rates (81). The AI system is also efficient in predicting the

drug delivery mechanism so that the specific drug can be developed

against certain drug-resistant strains (82). This system includes

drug development, can predict drug resistance, select the proper

drug combination, optimize the drug dose, and also can improve

the drug delivery system. The prospect of machine learning

methods (a branch of AI) in forecasting whether a patient might

develop an MDR pathogen within the initial 48 hours of ICU

admission holds significant promise (83).

Theoretically finding an appropriate molecule by AI becomes a

normal tusk and then the movement can further be accelerated by

exploiting the robot scientist. Experimentally a robot scientist can

work for 24 hours multiplied by 365 days. In finding the appropriate

water oxidation catalyst experimentally, an autonomous robot

spanned eight days, conducting 688 experiments within a

complex experimental framework involving ten variable places.

These actions were steered by a batched Bayesian search

algorithm (84–86). The autonomous search process pinpointed

photocatalyst mixtures that exhibited activity six times greater

than the initial formulations. It effectively identified advantageous

components while excluding detrimental ones. The robot is also

capable of optimizing organic reaction conditions to improve yields

and simplify the process (87). A different group (88) develops a free-

roaming (89–92) dexterous (93, 94) robot, that automates the role

of the researcher, rather than directly manipulating the instruments.

Such robot scientists can also be used for developing molecular

drugs. Now, once the drugs are designed by AI and can be

experimentally prepared by the robot scientists, can be forwarded

for medical trials within a week so that the quick harmonization can

bring them to the market quickly.

Furthermore, the last decade initiated the multistep flow

synthesis (95–97) so that multistep organic reactions can be

carried out autonomously and a whole system can run fast in

finding effective antibacterial drugs. So, in future, getting new

antibacterial materials may not be that difficult, but inappropriate

use can always develop drug resistivity. Additionally, employing

numerous or diverse arrays of drugs can foster a broad spectrum of

drug resistance in pathogens. This could significantly complicate

the search for suitable drugs in the context of multidrug therapy in
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the coming years. Therefore, the supramolecular assembly

formation or cocrystallization of complementary multidrug can

stabilize rapid pharmaceutical activities, reducing costs and

streamlining the drug selection process associated with this

extensive effort. For multidrug administration to be effective, a

synergistic action is crucial, necessitating the simultaneous delivery

of multiple drugs to a bacterial cell. Whether using conventional

multidrug therapy or a universal drug regimen, the current

treatment protocol involves drugs reaching the bacteria

separately, providing them an opportunity to develop resistance.

Loading multiple drugs into a nanocontainer or carrier isn’t feasible

with present technology, and it doesn’t facilitate the simultaneous

delivery of drugs to the bacteria. To address all these issues, the

formation of supramolecular drug associations is essential to

effectively implement the philosophy of multidrug therapy.
4.4 Dendrimers in codrug delivery

In the realm of codrug delivery, the impact of supramolecular

bonding, ranging from weak to robust, plays a pivotal role in

determining the availability of drug associates to combat bacteria.

This has prompted a shift towards incorporating dendrimers as key

players in the delivery of multidrugs. Dendrimers, belonging to a

distinctive category of macromolecules, seamlessly blend the

structural attributes of individual molecules with the extended

characteristics of polymers, making them a promising avenue for

advancing codrug delivery strategies. Their three-dimensional

structure, combined with a diverse range of additional substrates

available for assembly, provides multifaceted potential for

applications in medicine, diagnostics, and environmental

domains. Particularly noteworthy are peptide dendrimers, acting

as conduits for transporting therapeutic substances like synthetic

vaccines targeting parasites, bacteria, and viruses, contrast agents

employed in MRI, antibodies, and genetic material (98).

Dendrimers, possessing highly branched structures and easily

modifiable surfaces, hold significant promise for functionalization

and conjugation with drugs and DNA/RNA. Their precisely

synthesizable controlled architecture enables fine-tuning of

characteristics such as charge, shape, solubility, and size in

carrying wide ranges of drugs and gens (99, 100).

Most importantly, Siriwardena et al. developed one second-

generation (G2) peptide dendrimers equipped with a fatty acid

chain at the dendrimer core, demonstrating their effectiveness in

eradicating Gram-negative MDR bacteria, like Pseudomonas

aeruginosa, Acinetobacter baumannii. Another dendrimer, namely

TNS18, can exhibit activity against the Gram-positive Staphylococcus

aureus, which was methicillin-resistant in nature. It also shows the

antibiotic activities against A. baumannii and E. coli (101).

The dendrimers can be used as the drug carrier against the

tuberculosis bacteria (102, 103). These dendrimers can encapsulate

several antibiotics. If we select the dendrimers with their selective

antibacterial activities with the complementary drugs, then besides

forming cocrystals, we can administer the multidrug.
Frontiers in Immunology 10
There remain several challenges in utilizing dendrimers for co-

delivering multiple drugs to specific bacterial cells. The cytotoxic

impact of dendrimers is intricately tied to the properties of their

surface groups, particularly their charge. Regardless of the surface

composition and molecular structure, cationic dendrimers exhibit

heightened cytotoxicity and hemolytic tendencies compared to their

anionic and neutral counterparts (104, 105). Branching in

dendrimers also enhances the cytotoxicity. This elevated toxicity

is primarily due to their non-selective attraction to cell membranes

that possess a negative charge. Notably, this cytotoxic effect varies

with the dendrimer generation and is amplified by specific surface

groups (106), while in vitro studies reveal that neutral and

negatively charged dendrimers do not induce cytotoxic effects.

Mitigating the toxicity of positively charged dendrimers is pivotal

to their application in diagnostics and therapeutics. Consequently,

strategies involving chemical modifications of terminal groups have

been proposed. These alterations aim to enhance targeting

capabilities, substantially extend the duration of the dendrimers

in the bloodstream, and refine their design to achieve better

distribution within the body and enhanced biocompatibility

(107). Finally, the dendrimers cannot guarantee the simultaneous

delivery of all encapsulated drug components to a bacterial cell,

potentially contributing to drug resistance in bacteria.
4.5 Challenges of developing a new
ideal therapy

Multidrug-resistant bacteria heighten their resistance in the

presence of external drug molecules or foreign bodies. Multiple

drugs are administered in hopes that at least one will effectively kill

the bacteria before it becomes entirely resistant to the treatment.

While this approach seems logical, the challenge lies in the protocol

for drug administration. In multidrug therapy, simultaneous

delivery of multiple drugs to a bacterial cell is never guaranteed.

This situation raises drug resistance and facilitates the sharing of

genetic information through plasmid transfer among nearby

bacteria, culminating in the development of resistant bacterial

colonies and subsequent treatment failures.
5 Present complementary
multidrug regimens

We’ve observed that combined binary antibiotic systems

present in the multidrug regimens work efficiently in killing MDR

bacteria. Among the two antibiotic molecules, one is prone to be

attacked by the bacterial defence mechanism. Bacteria destroy the

molecule by attacking a class of specific functional backbones. For

example, bacterial beta-lactamase enzyme destroys the lactam-

containing antibiotic molecules. In this situation, if a 2nd

antibiotic molecule prevents beta-lactamase formation or

production, then the lactam-containing antibiotic can be

safeguarded from the bacterial defence mechanism and kill the
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bacteria. Through this preventing mechanism, a binary set of

antibiotics can destroy the bacteria cells.
5.1 Ceftazidime/avibactam

Ceftazidime is a third-generation b-lactam antibacterial drug

useful for the treatment of a series of gram-positive (like

Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus

pyogenes, Streptococcus agalactiae) and gram-negative bacteria

(like Citrobacter species, Enterobacter species, Escherichia coli,

Klebsiella species, Haemophilus influenzae, Pseudomonas

aeruginosa etc). It’s employed in the treatment of infections

affecting the lower respiratory tractbloodstream, joints, skin,

urinary tract, abdomen, and meningitis. Avibactam, a novel b-
lactamase inhibitor akin to diazabicyclooctanes (DBO), reversibly

binds to b-lactamase enzymes, facilitating their recycling and

subsequent binding to broad-spectrum b-lactamases. This

mechanism significantly amplifies the activity of ceftazidime by
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more than a thousand-fold. Avibactam demonstrates efficacy in

managing pyelonephritis, intricate intra-abdominal infections

(cIAI) (23), and intricate urinary tract infections (cUTI). It offers

broad coverage against Ambler Classes A, C, and D pathogens (108,

109). The FDA greenlit Ceftazidime/avibactam’s usage in the USA

back in 2015 for managing complicated intra-abdominal infections

(when used alongside metronidazole) and complicated urinary tract

infections, encompassing pyelonephritis, specifically for patients

aged 18 years and older (57, 110).

Avibactam shields ceftazidime from hydrolysis by several

bacterial b-lactamase enzymes, encompassing Klebsiella

pneumoniae carbapenemase (KPC), extended-spectrum b-
lactamase (ESBL), class C (AmpC), and several class D b-
lactamases. However, in the presence of metallo-b-lactamases like

New Delhi metallo-b-lactamase (NDM), Verona integron-encoded

metallo-b-lactamase (VIM), and imipenemase (IMP), avibactam

loses its protective effect on ceftazidime against hydrolysis (111).

During a research investigation evaluating antimicrobial

effectiveness against carbapenem-resistant Enterobacterales found
TABLE 1 Four antibiotic combinations exhibit enhanced efficacy through their collective action.
While they may not directly synergize, one antibiotic shields another from bacterial defence mechanisms. In this table, the left-column antibiotics all feature a vulnerable lactam moiety,
susceptible to bacterial attacks. Administering the second antibiotic from the right column alongside them aims to protect these lactam moieties, thereby extending their half-life and augmenting
overall efficacy.
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in ICUs across Taiwan, ceftazidime/avibactam showcased high

susceptibility rates: 99% for E. coli, 100% for K. pneumoniae, and

91% for P. aeruginosa (112).

The concentration-time profiles of ceftazidime and avibactam,

whether administered individually or in combination, exhibited

consistent patterns in both single and multiple doses, irrespective of

metronidazole use (Table 1, row a). Notably, there were no

indications of time-dependent pharmacokinetics or accumulation

observed in these scenarios. These findings, when combined with

the outcomes of our study, propose that pairing CAZ–AVI with

imipenem could serve as a viable strategy against infections caused

by KPC-Kp strains, potentially revitalizing the efficacy of

carbapenems (113).
5.2 Meropenem/vaborbactam

Meropenem (holds a b- lactam moiety) stands as a potent

broad-spectrum carbapenem antibiotic, effectively targeting both

Gram-positive and Gram-negative bacteria. It targets penicillin-

binding proteins (PBPs) disrupts the synthesis of crucial cell wall

components, and ultimately destroys the bacterial cell. It shows

remarkable binding capabilities with PBP2 and PBP3 in the Gram-

negative bacteria like Pseudomonas aeruginosa or Escherichia coli

and with PBP1, in the Gram-positive Staphylococcus aureus.

Meropenem is used to treat severe infections of the skin,

stomach and bacterial meningitis. On the other hand,

vaborbactam is a boronic acid b-lactamase inhibitor that

demonstrates a strong attraction to serine b-lactamases and

Klebsiella pneumoniae carbapenemase (KPC) (Table 1, row b).

Vaborbactam creates a reversible, covalent bond between its

boronate segment and the catalytic serine found in serine b-
lactamases that limits meropenem degradation. It also exhibits

the strongest affinity for serine carbapenemases within Amber

classes A and C (114). Thus, vaborbactam kills the bacterial b-
lactamases enzymes and protects the b- lactam moiety-based

meropenem. Consequently, as there is no supramolecular

bonding between them, they are administered individually with

a two-hour interval between doses.

Meropenem/vaborbactam (57) exhibits significant effectiveness

against Enterobacterales strains that generate KPC carbapenemases,

displaying slightly reduced yet noteworthy activity against strains

producing MBLs or OXA-48-like enzymes (115–117). To optimize

pharmacokinetic/pharmacodynamic (57) exposures and bolster

bacterial eradication, a high-dose, prolonged infusion of 2 grams of

meropenem and 2 grams of vaborbactam over 3 hours is administered

every 8 hours. This regimen aligns with EUCAST species-related

breakpoints for Enterobacterales and P. aeruginosa, designating

susceptibility at 8 mg/L and resistance above 8 mg/L (118).
5.3 Imipenem/relebactam

Imipenem (holds a b- lactam moiety) is used to treat severe

bacterial infections caused by susceptible organisms. To counteract

its rapid inactivation by renal dehydropeptidase I (DHP-1),
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imipenem is administered alongside cilastatin, a DHP-I inhibitor.

This combination enhances the half-life and tissue penetration of

imipenem. Working similarly to other carbapenems, imipenem-

cilastatin binds to bacterial penicillin-binding proteins, disrupting

bacterial cell wall integrity and impeding synthesis (57). On the

other hand, Relebactam functions as a beta-lactamase inhibitor,

effectively thwarting the hydrolysis of beta-lactam antibiotics. This

action significantly enhances the antibiotics’ efficacy, ensuring their

increased effectiveness in combating bacterial infections (Table 1,

row c).
5.4 Imipenem-Cilastatin

Cilastatin serves as a renal dehydropeptidase inhibitor, crucial

for preserving the potency of imipenem by preventing its

degradation. These medications are administered together to

effectively address a range of infections. Imipenem and cilastatin

injections are specifically employed in treating severe bacterial

infections across various areas, such as abdominal, endocarditis

(heart lining and valve infection), blood, respiratory, urinary,

gynaecological, skin, bone, and joint infections (Table 1, row d).

Imipenem belongs to the class of carbapenem antibiotics, known for

their potent action against bacterial infections (57).

Just like these antibiotic pairs, other combinations of antibiotics

follow a similar approach. One antibiotic targets a specific bacterial

component, associated with the bacterial defence mechanism that

causes damage to the second antibiotic. The second one, the

protected antibiotic then destroys the bacteria. Examples of such

antibacterial combinations include Cefoperazone/sulbactam and

Ceftolozane/tazobactam (57).

While selecting the drugs from the antibiotic table for a certain

bacterium, we can select the drugs in such a way that one of the two

drugs shields the other by neutralizing the bacterial defence

mechanism, while the protected drug eradicates the bacterial cells.
6 Supramolecular synthon for drug-
drug supramolecular
associate delivery

Supramolecular synthons refer to the precise spatial

arrangement of noncovalent intermolecular interactions that

construct predictable robust architecture. Crystal engineering

explores supramolecular synthons for the planned design and

synthesis of supramolecular materials, spanning from solid metal-

organic frameworks (119), pheromone containers (120, 121) to

pharmaceutical compounds (5, 6, 21, 66) and even semisolid liquid

crystal gels (122) or supramolecular gels (123, 124). The precision in

predicting specific supramolecular structures across solid,

semisolid, and liquid crystalline states encourages the

development of pharmaceutical crystals capable of maintaining

stability, even within solution phases. This hypothesis gains

further substantiation by observing changes in the solubility of an

Active Pharmaceutical Ingredient (API) through the formation of a
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cocrystal in specific solvents, affirming the existence of

supramolecular bonding within the solution state.

Pharmaceutical cocrystals are formed by combining specific

drug molecules with a coformer for enhancing plasticity, and

solubility, and reducing brittleness (21). By substituting the

coformer with a complementary drug while keeping the physical

parameters constant, we can improve efficacy through the

formation of multidrug cocrystals. Leveraging supramolecular

interactions, multiple drug molecules can unite and be jointly

delivered to pathogenic cells, potentially reshaping multidrug

therapy. Diverse supramolecular synthons, including acid-amide

synthon, acid-pyridine dimers, acid-aminopyrimidine trimer, and

carboxylic acid-amino pyrimidine synthon, hold promise for this

purpose (21, 66). To develop drugs through cocrystal formation or

pharmaceutical cocrystals, these formations must dissolve in water

and have tablet-forming capabilities to ensure their practical use

as medication.

To accomplish it, the crystal structure needs a 2D sheet capable of

sustaining mechanical stress, suppressing brittleness, and raising the

plasticity of the API. When the pharmaceutical crystal gains a

twistable quality, it may display exceptional tablet-forming ability

(19). Traditionally, a coformer (19) is employed in creating

pharmaceutical cocrystals, which, although not a therapeutic drug

molecule, are administered alongside the medicine without treating

the patient’s illness. However, if a drug molecule is utilized as a

coformer (19, 20) while retaining tablet-forming properties and

solubility, it could significantly enhance the drug’s efficacy. Figure 6

illustrates notable examples of extensively researched supramolecular

synthons utilized in the development of cocrystals for various drug

molecules including tuberculosis drugs. Cocrystal can be developed

by several known techniques like slow evaporation, cooling solution,

reaction cocrystallization, isothermal slurry conversion, the rapid
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expansion of supercritical solvents, spray drying, electrochemically

induced cocrystallization, freeze drying etc (19).
6.1 Multidrug cocrystallization

Developing cocrystals through the combination of multiple

drug molecules will soon become a prevalent technique in

medicine. It can offer a simultaneous treatment for multiple

diseases and also can be effective for multidrug-resistant bacteria.

Although other methods such as mesoporous complexes, salts,

amorphous systems, and surface-engineered nanocargos exist,

cocrystals stand out due to their exceptional ability to target

multiple receptors effectively and their cost-effectiveness (21).

Multidrug cocrystals (MDC) can be designed to either enhance

or diminish the solubility of a specific drug. When certain drugs

exhibit inadequate solubility in water, cocrystal formation proves

beneficial in improving solubility. For instance, cocrystallization

involving ethenzamide and gentisic acid, or Meloxicam and aspirin,

has shown considerable enhancement in solubility (21). Conversely,

cocrystals of lamotrigine and phenobarbital have been developed to

decrease solubility, facilitating regulated drug administration (125).

Another drug-drug cocrystal for glaucoma, specifically

temozolomide and baicalein, demonstrates improved stability,

optimized pharmacokinetics, and enhanced dissolution rates

(126). However, in the case of antibiotics, it is important to

deliver multiple complementary drug molecules simultaneously to

the bacteria cell. Liu et al. recently showed that the tuberculosis

drugs isoniazid and pyrazinamide crystallized with a bridging

molecule (fumaric acid) and can be used to treat M. Tuberculosis

(127). This marks a pioneering case of a ternary dual API cocrystal

incorporating combination drugs. The cocrystal underwent
FIGURE 6

Different supramolecular synthons utilized in the development of drug-drug cocrystals can be found in the Cambridge Structure Database
(CSD) (21).
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assessments for aqueous solubility, dissolution, membrane

permeability, and in vivo pharmacokinetic properties to anticipate

the potential clinical efficacy of the drug. The results underscored

the optimized formulation capacity of the cocrystal drug and

revealed synergistic effects in both in vitro and in vivo contexts.

In the last few years, people started working on cocrystalization of

multiple TB drugs, however, the hypothesis behind the drug

selections can make this journey effective towards the

supramolecularization of PDR (128, 129). Although crystal

engineering aids in identifying and formulating cocrystals, a

computational approach to this process is still in development.
7 Principles of complementary
multidrug cocrystal formation

The multidrug cocrystallization or the supramoleculization of

multidrug can be based on some fundamental principles for

enhancing pharmaceutical efficacy. This pioneering method

targets deliver complementary drugs, better bioavailability to

bacteria, and synergistic medicinal effect in the bacteria cell to

maximize the therapeutic benefits. By intricately combining a

variety of active pharmaceutical ingredients (APIs) with

complementary drugs, multidrug cocrystallization emerges as a

promising avenue for achieving synergistic effects, enhancing

drug efficiency, and tailoring formulations to specific needs. This

innovative approach has the potential to reshape the landscape of

pharmaceutical innovation and therapeutic strategies. Once the

multidrug resistance pattern is analyzed, the specific cocrystals

driven from particular drugs can be administered and will work

more efficiently. The multidrugs are categorized into first line,

second line and third line based on their decreasing efficiency.

This tiered classification assists healthcare professionals in

optimizing treatment strategies based on the drug’s efficacy

and tolerability.

When bacteria develop resistance to a specific drug molecule,

alternative medications become necessary. Cocrystals, composed

solely of multidrug-resistant bacteria treating drug molecules

without external coformers, offer flexibility and tablet-forming

properties, ensuring that targeted bacteria encounter multiple

drug molecules. In case we can cocrystallize two or more drugs,

then, even if the bacteria raise the drug resistivity, the rest drug

molecules can ensure effective treatment. When formulating

multidrug therapies, the selection of drug molecules should

adhere to the following guiding principles.
7.1 Complementary drug selection

While selecting drug molecules for crystallization, they must

work complementarily through various mechanisms. This synergy

should result in the collateral damage of different organoids within

bacterial cells. Even if a bacterium develops resistance to one drug,

others should ensure its elimination. To enhance effectiveness, the

incorporation of a first-line drug is recommended but not

mandatory. However, their different biochemical reaction
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category is important to complement each other. For example, if

a medicine works on a cell membrane, another should work on

other organoids like DNA or mitochondria. In the case of

tuberculosis, isoniazid and ethambutol exert their effects on

bacterial cell walls through distinct biochemical mechanisms.

Through the process of cocrystallization with rifampicin,

pyrazinamide, or streptomycin, these drugs collectively target

cellular organelles, expediting the destruction of bacterial cells.

Pyrazinamide, given its smaller size relative to rifampicin and

streptomycin, presents greater ease in the cocrystallization

process. Combining complementary isoniazid, ethambutol, and

pyrazinamide in a cocrystal formulation can further enhance the

medication’s efficacy, potentially accelerating its action against

bacterial infections.
7.2 Protected-protecting drug combination

After selecting the complementary drugs, we need to protect the

drugs from the bacterial defence mechanism. For example, if a drug

contains beta-lactam moiety, then a b-lactamase inhibitor drug

should also be taken to ensure the longevity or the longer half-life

period of the b-lactam-molecule. If we cocrystallize such supportive

drugs behind a main drug among the complementary drug

associates, then the effectivity of the multidrug therapy will be

enhanced many times.
7.3 Implementation of
supramolecular synthons

The clinical efficacy assesses how effectively the drug works for

therapeutic purposes in humans. Supramolecular associates

embody the remarkable potential of molecular assemblies and

interactions to significantly enhance therapeutic outcomes and

material properties. For designing the drug associates, we need to

leverage the supramolecular synthon concept to spatially arrange

and bond the different drug molecules with the maximum

bonding energies and enhance the pharmaceutical parameters

like solubility, plasticity, tabletability, bioactivities etc. This

will evaluate the efficacy of the supramolecular system. Isoniazid

and pyrazinamide show promising indications of potentially

creating a carboxamide dimer or a pyridine-isoniazid synthon,

as illustrated in Figure 6. Upon identifying the suitable

components, the synthesis of cocrystals can proceed utilizing any

of the methodologies elucidated at Multidrug cocrystallization

section (see 6.1) section. Sometimes bridging or binder molecules

can be provided to bind different drug molecules for

supramolecularization of drugs (127).
7.4 Determination of Potency

The stoichiometric ratio would be fixed in the multidrug

cocrystal, designed to be administered for multidrug-resistant

bacteria. As they would work together in a complementary way,
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1352483
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sahoo 10.3389/fimmu.2024.1352483
the potency of the individual molecule will not be effective, but the

combination of the supramolecular drug associates should be

subjected to the potency test. Potency refers to how active a

drug is based on its concentration or required amount to

generate a specific effect. However, as the complementary drug

molecules will work synergistically, it is expected that the potency

of the cocrystal will be much smaller than the individual

component. Individual administration of drugs in multidrug

therapy or the universal drug regimen raises the drug resistance

in the MDR for their distinct mode of operation, but herein, for

their synergistic effect, it’s anticipated that the potency will

manifest to a lesser extent.
8 The efficacy of crystal engineering

Creating cocrystals using complementary drug molecules to

target bacteria that tend to develop drug resistance can enhance the

bactericidal effect synergistically. So far basically, coformers are

incorporated into pharmaceutical cocrystals to enhance solubility

(130, 131), plasticity, tabletability (132), and bioavailability (133). It

also changes the melting point (134).

Yet, conformers lack medicinal properties, and substituting a

conformer with a complementary drug can significantly amplify the

medicinal efficacy. Therefore, the strategic design of cocrystals

becomes pivotal in introducing these desirable attributes.

Through the substitution of a conformer with a complementary

drug molecule, cocrystals can serve diverse therapeutic purposes,

including addressing different diseases or combating multidrug-

resistant bacteria.

Pharmaceutical excipients play a crucial role in safely

transporting drug molecules to specific organs within the body

without causing any harm. The utilization of supramolecular

bonding between a vital drug molecule and its complementary

counterpart can obviate the necessity for pharmaceutical excipients

or coformers. This dual benefit for patients involves administering

complementary drugs via cocrystals while averting potential side

effects associated with excipients. This approach holds significant

promise, especially in treating multidrug-resistant pathogens. By

implementing this method, we aim to augment the effectiveness of

our treatment against bacterial infections and ultimately improve

patient outcomes.
8.1 Supramolecular bonding for
co-delivery

The co-delivery of multiple therapeutic agents holds immense

potential in enhancing treatment efficacy and addressing multifaceted

health challenges. Supramolecular bonding, a versatile and precise

molecular assembly strategy, emerges as a promising avenue in co-

delivery systems. Leveraging non-covalent interactions such as

hydrogen bonding, p-p stacking, and van der Waals forces, can

facilitate the formation of supramolecular drug associates, or

supramolecularize the drugs, enabling tailored co-delivery

formulations. Furthermore, it delves into the potential of
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supramolecular co-delivery systems in addressing challenges related

to multidrug resistance, combination therapy, and personalized

medicine. Understanding the dynamic interplay of supramolecular

interactions within co-delivery systems offers a promising trajectory

toward advanced therapeutic interventions, opening avenues for

novel drug delivery strategies with enhanced therapeutic outcomes.

All the cocrystals may not reach up to the targeted bacteria after oral

administration, however, the number of bonds (135) and the strength

of the bond (122) will play a very crucial role in this regard. The

cocrystal can be designed by selecting two or more drug

complementary drug molecules capable of forming certain

supramolecular synthons. Moreover, the resultant cocrystal should

be soluble in water, retaining the supramolecular association until it

reaches a targeted bacteria cell. For example, when a plasmid exhibits

resistance to a specific drug component within the multidrug

cocrystal, the bacteria can still be targeted and killed by the second

drug (21). Should the bacteria lack resistance to either or both drugs,

the combined attack on the bacterial cells occurs simultaneously. The

innovative use of supramolecular bonds to merge pharmaceutical

molecules, enabling a unified assault against bacteria, represents a

novel approach. This method significantly enhances the efficacy of

multidrug therapy, restricting bacteria from rising resistance to the

synergistic attack (136). In the context of multidrug-resistant bacteria,

alternative supramolecular materials utilized for drug delivery, such

as supramolecular gels (137, 138) and metal-organic frameworks

(MOFs) (139, 140), might not exhibit the same precision in targeting

bacterial cells as cocrystals do. This discrepancy arises from the fact

that encapsulated or trapped drug molecules within these materials

might not readily present the essential functional groups to initiate an

immediate reaction with the bacteria. Despite the ongoing efforts to

prepare drug-drug cocrystals, the proactive development of

complementary drug molecules for synergistically combating

multidrug-resistant bacteria is yet to commence (141–143).
8.2 Harmonization of complementary
cocrystal therapy

Pharmaceutical harmonization aligns with global regulations,

ensuring consistency in drug development, manufacturing, and

quality control. This collaboration streamlines approvals, supports

trade, and enforces universal safety and efficacy standards.

Developing a new regimen of 3-4 drugs for multidrug therapy

usually spans 15-20 years. However, once the drugs are approved

for multidrug therapy, can be considered quickly for developing the

cocrystals. The present momentum behind multidrug therapy

regimens is accelerating through effective collaboration among

upcoming generations of drug trial researchers, controllers, and

policymakers (143, 144).

A minor portion of antibiotics approved in the last four decades

introduces new compound classes. Instead, the majority stem from

existing chemical structures, with the most recent antibiotic class

discovered in the 1980s (145). As developing a new antibiotic is a

tedious job, M. Miethke et al. suggested the formation of an

international coalition comprising seasoned antimicrobial

resistance (AMR) lobbyists (146). This group would collectively
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advocate for funding aimed at early antibacterial drug discovery

research, aligning with the principles outlined in this article.

The progress of innovative strategies behind tuberculosis (TB)

therapeutics (147, 148) is presently gaining momentum through the

harmonization of TB drug trial researchers, manufacturing,

controllers, and policymakers (144). In the last 5-10 years a

movement is started in developing the universal drug regimen

(pan-TB regimens), due to the expanding pipeline of anti-TB

drugs with distinct modes of action. Harmonization reduces the

time to bring a new drug regimen to the market. Once a PAN

regimen is developed, it can also address the lower drug-resistant

bacteria categories like extensively drug-resistant (XDR), multi-

drug-resistant (MDR), and drug-susceptible M. tuberculosis

infections. The potential for universal regimens to expedite global

TB control is considerable. Still predicting the finest regimens

presents a challenge due to the numerous potential combinations

involving three, four, or five drugs across ten essential drug

classes (74). Presently, the ranking of regimens is affected by

restricted preclinical data, highlighting the need for more

robust clinical trials to enhance this assessment process (149).

Similar to the development process effective binary combination

of two antibiotics, a clinical is going on here. The discovery

of effective combinations remains serendipitous. To address

this issue, a complementary combination with drug-drug

interaction may facilitate and accelerate the effectiveness of the

antibiotic combination process. The drug-drug interaction or

supramolecular assembling of drugs or forming the cocrystals

that are bonded strongly even inside the biological system can

deliver the drug combination to the targeted bacteria. Then after

determining the potency, the harmonization would accelerate

bringing the drugs into the market. The very similar efforts are

also needed for every drug-resistant bacterium (150).
9 Advantages of complementary
cocrystal therapy

Conventional multi-drug therapy administers drugs separately,

leading to individual drug molecule administration and boosting

drug resistance. By forming bonds to deliver these drugs

simultaneously to targeted bacterial cells, we can achieve

several advantages.
9.1 Minimal drug-drug interactions

The drug-drug interactions often exhibit unwanted side effects.

However, herein, developing drug-drug interactions through

forming cocrystals and administering them in the body will

minimize the unwanted side effects.
9.2 Minimizing bacterial drug resistance

Unlike multidrug therapy or universal drug regimen therapy,

this process promotes working the complementary drug molecule
Frontiers in Immunology 16
together to a targeted multidrug-resistant bacterium cell and

minimizes the risk of raising drug resistance.
9.3 Minimizing side effects

This process will minimize the consumption of unnecessary

medicines and will help in reducing the side effects. For their

synergistic work inside a bacterium cell, the multidrug-based

cocrystal therapy will minimize the treatment time, cost,

mortality and probability of spreading the disease in society.
9.4 Exact potency determination

We can determine the exact potency for the multidrug therapy

which was not possible in multidrug therapy.
9.5 Antibacterial coating

Antibacterial coatings represent an innovative approach in

various sectors, from healthcare to consumer goods. These

coatings are designed to inhibit the growth of bacteria on

surfaces, thereby reducing the risk of infections and enhancing

overall hygiene. Composed of antimicrobial agents or materials,

they act as a protective layer, hindering the colonization and

proliferation of bacteria. In healthcare settings, antibacterial

coatings on medical devices, such as catheters or implants, help

prevent healthcare-associated infections. As hospital walls and

furniture stay infected by various highly immune bacteria, a

proper coating is mandatory to prevent the spreading of

infection. Coating the surfaces of ceilings, chairs, doors, tables,

walls, windows, and furniture with the cocrystal will reduce the

risk of spreading MDR bacteria in hospitals or the patient’s home.

As cocrystals are hard to stick over the surface, they can be doped

in some antibacterial polymers (151) or can be mixed with the dye

(152), sonocoating methods (153). or by spray drying (19). Once

we can coat the surface of the furniture or wall by polymer with

the free -COOH group like an oxidized carbon nanotube (154),

then we can coat the surface with an amine-containing group or

vice versa.
10 Limitation of complementary
cocrystal therapy

Though it is supposed to kill the multidrug-resistant bacteria

much faster in comparison to the other conventional therapies, still

during the treatment it may show drug resistivity up to a certain

extent. Experimental studies can show the exact efficacy of

this therapy.

However, we may face also some challenges behind the drug

formulation. The establishment of supramolecular bonds (155–158)

between complementary drug molecules or within a ‘protecting-

protective’ combination isn’t always achievable. Those targeted two
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or more drugs might be difficult to crystallize together. Moreover,

forming certain supramolecular synthons, some more technical

difficulties may arise in co-delivering the supramolecular multidrug.

Supramolecular limitations
Fron
i) Creating supramolecular synthons presents challenges,

particularly in delivering them to bacterial cells. The

existence of multiple competitive synthon formation

probabilities often can end up with some unpredicted

crystal structures with enhanced or reduced bio-activities.

However, still they can be harnessed for cocrystal-based

multidrug therapies.

ii) If the number of supramolecular bonds and the bond energy

amounts are too high, then the cocrystals can be difficult to

use for multidrug therapy. For example, the cocrystals made

of Melamine and Cyanuric Acid are so much stable, that

they are stable enough in the highly acidic environment

under the electrochemical environment (135). Such strong

bonding won’t be soluble in water and can never be used for

administering the drug molecules.

iii) Ammonium carboxylate salts, supported by charge

assistance and featuring a D pKa value below 3.5, can

render the cocrystal unstable in the presence of any protic

solvent due to the high solubility of any individual

component (120, 121, 159). Additionally, instability may

arise if one of the individual components possesses high

solubility and exhibits weak supramolecular bonding in its

cocrystal form. By exploiting the D pKa value difference,

pheromone can be released from the supramolecular

container or the cocrystal to release the major pheromone

to control the pests (121, 159). The lability of the proton at

the ammonium carboxylate bonding in this salt allows the

pheromones to be freely released into the atmosphere due

to the trace amount of water (acting as a catalyst) present.
11 Bacteria wise remedy

Nanomarkers represent a breakthrough in precision medicine,

offering a glimpse into the efficacy of drugs against specific bacteria.

These markers delve into the genetic intricacies of microbial

populations, enabling the identification of drug-resistant strains. By

analyzing biomarkers, nanomarkers can decipher the genetic

signatures associated with drug resistance mechanisms within

bacteria (160). This technology allows for swift and accurate

assessments of drug effectiveness, aiding healthcare professionals in

tailoring treatment regimens to combat resistant infections. The

ability to discern which drugs may be rendered ineffective against

certain bacterial strains before administering treatment holds

tremendous promise in optimizing patient care and combating

antibiotic resistance (161). Nanomarkers stand as a pioneering tool

in the fight against drug-resistant bacteria, revolutionizing how we

approach infectious disease management. Thus, after analyzing the

drug resistance ability, once we can administer the multidrug

cocrystal accordingly, we can protect the MDR bacteria very quickly.
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12 Conclusion

Leveraging AI expedites the development of antibiotics,

streamlining the process by utilizing advanced technologies. This

will help synthesize the active antibiotic molecules faster and

provide more options to develop the drug regimens faster.

Through the binary antibacterial combinations, that involve the

strategic pairing of two antibiotics: one serves as a protective shield,

safeguarding the other, while the second antibiotic works actively to

neutralize harmful microbial molecules. This tandem approach

enhances the overall effectiveness of the treatment against

resistant bacteria.

With such an ongoing process, we need to introduce the

administering of the multidrug together, so that bacteria won’t get

the required time to raise their defense mechanism. Crystal

engineering introduces a novel dimension to this approach by

allowing the creation of multidrug-driven cocrystals. These

cocrystals can be formed by pairing two or more complementary

drug molecules or by combining protected-protected antibiotic

combinations. This innovative strategy targets multi-drug-resistant

bacteria with heightened precision and efficacy. Determining the

potency of these cocrystals becomes crucial, as it paves the way for a

proactive multi-drug approach. This proactive method harnesses the

synergistic effect of the combined antibiotics, effectively eliminating

bacteria while preventing the escalation of their defence mechanisms.

This advanced approach not only accelerates the multidrug

therapy process but also ensures a more thorough and rapid

eradication of bacterial infections, marking a significant leap

forward in combating antibiotic-resistant strains.
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