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The host defence responses play vital roles in viral infection and are regulated by

complex interactive networks. The host immune system recognizes viral

pathogens through the interaction of pattern-recognition receptors (PRRs)

with pathogen-associated molecular patterns (PAMPs). As a PRR mainly in the

cytoplasm, cyclic GMP-AMP synthase (cGAS) senses and binds virus DNA and

subsequently activates stimulator of interferon genes (STING) to trigger a series

of intracellular signalling cascades to defend against invading pathogenic

microorganisms. Integrated omic and functional analyses identify the cGAS-

STING pathway regulating various host cellular responses and controlling viral

infections. Aside from its most common function in regulating inflammation and

type I interferon, a growing body of evidence suggests that the cGAS-STING

signalling axis is closely associated with a series of cellular responses, such as

oxidative stress, autophagy, and endoplasmic reticulum stress, which have major

impacts on physiological homeostasis. Interestingly, these host cellular

responses play dual roles in the regulation of the cGAS-STING signalling axis

and the clearance of viruses. Here, we outline recent insights into cGAS-STING in

regulating type I interferon, inflammation, oxidative stress, autophagy and

endoplasmic reticulum stress and discuss their interactions with viral

infections. A detailed understanding of the cGAS-STING-mediated potential

antiviral effects contributes to revealing the pathogenesis of certain viruses and

sheds light on effective solutions for antiviral therapy.
KEYWORDS
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1 Introduction

The innate immune system is the first line of defence against

viral infections. The initiation of this early immune response

depends on the recognition of certain viral structures known as

pathogen-associated molecular patterns (PAMPs). Hosts’ pattern

recognition receptors (PRRs) recognize viral PAMPs, activating

intracellular signalling pathways and inducing the expression of

pro-inflammatory cytokines and antiviral genes that play antiviral

effects. Through decades of research, six major classes of PRRs have

been identified, including toll-like receptors (TLRs), retinoic acid-

inducible gene (RIG)-I-like receptors (RLRs), NOD-like receptors

(NLRs), C-type lectin receptors (CLRs), nucleic acid recognition

receptors, and other innate immune receptors (such as scavenger

receptors, complement receptors) (1, 2). These PRRs are mainly

distributed on the cell surface, cytoplasm or lysosomes and induce

innate immune responses and inflammatory responses through

specific signal transduction pathways to promote virus clearance.

In addition, the biological functions of PRRs have also included the

activation of cells and complement, induction of cytophagy and cell

death. Although the study of PRRs has been a hot area in

immunology research, the role of these receptors in host defence

and viral infection still needs to be further explored.

Interferon (IFN)-induced signalling pathway is the most

important antiviral approach for the host and is activated by

downstream signals of many PRRs (3, 4). Generally, binding of

IFN to its receptor activates the downstream JAK-STAT pathway,

resulting in increased transcription of IFN-stimulated genes (ISGs)

(5). The ISG transcription proteins, such as myxovirus resistance

(Mx), cholesterol 25-hydroxylase (CH25H) and oligoadenylate

synthetase (OAS), play key roles in antiviral defences (6–8). In

the early stages of viral infection, however, PRRs-mediated

inflammatory response is also of great importance during

antiviral processes. Interleukin-1 (IL-1) and tumour necrosis

factor (TNF) can activate nuclear factor-kB (NF-kB) and induce

IFN production, which further helps to remove viruses (9, 10). In

addition, viral infection always affects cellular physiological states

and metabolic processes, including oxidative stress, autophagy, and

endoplasmic reticulum (ER) stress (11–13). Many studies have

found that viral infections generally lead to a redox imbalance in

the cellular environment (11). Oxidative stress is initially recognized

as a means of combating viruses and protecting the host,

contributing to apoptosis (14). However, with the development of

research, more and more researchers found that oxidative stress

promoted viral replication, which was a common mechanism used

by some specific viruses (15). It is important to investigate the key

molecular mechanisms used by viruses to interact with

mitochondria and induce oxidative stress. As viruses need to use

host cells to synthesize viral proteins, ER stress is always activated

during viral infections. Understanding the complex mechanism of

ER stress in viral infection is an important step in developing

effective antiviral strategies. As an intracellular basic metabolic

process (also known as type II programmed cell death),

autophagy protects cells from toxic protein accumulation,

organelle dysfunction, and viral infection by decomposing and

recycling superfluous or potentially dangerous cytosolic entities.
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However, autophagy is a double-edged sword during viral infection.

Studies have shown that some viruses have acquired the ability to

hijack and subvert autophagy for their benefit (13). To sum up, all

these factors affect the antiviral ability of the host.

As a newly identified PRR, cyclic GMP-AMP synthase (cGAS)

recognizes viral, endogenous mitochondrial and genomic DNA in the

cytoplasm and plays an important role in innate antiviral immunity

(16). The conformation of cGAS changes upon binding to DNA,

producing cGAMP, which is detected by the stimulator of interferon

genes (STING) at the endoplasmic reticulum (17). Ishikawa and

Barber have identified STING as an endoplasmic reticulum protein

that has IFN-induced function in response to viral and intracellular

DNA stimulation (18). The activated STING translocates to the Golgi

apparatus, where it recruits TANK-binding kinase 1 (TBK1) and

interferon regulatory factor 3 (IRF3) to form a complex (19). TBK1

then induces phosphorylation and oligomerization of IRF3. As a

result, the activated IRF3 translocates into the nucleus, where it

triggers the transcription of type I IFNs and ISGs that perform

antiviral functions. Moreover, the cGAS-STING pathway is also

involved in regulating the NF-kB-driven inflammatory immune

response in vertebrate cells (20, 21). In addition, it has also been

suggested that the cGAS-STING signalling axis is closely associated

with oxidative stress, autophagy, and ER stress which affect the

antiviral capability of the host (22–24). The inactivated STING is

located in the endoplasmic reticulum, and the migration of activated

STING is always accompanied by ER stress (25). Furthermore, ER

stress can induce reactive oxygen species (ROS), which in turn,

initiates the apoptotic process via constant oxidative stress (26).

Additionally, the latest evidence suggests that the induction of

autophagy is a highly conserved function of the cGAS-STING

signalling axis (24). These researches suggest that these host cellular

responses play significant roles in cGAS-STING-mediated viral

infection. In this review, to further understand the regulatory

mechanism among the cGAS-STING pathway, inflammation, IFN,

oxidative stress, ER stress, and autophagy during viral infection, we

discuss their interactions, which would facilitate revealing the

pathogenesis of certain viruses and shed light on effective solutions

for antiviral therapy.
2 Integrated omic and functional
analyses identify the cGAS-STING
pathway controlling viral infections
and regulating various host
defence responses

More and more multi-omics studies have confirmed the

important role of cGAS-STING in the course of viral infections.

Transcriptome analysis revealed that the expressions of IFNs

(IFNA2, IFNA4, IFNA1, IFNA13, IFNB1, IFNL2 and IFNL3),

ISGs (IFIT2, BST2, IRF7, OASL, MX1, IFITM1, IFIT2, IFI35,

IFIH1, ISG15, CXCL10 and CXCL9) and pro-inflammatory

cytokines (TNF, IL6, IL1B and IL1A) in skin from COVID-19

patients are significantly different from those of healthy donors

(27). Further study found the activation of the cGAS-STING signal
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1352479
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1352479
was the main cause of this large amount of type I IFNs and pro-

inflammatory cytokines. In addition, cell death induced by severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection

was also attributed to cGAS-STING activity. A proteomic study

revealed that many vital PRRs, including TLR2, RIG-I, MDA5

(melanoma differentiation-associated gene 5) and cGAS, were

upregulated in Japanese encephalitis virus (JEV)-infected

fibroblasts (28). Similar results are also reported in SARS-COV-2,

Zika virus (ZIKV), and dengue virus (DENV) infection (29–31). By

analysing the mass spectrometry-based proteomic characterization

of post-translational modifications, many novel sites of cGAS were

identified, which affected cGAS activity and signal transduction

(32–34). Recently, an interesting study showed that the gut

microbiota can mediate peripheral cGAS-STING activation,

which promotes host resistance to systemic viral infections (35).

This evidence shows that cGAS-STING plays a key role in host

resistance to viral infection. Further functional studies revealed that

the activated cGAS phosphorylates its downstream effector protein

STING at the Ser365 position upon viral infection and subsequently

promotes type I IFN production and ISGs expression via TBK1-

IRF3 and JAK-STAT pathways. These factors and signals are

generally considered the most effective antiviral approaches (16,

36). Depletion of cGAS and STING enhanced virus replication and

spread, which further confirmed their antiviral roles (28, 37).

Although cGAS and STING play pivotal roles in the recognition

of viral DNA, more and more evidence indicates they also play

crucial functions in the host’s innate immune response against

specific RNA viruses lacking DNA intermediates (38). Mice with a

cGAS deficiency displayed heightened susceptibility to West Nile

virus (WNV), a positive sense single-stranded RNA virus (36). The

absence of cGAS likely results in a reduction of basal transcript

levels of specific antiviral genes, making cells more susceptible to

WNV infection. Simultaneously, mice lacking STING exhibit

heightened susceptibility to RNA viral infections, and STING-

deficient cells manifest an impaired ability to mount innate

immune responses against RNA viruses, including vesicular

stomatitis virus (VSV) and Sendai virus (SeV) (39). During RNA

viral infection, it was observed that the cGAS-STING pathway is

activated via indirect mechanisms, including the induction of

mitochondrial stress and chromatin/nuclear membrane damage.

This ultimately culminates in the liberation of intracellular double-

stranded DNA into the cytoplasm, subsequently recognized by

cGAS or alternative DNA sensors. RNA virus-induced cell

membrane fusion has emerged as a pivotal process linking viral

entry to the activation of STING. The comprehension of RNA

viruses-cGAS-STING signalling interactions has markedly

advanced, yet the precise mechanisms of activation of this

pathway after RNA virus infections remain uncertain.
3 cGAS-STING-mediated IFN response
is the crucial step in antiviral infection

cGAS is a cytosolic DNA sensor identified by Chen’s group in

2013 (16). It has been demonstrated that dsDNA activates cGAS in

a length-dependent but sequence-independent manner (40). The
Frontiers in Immunology 03
dsDNA from various sources such as DNA viruses, retroviruses,

bacteria, phagocytosed dead cells, and self-DNA leaked from

damaged mitochondria could interact with cGAS. cGAS senses

dsDNA and catalyses the production of cGAMP to bind the C-

terminal domain (CTD) domain of STING and then changes the

conformation of STING to oligomerize. The oligomerization of

STING migrates away from the ER and activates TBK1 by

phosphorylation at serine 365. The activated TBK1 then

phosphorylates the CTT pLxIS motif (Ser366) of STING to

recruit IRF3. TBK1 phosphorylates IRF3 and induces the IRF3

dimer to enter the nucleus, promoting type I IFN production.

Activated IFN can lead to the up-regulation of several hundreds

of ISGs, which in turn promotes the secretion of pro-

inflammatory cytokines.
3.1 DNA/RNA viruses sensing by the cGAS-
STING pathway

There have been sufficient reports on the recognition of DNA

viruses by cGAS-STING signal. It has been demonstrated that

cGAS-STING induces type I IFN production and further inhibits

cytomegalovirus (CMV) replication in primary human endothelial

cells (41). In the central nervous system, the activation of the cGAS-

STING pathway suppresses herpes simplex virus 1 (HSV-1)

replication in mice microglial cells (42). Moreover, the replication

of hepatitis B virus (HBV) is inhibited due to activation of the

cGAS-STING pathway in both human liver cell lines and in vivo

mouse models (43). Another study also found that high-level

expression of STING restricts susceptibility to HBV by mediating

type III IFN induction (44). African swine fever virus (ASFV) is a

complex, cytoplasmic double-stranded DNA (dsDNA) virus

currently expanding worldwide. The cGAS-STING pathway is

efficiently activated during NH/P68 attenuated strain infection,

producing large amounts of IFN-b to inhibit ASFV replication. In

contrast, the virulent Armenia/07 virus blocks the synthesis of IFN-

b by impairing STING activation during infection (45). However,

with further research, cGAS-STING has also been confirmed to play

an important role in the response to RNA virus infection. In 2013,

Schoggins et al. used an ectopic expression system to verify that

cGAS also widely inhibits several RNA viral infections (36). During

the human immunodeficiency virus (HIV) infection, cGAS senses

its RNA-DNA hybrid and dsDNA, inducing IFN production to

inhibit virus replication via the cGAS-STING pathway (46). During

the SARS-CoV-2 infection, virus spike (S) protein induced cell

fusion and then damaged nuclei to form micronuclei. The

micronuclei are sensed by cGAS and lead to the activation of

STING, which further induces type I IFN production (37).
3.2 Viruses inhibit cGAS-STING-mediated
IFN production and antiviral function

As induction of type I IFN mediated by the cGAS-STING axis is

crucial for host antiviral responses, viruses have evolved various

strategies to antagonize this signalling pathway for immune evasion
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(Table 1). Numerous evasion mechanisms and immunomodulators

have been identified in DNA viruses that target cGAS-STING

signalling. It has been found that herpesviruses employed

multiple strategies to antagonize the cGAS-STING pathway for

immune evasion. The herpesvirus family includes HSV, CMV,

varicella zoster virus (VZV), human herpesvirus (HHV), and

Epstein Barr Virus (EBV), which are all DNA viruses. Human

CMV (HCMV) tegument protein UL82 was reported to impair the

translocation of STING from the ER to perinuclear microsomes and

inhibit the recruitment of TBK1 and IRF3 to STING (58).

Moreover, HCMV US9 was confirmed to disrupt STING

oligomerization and STING-TBK1 association and block IRF3

nuclear translocation (59). The HSV-1 protein ICP27 interacts

with the STING-TBK1 complex to inhibit IRF3 phosphorylation

(53). The tegument proteins UL41 and UL46 of HSV-1 directly

degrade cGAS mRNA or inhibit TBK1 activation, respectively (54,

55). Similarly, the murine CMV (MCMV) protein m152 was able to

prevent the trafficking of STING from the ER to the endoplasmic

reticulum-Golgi intermediate compartment (ERGIC), therefore

inhibiting the interaction between STING and TBK1 (56).

Pseudorabies virus (PRV) belongs to the alphaherpesvirus

subfamily, which is also known as suid herpesvirus 1 or

Aujeszky’s disease virus and infects a broad range of vertebrates.

A recent study showed that PRV tegument protein UL13 functions

as a suppressor of STING-mediated signalling to inhibit IFN

production and antiviral response via recruitment of E3 ligase
Frontiers in Immunology 04
RING-finger protein 5 (RNF5) to induce K27-/K29-linked

ubiquitination and degradation of STING (57). ASFV also uses

different viral proteins to target the cGAS-STING pathway,

inhibiting IFN production and escaping the innate immunity of

the host. So far, it has been found that MGF360-15R (pA276R),

pDP96R, pE120R, pI215L, pMGF505-7R and L83L protein encoded

by ASFV target different adaptor proteins of the cGAS-STING

pathway to inhibit type I IFN production (49, 60). In conclusion,

maintaining high levels of IFN by ensuring the cGAS-STING

activity is critical for host resistance to viral infection. Although

cGAS-STING is considered the most potent signalling pathway to

induce IFN, Kiran et al. found that JEV-induced type I IFN is cGAS-

STING-independent (28). Most researchers believe that TLR and

RLR are the main factors that induce IFN production. Interestingly,

increased viral load was observed in a cGAS-depleted environment

when IFN-b levels were still high. It suggested that the abundance of
IFN-b transcripts was not sufficient alone to restrict viral

replication. Therefore, there might be additional antiviral

approaches regulated by the cGAS-STING signal. With the

deepening of research, multiple functional roles and specific

mechanisms of cGAS-STING during viral infections were

identified, especially its effects on inflammation, oxidative stress

and cell death.
4 Function of cGAS-STING in
regulating inflammation during
viral infection

The host inflammatory response responds to harmful stimuli

and is tightly regulated. After the PRRs recognize the invading virus,

hosts initiate inflammatory signal transduction and trigger

inflammatory responses, which play essential roles in early

antiviral processes. The inflammatory response regulatory

network plays a key role in the host antiviral process to maintain

the body’s balance.
4.1 NF-kB is the key signal for cGAS-
STING-induced inflammatory responses in
viral infections

Recognition of viruses by PRRs causes the interaction of many

adaptor molecules, which in turn initiate inflammatory signalling,

including the NF-kB pathway, the JAK-STAT pathway, and the

inflammasome pathway. The NF-kB pathway is thought to be the

regulatory centre of the inflammatory response process. The NF-kB
signalling pathway is involved in a variety of stress responses during

viral infection, which in turn mediates various transcriptional

processes and ultimately induces pro-inflammatory cytokine

production. The SARS-CoV-2 infection causes varying degrees of

respiratory symptoms and results in lung damage or even death in a

significant number of cases. These severe cases are associated with

high levels of pro-inflammatory cytokines and low antiviral

responses (61). A recent study reported that in SARS-CoV-2
TABLE 1 The interaction between virus and cGAS-STING pathway on
type I IFN production.

Viruses Target Function Reference

HIV cGAS Sensing RNA-DNA hybrid and
dsDNA to induce IFN

(46)

SARS-
CoV-2

cGAS Sensing micronuclei to induce IFN (37)

CMV cGAS-
STING-
IRF3

The IFN-I response is dependent
on cGAS-STING-IRF3 signalling

(41)

HBV cGAS/
STING

Activating the cGAS-STING axis
to induce ISG56

(47, 48)

ASFV cGAS/
STING
/TBK1/
IRF3

Virulent factors target adaptor
proteins of the cGAS-STING
pathway to inhibit type I IFN.

(45, 49–52)

HSV-1 cGAS/
STING/
TBK1;

ICP27 interacts with STING-TBK1
complex to inhibit IRF3

phosphorylation; UL41 and UL46
degrade cGAS mRNA or inhibit

TBK1 activity

(53–55)

MCMV STING M152 prevents the trafficking of
STING from the ER to the ERGIC
to inhibit the interaction between

STING and TBK1

(56)

PRV STING UL13 recruits E3 ligase RNF5 to
induce K27-/K29-linked

ubiquitination, and STING
degradation inhibit IFN

(57)
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infected cells, the TBK1 and IRF3 pathways are blocked by several

viral proteins. The SARS-CoV-2 infection causes mitochondrial

stress/damage, DNA damage, cell death and leakage of

mitochondrial DNA. These DNA activate the cGAS-STING axis

and induce NF-kB activation to drive inflammatory immune

response (21). cGAS-STING is recognized as a potential target for

the treatment of SARS-CoV-2. And several STING-targeting drugs

can attenuate the inflammatory response. The HIV/SIV (Simian

immunodeficiency virus) research study showed that its Vpx

proteins efficiently inhibit cGAS–STING-induced NF-kB
signalling but not IRF3 activation, which further induces the

production of several pro-inflammatory cytokines (62). In

addition. ASFV protein pD345L has been found to suppress

cGAS/STING-induced NF-kB activation (63). It is well known

that NF-kB is the predominant regulator of inflammation and

cGAS-STING can drive NF-kB activity during viral infections

(21). Therefore, the role of cGAS-STING signalling in mediating

inflammatory responses deserves more attention.
4.2 The cGAS-STING pathway interacts
with the inflammasome complex in
viral infections

NLRs also have powerful effects on inflammation induction. It

has been proved that several NLRs, including NLRP1b, NLRP3,

NLRC4, NLRP6 and NLRP12, are involved in the formation of

inflammasome and regulate innate antiviral immunity. When

viruses invade cells, NLRs recognize viral nucleic acids or

endogenous molecules released from damaged or dying cells. Then,

NLRs oligomerize and recruit pro-caspase-1 with or without ASC to

form inflammasomes. In the inflammasome complex, caspase-1 can

activate self-cleavage, and the activated caspase-1 cleaves pro-IL-1

and pro-IL-18 for their maturation and release. These mature pro-

inflammatory cytokines then exert their antiviral function. IFN and

pro-inflammatory cytokines are produced and function

simultaneously during the host antiviral responses. Importantly,

balance type I IFN production and inflammasome activation

pathways are essential for immune homeostasis. Upon infection

with HSV-1 or cytosolic DNA stimulation, STING engages with

NLRP3, facilitating inflammasome activation via dual mechanisms

(64). On one hand, STING recruits NLRP3 and promotes the

localization of NLRP3 in the endoplasmic reticulum, thus

promoting the formation of an inflammasome. On the other hand,

STING interacts with NLRP3 to attenuate NLRP3 polyubiquitination

associated with K48 and k63, thereby promoting inflammasome

activation. It is widely known that the assembly of the NLRP3

inflammasome leads to the activation of caspase-1, which further

results in the production of several pro-inflammatory cytokines.

Caspase is the important link between inflammasome and

inflammatory cytokines. Wang et al. found that caspase-1

interacted with cGAS to inhibit IFN production in DNA virus

infection (65). This study also demonstrated that deficiency in

inflammasome signalling enhanced host resistance to DNA viruses

in vitro and in vivo. Moreover, this regulatory role also extended to

other inflammatory caspases, including Caspase-4, 5, and 11 (65).
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These Caspases cut cGAS in conditions of non-canonical

inflammasome activation. ZIKV, an RNA virus, has been reported

to promote NLRP3 inflammasome activation to benefit its infection

by stabilizing caspase-1 to suppress cGAS-mediated type I IFN

signalling (31). The detailed mechanism is that the non-structural

protein NS1 of ZIKV recruits the host deubiquitinase USP8 to cleave

K11-linked poly-ubiquitin chains from caspase-1 at Lys134 to inhibit

the proteasomal degradation of caspase-1. The enhanced stabilization

of caspase-1 by NS1 promotes the cleavage of cGAS to inhibit the

recognition of releasing mitochondrial DNA and then suppress type I

IFN signalling. In addition, the activation of human caspase-3, an

apoptotic caspase, has been demonstrated to cleave cGAS at D319,

IRF3 at D121/125 and MAVS at D429/490, thus making apoptotic

cells immunologically silent and negatively regulating DNA or RNA

virus-induced cytokine production (66). Currently, there are few

studies on the interaction between cGAS-STING and inflammasome

signalling in viral infection, but the available evidence already

suggests that the interplay between the cGAS-STING pathway and

inflammasome complex affects IFN, inflammation and cell death.

Therefore, this aspect deserves more attention.
5 The crosstalk between cGAS-STING
signal and oxidative stress in
viral infections

5.1 Oxidative stress is a double-edged
sword in viral infections

Oxidative stress is an important pathological factor causing

tissue damage, aging, tumours, and cardiovascular diseases. Under

normal circumstances, oxidation and antioxidation are maintained

in a balanced state. The oxidative and antioxidant systems in the

body are disordered when harmful substances stimulate the

organism. Excessive production of highly reactive molecules such

as ROS and reactive nitrogen species (RNS) leads to the inhibition

of antioxidant capacity, which tilts the equilibrium toward

oxidation, resulting in oxidative stress. Oxidative stress is always

associated with viral infections. Viral infection-induced ROS

generation triggers oxidative stress in the organism and mediates

apoptosis, which in turn mediates ROS and causes extensive

damage, aggravating the disease process (67). For example,

oxidative stress is a major characteristic of asthma and chronic

obstructive pulmonary disease (COPD), and rhinovirus infection

can make their condition worse. Oxidative stress attenuated the

antiviral capacity of bronchial epithelial cells in asthma and COPD

patients. Furthermore, oxidative stressor H2O2 could down-regulate

the expression of epithelial cellular PRR TLR3 and antioxidants

(SOD1 and SOD2), which suggested that ROS might have reduced

the host’s antiviral capacity and promoted viral infection (68). But

in some other studies, to a certain degree, oxidative stress activates

the antioxidant defence system and autophagy in the tissues and

organs, which help to scavenge some of the ROS and induce stress

defence (69). Oxidative stress-induced ROS can also activate

autophagy and apoptosis through various specific mechanisms,
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which induce cell death and inhibit virus replication. Moreover,

H2O2 has been confirmed to regulate autophagy by inhibiting the

autophagy-related gene (ATG) 4, which affects the lipidation of

light chain 3 (LC3) and the degradation of pathogens (70). In

addition, Latent Membrane Protein 1, a major EBV protein,

facilitates ROS production, causes DNA damage and induces

autophagy initiation (71). These studies suggest oxidative stress

affects viral infection by directly regulating viral survival or

indirectly affecting virus infection via apoptosis and autophagy.
5.2 cGAS-STING is a potential target that
links oxidative stress and viral infection

It is widely known that the invading DNA virus will activate the

cGAS-STING pathway, inducing type I IFN production and causing

a range of innate immune responses. In recent studies, it has been

found that STING is an upstream regulator of cellular oxidative

stress. It is possible to regulate the level of lipid peroxidation and

ROS by activating the cGAS-STING downstream signal ISG15.

ISG15 is a member of the ISG family that induces IFN expression,

contributes to “protein ISGylation”, and interferes with ubiquitin

modifications. STING can negatively regulate the ubiquitin-

proteasome system through ISG15, resulting in increased

interferon-mediated ROS (72, 73). Indeed, IFN-mediated protein

ISGylation regulates the ubiquitin-proteasome system to increase

cellular ROS. Furthermore, glutathione peroxidase (GPX), an

antioxidant molecule, attenuates oxidative stress by reducing

H2O2 to water, which is also inhibited by ISG15. STING

knockdown elevates glutathione peroxidase (GPX) activity via

inhibition of ISG15. Recently, Hayman et al. also found the

knockdown of STING down-regulated expression of ISG15 and

ROS-related genes, including HECT domain and RCC1-Like

Domain-Containing Protein 5 (HERC5), kruppel-like factor 4

(KLF4), and dual oxidase 2 (DUOX2) (73–76). These results

suggest that STING is an upstream regulator of the intracellular

oxidation processes. However, it is worth noting that some other

studies believe that oxidative stress is an important inducement of

cGAS-STING activation. During HSV-1 infection, GPX4 is

indispensable for cGAS-STING activation. Actually, GPX4

inactivation leads to cellular lipid peroxidation, which decreases

host innate antiviral immune responses and promotes virus

replication via inhibition of the cGAS-STING signalling axis (22).

Mechanistically, GPX4 inactivation did not affect the binding of

viral DNA to cGAS but suppressed the trafficking of STING to the

Golgi apparatus by facilitating STING carbonylation at C88.

Another interesting study showed ROS promoted the replication

of murine gammaherpesvirus-68 (MHV68), a close genetic relative

of KSHV and EBV. ROS suppressed the production of IFN in a

STING-dependent manner (77). ROS inhibits STING dimerization

by oxidizing Cysteine 147 on murine STING during MHV68

infection. Redox modification of STING is an important

regulatory mechanism of STING activity during viral infection. It

is generally known that viral infection usually leads to oxidative

stress in host cells, including SARS-COV-2, influenza virus and

Hepatitis C virus (HCV) (15, 78–80). Oxidative stress is closely
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related to mitochondrial dysfunction, which triggers mitochondrial

DNA (mtDNA) damage and DNA leakage, activating the cGAS-

STING pathway (Figure 1) (81). It remains uncertain whether

oxidative stress is the cause or the consequence of cGAS-STING

signalling activation during viral infection. And whether oxidative

stress induces STING activity or inhibits STING activation is also

controversial. Meanwhile, there are few reports about the direct

interaction between the cGAS-STING signal and oxidative

intermediates. Therefore, more research is needed to explore their

relationship. However, it must be admitted that the alteration of the

levels of oxidative stress affects the cGAS-STING pathway and host

antiviral immunity.
6 Function of cGAS-STING regulates
autophagy during viral infection

6.1 Autophagy in antiviral host defences

To accommodate the diverse needs of metabolism, intracellular

substances are constantly synthesized and degraded to maintain

homeostasis. Autophagy is an evolutionarily conserved metabolic

process of eukaryotic cells that degrades or recycles intracellular

proteins and organelles and plays a key role in activating and

regulating early immune responses during viral infection (82). PRR

signals interact with autophagy adaptor proteins to regulate a series

of immune responses, which effectively eliminates pathogenic

microorganisms. For example, activation of the TLR-MYD88/

TRIF pathway can disrupt the interaction between B cell

lymphoma-2 (BCL-2) and Beclin-1, which induces autophagy

(83). The recognition of VSV and SeV by TLR7 requires the

transport of cytosolic viral replication intermediates into the

lysosome. ATG5 deletion would reduce TLR7-mediated IFN

production (84). Many studies have suggested that autophagy can

degrade viral components, particles, and host factors, which

functions as an effective innate antiviral mechanism. HCV non-

structural 5A (NS5A) protein, which is crucial for HCV replication,

can be degraded in autophagosomes. Autophagy helps to remove

HCV in the presence of ER protein Scotin (85). Autophagy

facilitates selectively degrading the HIV-1 transactivator Tat,

inhibiting viral transcription and virion production in CD4+ T

cells (86). There are also many other viruses, such as hepatitis B

virus, porcine epidemic diarrhoea virus, and ZIKV, that are

restricted by autophagy (87–89). On balance, viral infection is

detected by multiple signalling pathways, and further triggers the

activation of immune defences via autophagy.
6.2 Autophagy induction is an
evolutionarily conserved function of the
cGAS-STING signal

Earlier studies have mainly focused on the mechanism of IFN

induction by the cGAS-STING pathway. This signalling pathway

plays antiviral effects by regulating antiviral gene transcription. Of
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interest, a growing number of researchers find cGAS-STING

signalling axis regulates virus clearance more immediately

through autophagy. Of which, the main function of STING in

combatting HSV-1 infection seems to be attributed to autophagy

activation rather than type I IFN production (90). A study found a

mouse model harbouring a serine 365-to-alanine (S365A) mutation

in STING remained resistant to HSV-1, despite the loss of STING-

induced IFN activity. It seems that the activation of autophagy,

triggered by STING, is contingent upon CTT and TBK1, yet

remains uninfluenced by IRF3. Therefore, understanding the

molecular mechanism of autophagy regulation by the cGAS-

STING pathway is crucial. Saitoh et al. first found that the

dsDNA of pathogenic microorganisms could induce co-

localization of STING, ATG9a and LC3, which are important

autophagy proteins (91). Subsequently, STING was identified as

an essential factor that triggered autophagy under the stimulation of

microbial DNA, which could degrade pathogens by delivering them

to autophagosomes (92). Furthermore, a study showed that cGAS

could directly bind to the coiled-coil domain of Beclin-1, which is a

pivotal protein for autophagy initiation (93). As a result, this
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interaction inhibits the synthesis of cGAMP and IFN and

promotes autophagy-mediated cytosolic DNA degradation by

releasing Rubicon from the Beclin-1 complex. Notably, Gui et al.

explained the mechanism of STING-mediated autophagy without

TBK1 activation and IFN induction (24). When pathogenic

microorganisms infect cells, cGAS recognizes cytosolic DNA and

synthesizes cGAMP, which further binds to STING. As a result,

STING translocates to the ERGIC by interaction with SEC24C.

Then, ERGIC acts as a membrane source for LC3 lipidation,

promoting autophagosome formation that degrades the DNA

virus. In many invertebrates, such as drosophila and sea anemone

Nematostella vectensis, their STING only participates in autophagy

induction but not IFN response (24, 94). These research suggest that

autophagy induction is an evolutionarily conserved function of the

cGAS-STING signalling axis which predates the emergence of the

IFN signalling. Additionally, the structural analysis showed that

STING had a conserved LIR domain which was exposed to the

cytoplasm by conformational changes upon activation (95).

Consequently, the exposed LIR domain could directly interact

with LC3 to activate autophagy, leading to the degradation of
FIGURE 1

Schematic representation of the interaction between the cGAS-STING pathway and oxidative stress. The virus DNA and mtDNA can both be
recognized by cGAS-STING signalling, inducing pro-inflammatory cytokines and IFN production via the TBK1-IRF3/NF-kB pathway. In addition, viral
infection also triggers lipid peroxidation and oxidative stress, which lead to STING inactivation by facilitating STING carbonylation at C88. It is worth
noting that GPX4 is a crucial nod connecting the cGAS-STING axis and oxidative stress. On the one hand, GPX4 activation inhibits oxidative stress,
which ensures that the activated STING can be successfully transferred to the Golgi apparatus for further action. On the other hand, activation of the
cGAS-STING-IFN axis promotes oxidative and inhibits GPX4 activity via ISG15 expression. In addition, ROS inhibits STING dimerization by oxidizing
Cysteine 147 on STING. Redox modification of STING is an important regulatory mechanism of STING activity during viral infection.
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STING itself and p-TBK1. This finding also showed STING could

directly link immune activation to autophagy. So quite a few

researchers believe that autophagy induction via STING

trafficking is a primordial function of the cGAS pathway, which

has long been thought that its primary function is to induce type I

IFN production. Further studies show that STING orchestrates

endoplasmic reticulum stress and the unfolded protein response via

a novel UPR motif within the cyclic-dinucleotide-binding (CBD)

domain. This motif exerts a negative regulatory effect on the Akt/

tuberous sclerosis complex (TSC)/mammalian target of the

rapamycin (mTOR) pathway, thereby amplifying canonical

autophagy (25, 96). Several other studies also revealed the

mechanisms of STING-mediated noncanonical autophagy (97,

98). Activated STING translocates from the endoplasmic

reticulum to the ER-Golgi intermediate compartment and Golgi

apparatus, contingent upon the coat protein II (COP II) complex

and Arf GTPases. The ERGIC serves as a membrane reservoir for

LC3 lipidation and the genesis of autophagosomes. Different from

canonical autophagy, STING-elicited noncanonical autophagy

operates independently of upstream autophagy modulators,

including unc-51-like kinase 1 (ULK1), Beclin-1, and ATG9a, yet

relies on downstream autophagy regulators such as ATG5 and

ATG16L1 (24).
6.3 Viruses evade host immune defence by
inducing autophagic degradation of
cGAS/STING

Viruses have also evolved unique mechanisms to ensure their

survival by influencing autophagy processes and cGAS-STING

signalling. ASFV MGF505-7R, MGF505-11R and L83L proteins

promote autophagy-lysosomal degradation of STING, thereby

blocking the phosphorylation of the downstream signalling

molecules TBK1 and IRF3 and impairing type I IFN production

(51, 60, 99). PCV2 infection can induce cGAS degradation via the

autophagy-lysosome pathway (100). Mechanically, PCV2 infection

triggers the phosphorylation of cGAS at S278 through the PI3K/Akt

pathway. This phosphorylation of cGAS promotes the K48-linked

poly-ubiquitination of cGAS which interacts with autophagy

receptor p62 for autophagic degradation in autolysosome. As a

result, the autophagic degradation of cGAS inhibits cGAMP and

IFN-b production, which further impair hosts’ innate antiviral

responses. Similarly, HBV X protein also can inhibit type I IFN

production by boosting ubiquitination and autophagic degradation

of cGAS (101). Except for cGAS, another autophagy receptor

Coiled-coil domain containing 50 (CCDC50) associates with and

targets STING for autophagic degradation (102). The MIU motifs

of CCDC50 can recognize K63-polyubiquitinated STING and

facilitate the conveyance TBof K63-polyubiquitinated STING to

LC3B-marked autophagosomes, subsequently initiating autophagic

degradation in a p62-independent way. During HSV-1 infection,

the absence of CCDC50 promotes IFN and pro-inflammatory

cytokines production and inhibits HSV-1 replication. These
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results suggest the autophagic degradation of cGAS-STING

signalling during infections has a significant impact on type I IFN

production and viral replication (Figure 2).
6.4 cGAS-STING-induced autophagy not
only exerts direct antiviral effects but also
influences host antiviral responses by
affecting IFN signalling

Although many studies have been conducted on viral evasion of

STING-induced IFN-mediated antiviral function, investigations

about viral evasion of STING-induced autophagy-mediated

antiviral function remain notably limited. Recently, an interesting

study found that the bat STING can only induce autophagy and

antiviral activity but not IFN induction (103). SARS-CoV-2 ORF3a

constitutes a distinctive viral protein capable of interacting with

STING, consequently disrupting the STING-LC3 association and

impeding cGAS-STING-mediated autophagy, whilst preserving

IRF3-Type I IFN induction. This novel functionality of ORF3a,

different from targeting autophagosome-lysosome fusion, is a

selective impediment of STING-mediated autophagy, thereby

promoting viral proliferation. In addition, the interaction between

the TBK1-IRF3-IFN pathway downstream of cGAS-STING and

autophagy in viral infections is very complex. During infection,

excessive accumulation of STING will trigger a strong inflammatory

reaction, leading to deleterious effects on the host (93, 104). When

the cGAS-STING pathway is activated, TBK1-IRF3 signalling

downstream of STING will phosphorylate p62 at S403, which has

a remarkably high affinity for ubiquitinated STING. As a result, the

ubiquitinated STING is degraded in autophagosomes in an IRF3‐

dependent manner (105). Moreover, another research group also

found that TBK1 could phosphorylate selective autophagy receptors

optineurin (OPTN), NDP52, and TAX1BP1 linking ubiquitinated

cargo to autophagic membranes (106). As is known to us all, type I

IFN participates in activating JAK/STAT and PI3K/Akt pathways,

which are always involved in autophagy induction (107). Type I IFN

does not induce autophagy in STAT-deficient cells (108). PI3K/Akt

signalling axis inhibits autophagy by activating mTORC1 and

inhibiting the expression of forkhead box O (FOXO) and

autophagy-related genes. At later time points, negative regulators

of the PI3K/AKT/mTOR pathway are induced, inhibiting mTORC1

activity and inducing autophagy (107). Therefore, the TBK1‐IRF3-

IFN axis plays a crucial role in activating and regulating the host’s

immune and autophagy. At present, there are still some problems

plaguing us. Some researchers believe cGAS-STING-mediated

autophagy plays an antiviral role (90, 103, 109). But other

research groups suggest that cGAS-STING-mediated autophagy

contributes to inhibiting the antiviral function of the host by

degrading cGAS/STING directly or by degrading key proteins

downstream of the cGAS-STING pathway (Table 2) (51, 100, 117,

118). As a result, this process inhibits IFN production. The next

question that needs to be solved is how to control the target of

autophagic degradation in viral infection.
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7 Interactions between the cGAS-
STING axis and ER stress during
viral infection

7.1 The ER stress responses have important
influences on viral survival

There is adequate evidence that the state of the endoplasmic

reticulum also influences a variety of selective autophagy, including

mitophagy and ER-phagy (119, 120). To further expand our

understanding of the effects of cGAS-STING on autophagy and

oxidative stress, we focus on the endoplasmic reticulum. The

endoplasmic reticulum is a continuous membrane system widely

distributed in the cytoplasm. It mainly performs the functions of

intracellular material transport, glucose and lipid metabolism, and

protein processing. In addition, ER also provides a membrane

structure for the formation of autophagosomes and peroxisomes.

Many viruses use the ER as a replication site, where they synthesize

proteins, replicate genomes, and assemble virion (121). ER stress is

usually triggered by calcium homeostasis disequilibrium, unfolded

protein (UPR) accumulation and lipid dysregulation (122). ER

stress is also considered to be a potential cause of mitophagy and

ER-phagy (123, 124). Accumulation of viral proteins in ER can also
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induce ER stress (125). ER stress initiates UPR-mediated protein

degradation pathways, apoptosis and autophagy in host cells,

inhibiting or degrading the accumulation of viral proteins to

maintain cellular homeostasis. Generally, different viruses

selectively activate the PERK (proline-rich extensin-like receptor

kinase)-eIF2a (eukaryotic translation initiation factor 2) pathway,

IRE1a (inositol-requiring enzyme 1a)-XBP1 (X-box binding

protein-1) pathway or ATF6 (activating transcription factor 6)

pathway, leading to ER stress. Transmissible gastroenteritis virus

(TGEV) can activate the PERK-eIF2a signalling pathway and

subsequently diminish the synthesis of viral proteins by

decreasing protein translation efficiency (126). The HCV

negatively regulates ER stress via the IRE1a-XBP1 pathway,

increasing the synthesis of viral proteins and facilitating viral

infection (127). Influenza A virus promotes viral replication by

inhibiting ER stress response factor XBP1 and limiting host protein

production to alleviate ER stress (128). However, the UPR remains

to be a double-edged sword during viral infection. Some viruses

regulate UPR to promote survival by activating other cellular

responses. For example, duck enteritis virus (DEV) can activate

ER stress and autophagy in a PERK-eIF2a/IRE1a-XBP1 dependent
manner. Inhibiting the expression of PERK and IRE1 helps to

suppress autophagy and DEV replication (129).
FIGURE 2

A schematic illustration depicting the interplay between cGAS-STING signal and autophagy in viral infection. Upon activation by cGAMP, STING
undergoes translocation from the endoplasmic reticulum to the ERGIC. Within the ERGIC, STING has been implicated in the initiation of autophagy.
The STING-containing ERGIC functions as a membrane source of LC3 lipidation, thereby triggering the formation of the autophagosome. Ultimately,
the autophagosome fuses with the lysosome, effectuating the degradation of its contents. During different viral infections, the cGAS and STING can
be degraded in autolysosome, inhibiting host antiviral responses.
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7.2 Endoplasmic reticulum localization of
STING underlies its interaction with
endoplasmic reticulum stress signalling

During viral infection, the viral DNA can be recognized by the

cGAS and activates the cGAS-STING pathway, triggering a series of

immune and cellular responses to protect the body, including ER

stress (23). Notably, the inactivated STING is located on the outer

membrane of the ER, and the migration of the activated STING and

the activation of the STING-TBK1-IRF3 signal always occur

simultaneously with ER stress. Several recent studies have shown

a partial overlap between ER stress signals and the cGAS-STING

signalling axis. During pathogenic microbial infection,

phosphorylation of PERK was significantly impaired in STING-
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deficient macrophages. STING gain-of-function mutant N154S

induces chronic ER stress by disrupting Ca2+ homeostasis. A

newly identified STING CTD motif is involved in mediating ER

stress in an IFN-independent manner (96). Similarly, deletion of the

Ca2+ sensor STIM1 leads to spontaneous activation of the STING-

TBK1-IRF3 pathway, which results in type I IFN-mediated ER

stress (130). Moreover, higher levels of PERK phosphorylation were

induced at times of the expression of STING (25). Furthermore, co-

immunoprecipitation assay suggests that STING and PERK can

interact directly and promote the removal of pathogenic

microorganisms. Additionally, down-regulating the expression of

PERK or IRE-1 inhibits STING activity (131). These research imply

a link between ER stress and cGAS-STING signal. The

interrelationship between downstream signalling molecules of

cGAS-STING and ER stress was also illustrated in several reports.

The activation of IRF3 by STING is initiated by ER stress (132). The

signal that triggers the phosphorylation of IRF3 is derived from the

ER. ER stress triggered the phosphorylation of IRF3 at S386 in an

XBP1-independent manner, promoting IRF3 nuclear translocation

(133). Moreover, ER stress can mobilize the ER-resident STING and

facilitate the co-localization of STING and TBK1. Another research

found that XBP1 splicing and IRF3 phosphorylation depend on the

presence of STING (132). There is also evidence suggesting that

several genes, including tyrosine kinase 2 (TYK2), STAT2 and IRF9,

take part in IFN-induced ER stress, but the specific mechanism is

still unclear (134). As yet, studies on the interaction between ER

stress and the cGAS-STING pathway are mainly focused on

metabolic and autoimmune diseases. More research is needed to

further understand their role in viral infections.
8 Summary and perspectives

Viral infection and its serious consequences constantly threaten

people’s health and safety. Therefore, understanding the molecular

basis of host antiviral immunity is beneficial for eliminating viruses

and attenuating physiological impairments. Recent research on the

cGAS-STING pathway has increased our understanding of the

recognition and removal of viruses. Although we have outlined

recent insights of cGAS-STING in regulating IFN, inflammation,

oxidative stress, autophagy and endoplasmic reticulum stress upon

virus infections, this signalling axis is also involved in some other

early host antiviral processes, such as different types of cell death

and metabolism (Figure 3). Stimulation with a high concentration

of HSV-I triggers cGAS-STING-dependent apoptosis, which affects

local immune responses (135). Mechanistically, the activated cGAS-

STING promotes the accumulation of phosphorylation of IRF3,

which relieves the inhibitory effect of Bcl-xL on mitochondrial outer

membrane permeability and further induces apoptosis. In addition,

MHV68 leads to STING-dependent necroptosis in primary

macrophages (136). Type I IFN works in coordination with TNF

to induce necroptosis through STING activation. Moreover,

mtDNA stress can activate the cGAS-STING-mediated DNA

sensing pathway, inducing autophagy-dependent ferroptosis via

lipid peroxidation (137). Also, several studies have shown that the
TABLE 2 cGAS-STING-mediated autophagy plays a dual role during
viral infection.

Viruses Target Function References

HSV-1 STING An S365A mutation in STING is
resistant to HSV-1 by activating

autophagy, despite lacking
IFN responses

(90, 110)

HSV-1 cGAS-
Beclin-1

The direct interaction between
cGAS and Beclin-1 enhances
autophagy-mediated pathogen

DNA degradation

(93, 111)

HSV-1 GBP1-
STING

GBP1 combines with STING and
promotes autophagy, inhibiting
HSV -1 infection in an IFN-

independent manner

(112)

ZIKV NF-
kB-

STING

In invertebrates, ZIKV-
dependent NF-kB activation

induces antiviral autophagy via
activation of STING

(87, 113, 114)

HRV STING The STING-mediated antiviral
activity required the induction of
ATG5-dependent autophagy

(115)

PPRV STING STING regulates PPRV
replication by activating the
ATF6 pathway of UPRs to

induce autophagy

(116)

ASFV STING ASFV MGF505-7R/11R
interacted with STING and

degrades STING expression by
autophagy pathways, facilitating

virus proliferation

(51, 99)

ASFV cGAS-
STING-
TBK1

ASFV pA137R negatively
regulates the cGAS-STING-

mediated IFN via the autophagy-
mediated TBK1 degradation

(117)

ASFV TBK1-
IRF7

ASFV MGF360-11L interacted
with TBK1 and IRF7, degrading

TBK1 and IRF7 via
autophagy pathways.

(118)

PCV2 cGAS PCV2 induces the cGAS
ubiquitination degradation by

autophagy, promoting
virus infection

(100)
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activation of STING contributes to pyroptosis via the TBK1-IRF3

signal (138, 139). We speculate that inflammasomes and lysosomes

may be the key links among different types of cell death downstream

of cGAS-STING pathways during viral infection.

Notably, three different research groups have found that mtDNA

released from mitochondria could activate the cGAS‐STING

signalling axis (81, 140, 141). That is, the cytoplasmic cGAS-

STING can recognize both the invading pathogenic DNA and

endogenous DNA. mtDNA is a double-stranded, circular molecule,

which can be recognized by TLR9, AIM2 and cGAS, inducing

immune responses (142–145). West et al. found mitochondrial

transcription factor A (TFAM, a key regulatory factor in mtDNA

transcription and replication) deficiency and mitochondrial stress

would cause the leakage of mtDNA into the cytoplasm, activating the

cGAS-STING axis and initiating type I IFN response (81). HSV-1 and

VSV infection can induce TFAM depletion and mitochondrial stress,

facilitating mtDNA release into the cytoplasm and triggering cGAS-

STING-mediated antiviral immune responses (146). Mitochondrial

dysfunction is not only the result of oxidative stress and

inflammatory responses but also a trigger for selective autophagy

(mitophagy). Moreover, mitochondrial dysfunction-mediated

mtDNA cytosolic leakage can trigger antiviral innate immune

response by activating the cGAS-STING pathway. Therefore, we

believe that the mitochondrial dysfunction events in viral infections

are key to linking cGAS-STING signalling, inflammation, oxidative

stress, and autophagy.
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Interestingly, RNA viruses, such as SARS-CoV-2, HIV and

DENV, also activate the cGAS-STING axis, despite cGAS being a

DNA PRR (36, 46, 147). Mechanistically, the activation of the

cGAS-STING by retroviruses depends on their reverse transcription

to produce DNA. cGAS-STING activity induced by other RNA

viruses is partly due to mitochondrial damage caused by a viral

infection, which in turn leads to the accumulation of mtDNA in the

cytoplasm (30). Therefore, during virus invasion, we should not

only consider the activation effect of the virus itself on the cGAS-

STING signal but also pay attention to the influence of cellular

physiological changes on it.

Although the advent of omic technologies greatly expands the

objectives of our study, each omics analysis still has some

limitations for different samples. Meanwhile, the occurrence and

development of viral diseases is a complex network, and many

factors, such as gene mutation, abnormal transcription and

epigenetic changes, affect the host’s physiological status.

Combined multi-omics analysis can analyse multiple consecutive

events of disease occurrence and identify the antiviral targets more

precisely. Moreover, with the rapid development of gene-editing

technology, using genome-wide CRISPR screening to identify host

factors of the virus-infected cells is a current research hotspot.

Integrating genome-wide CRISPR screening with multi-omic data

seems to be a promising approach to understanding the virus-host

interactive network. A research group have used this strategy to

identify some novel and effective antiviral factors (148). This
FIGURE 3

Regulatory mechanisms and functions of the cGAS-STING axis during viral infection. The cGAS-STING signalling axis widely participates in various
immune and cellular responses, including inflammation, IFN, oxidative stress, endoplasmic reticulum stress, and different types of cell death during
viral infection. All these responses affect the host’s ability to fight off invading viruses. Based on relevant studies, we summarize the crucial signalling
nodes or proteins involved in these processes.
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method may help develop new strategies for improving host disease

resistance and antiviral therapy.

Indeed, the cGAS-STING pathway plays a dual role in early

antiviral immunity and cellular responses. On the one hand,

intracellular DNA induces various cellular responses and the

expression of type I IFN and pro-inflammatory cytokines to fight

against invading viruses via the cGAS-STING-TBK1-IRF3/NF-kB
axis. On the other hand, the invoked cell death and intracellular

stress responses can regulate the upstream regulators and

downstream effectors of cGAS-STING, affecting immune

responses and pathogen clearance. For example, cGAS-STING-

activated autophagy, in turn, degrades STING and suppresses the

immune response (105). Some viruses have evolved various

strategies to antagonize the cGAS-STING pathway for immune

evasion. Under different infectious conditions, the activations of

cGAS-STING signalling are not the same. The inactivation and

overactivation of the cGAS-STING signal are both detrimental to

pathogen clearance by the host. Inhibition of the cGAS-STING axis

suppresses host antiviral responses. And overactivation of cGAS-

STING would trigger a strong inflammatory reaction and drive

immunopathology. Of great concern, cGAS/STING has become an

effective drug target. Researchers are working on designing or

screening small molecule drugs that can regulate cGAS/STING

activity. Presently, great progress has been made in the research of

cGAS inhibitors. Some drugs can directly interfere with DNA

binding to cGAS or competitively bind cGAS, thereby inhibiting

the initial activation of cGAS (149). However, the agonists targeting

cGAS are relatively rare and need further study. Although research

on cGAS-STING has become increasingly mature, how to

accurately regulate the cGAS-STING activity and promote virus

elimination by host cells still needs further exploration.
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