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Vibriosis, caused by Vibrio, seriously affects the health of fish, shellfish, and

shrimps, causing large economic losses. Teleosts are represent the first bony

vertebrates with both innate and adaptive immune responses against pathogens.

Aquatic animals encounter hydraulic pressure andmore pathogens, compared to

terrestrial animals. The skin is the first line of defense in fish, constituting the skin-

associated lymphoid tissue (SALT), which belongs to the main mucosa-

associated lymphoid tissues (MALT). However, little is known about the

function of immunity related proteins in fish. Therefore, this study used iTRAQ

(isobaric tags for relative and absolute quantitation) to compare the skin

proteome between the resistant and susceptible families of Cynoglossus

semilaevis. The protein integrin beta-2, the alpha-enolase isoform X1, subunit

B of V-type proton ATPase, eukaryotic translation initiation factor 6, and

ubiquitin-like protein ISG15, were highly expressed in the resistant family. The

16S sequencing of the skin tissues of the resistant and susceptible families

showed significant differences in the microbial communities of the two

families. The protein-microbial interaction identified ten proteins associated

with skin microbes, including immunoglobulin heavy chain gene (IGH), B-cell

lymphoma/leukemia 10 (BCL10) and pre-B-cell leukemia transcription factor 1

isoform X2 (PBX2). This study highlights the interaction between skin proteins

and the microbial compositions of C. semilaevis and provides new insights into

understanding aquaculture breeding research.
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GRAPHICAL ABSTRACT
Highlight:
Fron
• Proteome profiling reveals skin composition of Chinese

tongue sole.

• The resistant family exhibits 464 highly expressed proteins

and 400 down regulated proteins.

• Protein-protein interaction analysis reveals 14 high

expressed proteins in the resistant family.

• Ten proteins show associations with skin bacteria.
1 Introduction

The skin is a complex and dynamic ecosystem inhabited by

bacteria, archaea, fungi, and viruses (1). Skin cells, immune cells and

microbes maintain the physical and immune barrier under

homeostatic and healthy conditions and various stress conditions,

especially infection or wounding (2). Skin immunity and physiology

homeostasis are closely related to skin microbiota. Fish skin is a vital

organ that serves many functions, including mechanical protection,

homeostasis, osmoregulation, and protection against diseases. The

expression of skin proteins changes under different pathological

conditions. Fish skin contains molecules with immunologically

important properties, and interact directly with commensal microbial

populations on the mucosal surfaces (3). Skin, gill and gut are part of

the fish mucosal immunity, and the mucosal immunology of teleost

fish has received much attention because of its key role as the first

barrier against infection. During infection, the skin is the main target of

bacteria and the first line of defense against invading pathogens,

making it the initiator of the adaptive and innate immune responses

that protect against physical damage and pathogen infection.
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The prevalence of vibriosis is one of the most serious factors

affecting marine fish. Fish rely on the immune response, including

innate and adaptive immunity, to protect against vibriosis caused by

Vibrio colonization and subsequent skin breaching or through the

gut. After breaching the outer barrier, the infectious agent evades

the host’s defense mechanisms through several mechanisms and

establishes a severe systemic infection (4). Transcriptomic and

proteomics analyses have been performed to identify multiple

genes involved in immunity during Vibrio infection in Chinese

tongue sole (Cynoglossus semilaevis), turbot (Scophthalmus

maximus), and orange-spotted groupers (Epinephelus coioides)

(5–8).

The Chinese tongue sole (Cynoglossus semilaevis) is a high-

value marine flatfish cultured in China, especially in Hebei,

Shandong, and Fujian provinces, with annual output value of

more than two billion yuan. Various bacteria and viruses cause

severe economic losses of Chinese tongue sole. Vibrio harveyi is a

Gram-negative bacteria that affects economic fish, shellfish,

shrimps, and sea cucumbers worldwide. V. harveyi-infected

Chinese tongue sole shows epidemic vibriosis with symptoms of

serious skin ulceration and hemorrhage septicemia (9). Most

previous reports on anti-bacterial mechanisms focused on the

visceral tissues, such as spleen, head kidney, intestine, and liver.

This study conducted skin proteomics to characterize the

proteins and microbiota present in the skin of the disease-

resistant and susceptible fish families using iTRAQ (isobaric tags

for relative and absolute quantitation) assay. The main functional

proteins were also identified to determine the mechanisms

underlying fish disease resistance. Overall , this study

demonstrates the association between anti-disease-related skin

proteins in Chinese tongue sole, and could be explored further to

understand of the molecular mechanisms of host-pathogen

interactions in C. semilaevis.
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2 Materials and methods

2.1 Fish rearing and sample collection

The families of C. semilaevis were produced in the aquaculture

base of Yellow Sea Fisheries Research Institute. The challenge test

was conducted in 57 families with Vibrio harveyi using a median

lethal dose (LD50) by intraperitoneal injection (2.5 × 106 cfu/per 5 g

body weight). The dead fish were counted and removed daily at an

of eight hours, and mortality was recorded for 14 days. The survival

data was analyzed as described previously (10). After challenge test,

eighteen fish belonging to two families were obtained from the

uninfected fish, as the resistant family (F18L16, 9 fish, survival rate:

94.83%) and the susceptible family (F18L47, 9 fish, survival rate:

2.20%). The fish (weighing 122.5 ± 3.7 g) were reared in square

tanks at 20 ± 2°C with a continuous seawater supply. After

acclimation for 7 days, the fish were anesthetized with a lethal

dose of MS-222 (300ppm). The skin tissues (including epidermis

and dermis) were then collected from the two families and

immediately frozen in liquid nitrogen for proteome and

microbiome studies, and RNAliter (Solarbio, Beijing, China) for

RNA extraction.
2.2 Protein digestion, iTRAQ labeling
and fractionation

Every three samples were mixed at equal weight to reduce

individual differences, and each families contained three biological

replicates. Skin tissue (50 mg) from the resistant and susceptible

families was transferred into a 2 mL centrifuge tubes on ice, and

added 500 mL of the 1 ×cocktail with of SDSL3 and

ethylenediaminetetraacetic acid (EDTA) for 5 min, after which

dithiothreitol (DTT) was added to a final concentration of 10

mM. Two 5 mm magnetic beads were added into the centrifuge

tubes for high-speed tissue lysis via centrifugation at 25000 g for

15 min at 4°C. The supernatant was collected and precooled acetone

(5 times the volume) was added, following by incubation at -20°C

for 2 h. The mixture was centrifuged at 25 000 gfor 15 min at 4°C,

and the supernatant was discarded, after which the precipitate

was air-dried. An appropriate amount of lysis buffer without

SDS was added to dissolve the protein precipitate, followed by

centrifugation at 25000 g for 15 min at 4°C to collect the

supernatant. After that, 10 mmM of DTT was added, and the

mixture was incubated at 56°C in the water bath for 1 h, followed

by the addition of 55 mM IAM for incubation in the dark for

45 min. Precooled acetone (five times the volume) was then

added, and the mixture was incubated at -20°C for 2 h,

followed by centrifugation at 25000 g for 15 min at 4°C. The

supernatant was discarded and the precipitate was air-dried,

dissolved in lysis buffer without SDS, and centrifuged (25000 g

for 15 min at 4°C) to collect the supernatant. The supernatant was

used for total protein quantification via Bradford assay, as

previously described (11).
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2.3 iTRAQ labeling and analysis

The iTRAQ labeling and assay were performed as previously

described (11) but with some modifications. Briefly, protein samples

were incubated with 10 mL of 1 mg/mL Trypsin Gold (Promega,

Madison, WI, USA) at 37°C for 16 h. The proteins from the resistant

and susceptible families were labeled with 111 to 119 tags of the iTRAQ

reagents, respectively. Then, the peptides were labeled with the isobaric

tags, incubated at room temperature for 2 h, and dried by vacuum

centrifugation. The labeled samples were pooled and purified using a

strong cation exchange chromatography (SCX) column (Phenomenex,

Torrance, CA, USA). The purified samples were separated by liquid

chromatography (LC) on an LC-20AD nanoHPLC system (Shimadzu,

Japan) using the auto-sampler onto a 2 cm C18 trap column (Code.

186002574, Waters, America). Data acquisition was performed on a

Triple TOF 5600 System fitted with a Nanospray III source (AB

SCIEX) and a pulled quartz tip as the emitter (New Objectives, MA).

The iTRAQ data were analyzed using MASCOT 2.3.02 software and

protein identification was performed using the Chinese tongue sole

genome database (Bioproject PRJNA73987).
2.4 GO, KEGG and PPI analysis

Proteins with a statistically significant ratio of the fold change value

of ≥1.2 and a p-value of <0.05 were considered differentially expressed

protein (DEPs). Functional annotations of the DEPs were conducted

using the Blast2GO program against the non-redundant protein

database (NR, NCBI). Hypergeometric tests with a ratio of p < 0.05

were used to identify DEPs in the gene ontology (GO) enrichment

terms. The proteins were subjected to functional annotation analysis

according to the COG (http://www.ncbi.nlm.nih.gov/COG/) and

KEGG databases (http://www.genome.jp/kegg/). Pathways

significantly enriched with DEPs with p < 0.05 and a false discovery

rate (FDR) of <0.05 were used as a threshold to select significant KEGG

pathways. The online tool STRING (http://www.string-db.org) was

used to construct the protein-protein interaction (PPI) maps to further

investigate the relationship between immune-related genes and

discover the major resistance proteins.
2.5 Skin macrobiotic sequencing

The DNA samples of resistant and susceptible families (N=9) were

extracted according to the protocol of the marine animal DNA

extraction kit (Tiangen, Beijing, China). DNA integrity and purity

were determined using 1% agarose gel electrophoresis. Specific primers

with barcodes were synthesized, and PCR was conducted. The

amplified products were purified, quantified and homogenized to

form a sequencing library (SMRT Bell), and the library quality

inspection was conducted. The qualified library was sequenced using

the PacBio Sequel system. The off-board data from the PacBio sequel

were in bam format, and the circular consensus sequencing (CCS) files

were exported by Smrtlink analysis software. The data from different

samples were classified according to the barcode sequence and were

converted into fastq format.
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2.6 Sequencing data processing

All statistical analyses were conducted using R software on the

BMKCloud platform (www.biocloud.net). The sequencing reads

were classified into operational taxonomic units (OTUs), which

contained sequences with ≥97% similarity. The OTU annotations

were based on the Silva (Silva_119_release_aligned) database (12).

Microbial a‐diversity estimates (abundance-based coverage

estimate [ACE], and Chao1 and Shannon indexes) were

calculated based on the OTU assignment (13). The relative

abundance (i.e., the proportion of sequences from a phylum/class

relative to the total number of sequences in the sample) was

calculated. A heatmap analysis was performed using drawing

tools. The generation of rarefaction curves and the hierarchical

clustering analysis, and principal coordinate analysis (PCoA) were

performed using Past3 software (Version 3.22).
2.7 Relationship analysis between iTRAQ
data and microbiota

The relationship between iTRAQ data andmicrobial communities

was analyzed by correlation test using redundancy analysis (RDA;

Canoco 5) and the STRING database. The analysis was performed on

the BMKCloud platform (www.biocloud.net). Microbiome (OTU

level) using t-test method and the threshold was p-value <0.01. The

differentially expressed protein was screened using t-test; the threshold

was FC>1, p-value<0.05. The interaction pairs of the target proteins

and OTUs were directly extracted from the database to construct the

interaction network using igraph in R package, and imported into

Cytoscape software for visualization.
2.8 Real-time quantitative PCR of the ten
disease resistance-related proteins

The primers for DEPs used for the RT-qPCR were designed using

NCBI primer BLAST, and b-actin gene was selected as the reference

gene. Total RNA from skin were extracted using the TRIzol reagent

(Invitrogen) according to manufacturer’s instruction and reverse-

transcribed for first-strand cDNA synthesis in a total reaction

volume of 20 mL. RT-qPCR was performed using 10 mL of SYBR

qPCRMaster Mix TSE501 (Qingke Biotech Co., Ltd.), 2 mL of cDNA,

0.5 mL of each primer pair, and 7 mL ddH2O. The amplification

conditions were denaturation at 95°C for 1 min, followed by 40 cycles

of denaturation at 95°C for 10 s and annealing at 60°C for 30 s. The

experiment was conducted in triplicate, and the relative gene

expression were analyzed using the delta-delta Ct (2-DDCt) method.
3 Results

3.1 iTRAQ analysis of skin protein profiles

The protein concentration of the six samples ranged from 5.16-

8.14 mg/mL, with a protein volume of 250 mL and a total protein
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concentration of 1288.95-2035.88 mg. The iTRAQ analysis of C.

semilaevis skin proteome generated 870467 raw spectra (including

61670 spectra and 23064 peptides), and identified 4957 proteins in

Mascot (Figure 1A). The lengths of most peptides ranged from 7-15

amino acids, with the maximum percentage of peptides being 9

amino acids long (Figure 1B). Among the 4957 identified proteins,

1914 had one peptide, and 374 had more than 11 peptides

(Figure 1C). The molecular weights of 50% of the proteins ranged

from 20 to 60 kDa, while more than 18% had molecular weights of

more than 100 kDa (Figure 1D).
3.2 Identification of differentially expressed
proteins (DEPs)

A heat map, PCA and volcano plot revealed distinct protein

expression patterns of the DEPs between the resistant and

susceptible families (Figure 2). The heat map identified the top

200 DEPs via iTraq analysis (Figure 2A), and the two groups were

separated into two distinct clusters in PCA 2D and 3D models

(Figure 2B and 2C). 398 upregulated and 475 downregulated

proteins were detected in volcano plot (Figure 2D).
3.3 GO and KEGG enrichment analyses
of DEPs

A total of 873 DEPs, including 398 up-regulated and 475 down-

regulated, were enriched in 47 GO terms and classified into three

grade I functional components according to GO enrichment

analysis. These GO terms included biological process (19 terms),

cellular component (18 terms) and molecular function (10 terms)

(Figure 3A). The DEPs were used to search against the KOG

database and were enriched in 25 KOG terms, including signaling

transduction mechanisms (protein number: 155), posttranslational

modification, protein turnover, chaperones (protein number: 91),

cytoskeleton (protein number: 86), intracellular trafficking,

secretion, vesicular transport (protein number: 63), and defense

mechanisms (protein number: 20) (Figure 3B). The top 20 pathways

included some immune-related pathways (complement and

coagulation cascades and antigen processing and presentation)

(Figure 3C). The upregulated protein and downregulated proteins

in these pathways are showed in Figure 3D, and they include

complement and coagulation cascades (up: 25, down: 1), antigen

processing and presentation (up: 15, down: 0), and intestinal

immune network of IgA production (up: 4, down: 0).
3.4 PPI network analysis of the
hub proteins

A PPI network analysis was conducted using 107 proteins to

reveal the relationship between the resistance-related DEPs

(Figure 4). Four closely related protein interaction clusters were

found (Table 1), and in which 14 proteins had high expression in

the resistant family. These proteins included integrin alpha-5-like
frontiersin.org
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isoform X3, integrin beta-2, protein S100-A1-like, and the heat

shock protein HSP 90-beta isoform X1 in Cluster A; the alpha-

enolase isoform X1, neuron navigator 1 isoform X5, and V-type

proton ATPase subunit B, brain isoform-like in Cluster B; U6

snRNA-associated Sm-like protein LSm7, eukaryotic translation

initiation factor 6, and ubiquitin carboxyl-terminal hydrolase 4

isoform X3 in cluster C; 26S proteasome non-ATPase regulatory

subunit 4, neuroligin-3 isoform X2, ubiquitin-like protein ISG15,

and proteasome subunit beta type-2 in cluster D. These proteins

may play significant roles in regulating disease resistant in fish.

However, some proteins, such as citrate synthase, aspartate

aminotransferase, and phosphoglycerate kinase 1, may negatively

regulate antibacterial activities.
3.5 Specific OTUs between resistant and
susceptible families

A metagenomic analysis was conducted to determine the

composition differences between the resistant and susceptible

families and the results revealed a correlation between protein

profiles and microbiota. Based on the high throughput-

sequencing data of skin microbes, 420 OTUs were annotated,

among which 126 were specific to the resistant family, and 38

were specific to the susceptible family. The common OTUs were
Frontiers in Immunology 05
239, according to principal coordinates analysis (PCoA). In the

resistant family, the top dominant phyla of the skin microbial

community was Proteobacteria, followed by Firmicutes and

Bacteroidota. However, the percentage of Actinobacteriota was

upregulated in the susceptible family (Figure 5).

After screening, the differential metabolites were 377 and the

DEPs were 339. The purple squares represent proteins, while the

cyan cycles represent the 49 related operational taxonomic units

(OTUs). The red lines indicate a positive correlation, while the

green lines indicate a negative correlation. The width of the lines

represents the level of correlation (Figure 6). In the network, 10

proteins related to skin microbes were detected. The proteins and

related OTUs are listed in Supplementary Tables S1, S2.
3.6 RT-qCR analysis of the 10 proteins in
the resistant and susceptible families

The relative mRNA expression levels of the ten hub proteins in

resistant and susceptible families were analyzed via RT-qPCR. The

results indicated that mRNA expression levels of most genes were

showed a consistent tendency with proteins, and the transcript

levels of IFI35, BCKDK, HEXO2, CIRBP, and POLDIP3 were

relatively higher in the resistant family than in the susceptible

family (Figure 7).
A B

DC

FIGURE 1

Statistics of proteome sequencing and annotation. (A) Total number of spectra, peptides and proteins. (B) Peptides length. (C) The number of unique
peptides. (D) Protein mass.
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4 Discussion

Due to their aquatic environments, fish skin is an essential

protective barrier and differs from the exposed skin of other

vertebrates. The fish skin is a multifunctional organ involved in

protection, communication, sensory perception, ion regulation, and

excretion, making it an important first line of defense against the

invasion of environmental pathogens (14). Additionally, as an

important immune tissue, fish skin responds to attack by different

pathogens by inducing the mucosal immune-related proteins. The

transcriptional profiles and real-time quantitative PCR assays of the

skin tissues of common carp (Cyprinus carpio), Atlantic salmon

(Salmo salar) and Atlantic cod (Gadus morhua) identified many

genes involved in antibacterial, antivirus and anti-parasite

responses (15–19). A recent research found that a parasite co-

infection with a virus or bacteria causes severe skin damage in wild

and farmed Atlantic salmon. Cai et al. conducted a transcriptomic

analysis of sea lice (Lepeophtheirus salmonis) and infectious salmon

anemia virus (ISAv) co-infection of the Atlantic salmon (Salmo

salar) skin. The study found that the up-regulated genes were

associated with glycolysis, the interferon pathway, complement

cascade activity, and heat shock protein family, while the down-
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regulated genes were related to antigen presentation and processing,

T-cell activation, collagen formation, and extracellular matrix (15).

Co-infection of sea lice (Lepeophtheirus salmonis) with formalin-

killed Aeromonas salmonicida activated the pathways involved in

the innate (e.g., neutrophil degranulation) and adaptive immunity

(e.g., antibody formation), and endothelial cell migration (20).

Several high-throughput protein assays have been conducted in

various fish to determine the molecular mechanism of fish skin as a

pathogen barrier at the proteome-level. A previous study identified

17 proteins differentially expressed in zebrafish (Danio rerio) skin

under Aeromonas hydrophila infection, and these included the DR

a 1 domain of the MHC class II and the immunoglobulin heavy

chain V-region (21). Another study on the differential proteomics

of the zebrafish skin in response to SVCV infection examined the by

isobaric tags for relative and absolute quantitation (iTRAQ). The

study found that DEPs were significantly associated with

complement, inflammation, and antiviral response (22).

Furthermore, Tan et al. examined the differential proteomic

profiling of the V. vulnificus-infected skin of Chinese tongue sole

and found that 16 immune signal pathways were significantly

enrich. These pathways included focal adhesion, adherens

junction, phagosome, leukocyte transendothelial migration,
A B

C D

FIGURE 2

The heat map, principal component analysis (PCA) analysis and volcano plot of the six samples. (A) A heat map of the top 200 differentially
expressed proteins (DEPs) identified via isobaric tags for relative and absolute quantitation (iTraq) analysis. (B–C) Principal component analysis (PCA)
in 2D and 3D models of DEPs. (D) Volcano plot showing up regulated (red color dots) and down regulated (green color dots) proteins between the
two groups.
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A B

DC

FIGURE 3

Gene Ontology (GO), Eukaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genome (KEGG) analysis of the differentially
expressed proteins (DEPs). (A) The GO term categories are based on biological processes, cellular components, and molecular function. (B) KOG
classification of DEPs. (C) The top 20 signal pathways in the KEGG enrichment. (D) the number of upregulated and downregulated proteins in the
top 30 signal pathways.
A

B

D

C

FIGURE 4

Protein-protein interaction network of the disease resistance-related differentially expressed proteins (DEPs). The labels with red and blue circles
indicate upregulated and downregulated DEPs, respectively. A-D represented interacting protein clusters.
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complement and coagulation cascades, antigen processing and

presentation, bacterial invasion of epithelial cells, calcium

signaling pathway, ECM-receptor interaction, etc (23).

To identify the key genes involved in fish resistance, we

performed transcriptomic analysis using a mixture of liver, kidney

and spleen tissues of C. semilaevis, and compared the immune

responses of resistant and susceptible families before and after V.

harveyi infection. We identified 713 genes exhibiting significant

differences at the transcript level, of which some such as lyg, tlr4,

sdf2, cxcr4, tacr3, and others were more highly expressed in the

resistant family than in the susceptible family (24). For skin tissues,

1421 differentially expressed genes were identified and were

significantly enriched in ECM-receptor interaction, complement

and coagulation cascades, cardiac muscle contraction, starch and

sucrose metabolism and aminoacyl-tRNA biosynthesis pathway

(25). These findings indicated that multiple genes might control

fish resistance against vibriosis.

This study found that integrins, including integrin alpha-5-like

isoform X3 and integrin beta-2 in Cluster A, were highly expressed

in the resistant family. These integrins were enriched in ECM-

receptor interaction (map04512), leukocyte transendothelial

migration (map04670), bacterial invasion of epithelial cells

(map05100), phagosome (map04145), cell adhesion molecules

(map04514), focal adhesion (map04510), and tight junction

(map04530) (https://www.kegg.jp/). Integrins aMb2 and aXb2
mediate macrophage recognition and phagocytosis of pathogenic

bacteria and play a key role in the resistance against invasive

pathogens (26). Integrin 4 reportedly prevented V. alginolyticus

infection and regulated phagocytosis (as a cell adhesion receptor) of

oyster Crassostrea hongkongensis (27). The alpha-enolase in cluster

B is a part of a dimeric enzyme of the glycolytic pathway responsible

for catalyzing the conversion of 2-phosphoglycerate to

phosphoenolpyruvate (28). The subunit B of the V-type proton

ATPase is a part of v-type ATPase and plays a major role in ion

regulative processes in the apical membranes of fish skin and gills

(29, 30). The eukaryotic translation initiation factor 6 (eIF6) in

cluster C is one of the important initiation factors that play an

important role in both ribosome biogenesis and protein translation.
TABLE 1 Proteins in the four clusters of the protein-protein
interaction network.

Cluster A

Color Protein ID Protein name

Red XP_008317309.1 integrin alpha-5-like isoform X3

XP_024919680.1 integrin beta-2

XP_008322027.1 protein S100-A1-like

XP_008311248.1 heat shock protein HSP 90-beta isoform X1

Blue XP_008317293.1 citrate synthase, mitochondrial

XP_008308463.1 aspartate aminotransferase, mitochondrial

XP_024921445.1 dihydrolipoyllysine-residue acetyltransferase
component of pyruvate dehydrogenase complex,
mitochondrial isoform X2

Cluster B

Color Protein ID Protein name

Red XP_008317043.1 alpha-enolase isoform X1

XP_008319074.1 neuron navigator 1 isoform X5

XP_008320785.1 V-type proton ATPase subunit B, brain
isoform-like

Blue XP_
008330628.1

phosphoglycerate kinase 1

XP_008310807.1 bisphosphoglycerate mutase

XP_008323814.1 beta-enolase

XP_008310671.1 pyruvate kinase PKM-like

XP_008320975.1 glyceraldehyde-3-phosphate dehydrogenase

XP_008334220.1 ATP synthase subunit alpha, mitochondrial

XP_008309491.1 probable fructose-2,6-bisphosphatase TIGAR A

XP_008309085.1 glucose-6-phosphate isomerase

Cluster C

Color Protein ID Protein name

Red XP_008329212.1 U6 snRNA-associated Sm-like protein LSm7

XP_008319381.1 eukaryotic translation initiation factor 6

XP_024915683.1 ubiquitin carboxyl-terminal hydrolase 4
isoform X3

Blue XP_008324408.1 U4/U6 small nuclear ribonucleoprotein Prp4

XP_008329375.1 U7 snRNA-associated Sm-like protein LSm10

XP_008314110.1 ubiquitin carboxyl-terminal hydrolase 15
isoform X4

XP_024909459.1 squamous cell carcinoma antigen recognized by
T-cells 3-like

XP_008333046.2 NADH dehydrogenase [ubiquinone] 1 alpha
subcomplex subunit 11

XP_008310646.1 RNA cytidine acetyltransferase

XP_024916231.1 probable ATP-dependent RNA helicase DDX27

XP_008325949.1 DNA-directed RNA polymerase I subunit RPA1

(Continued)
TABLE 1 Continued

Cluster C

Color Protein ID Protein name

XP_024922090.1 NADH dehydrogenase [ubiquinone] 1 alpha
subcomplex subunit 13

Cluster D

Color Protein ID Protein name

Red NP_001287935 Ubiquitin-like protein ISG15

XP_008325540 neuroligin-3 isoform X2

XP_008330126 26S proteasome non-ATPase regulatory subunit 4

XP_008329360 proteasome subunit beta type-2

Blue XP_008322593 lys-63-specific deubiquitinase BRCC36
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The eIF6 interacted with Bovine adenovirus-3 protein VIII (BAdV-

3) to modulate cellular mRNA translation at later stages of BAdV-3

infection (31). Subunit 1 of the eIF3 is one of the proteins

interacting with ISG15 to regulate defense responses against

infection (32). Moreover, the ubiquitin-like protein ISG15 in

cluster D exhibits antibacterial and antiviral activities in marine

fish (33, 34).

Skin microbiota (used as environmental biomarker) and the

four potential taxonomic microbial biomarkers were identified in
Frontiers in Immunology 09
the epithelial mucus and feces of Colossoma macropomum (35). The

host may recruit and regulate the environmental bacteria to: shape

specific skin microbes, and the interaction between the hosts and

their skin microorganisms promotes their coevolution (36). The

alpha diversity analysis showed that the skin bacterial structure of

the resistant family was different from that of the susceptible family,

probably due to the differential expression of the host’s skin

proteins. Previous research found four types of pattern

recognition receptors, including Toll-like receptors, NOD-like
A B

D

E F

G H

C

FIGURE 5

Venn diagram (A), principal component analysis (PCA) (B), species distribution (C–F), and faprotax analysis (G, H) of the resistant and
susceptible families.
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receptors, C-type lectins receptors, and peptidoglycan recognition

proteins, associated with disease resistance in fish (37). In the

present study, protein-microbial interaction networks identified

ten DEPs with the highest number of OTUs, which play

important roles in protecting fish from pathogenic bacteria. IGH,

BCL10, and PBX were associated with the function of B

lymphocytes. The IGH included IGM, IGD and IGT, among

which IGM and IGT were involved in the microbiota homeostasis

in the mucosal-associated lymphoid tissues of teleost fish (14, 38).

IFI35, a member of IFN-induced genes in innate immunity,

exhibited antiviral activity and was shown to interact with red-

spotted grouper nervous necrosis virus coat protein (39, 40).

Micorbiota interaction with BCKDK, HEXO2, RPL3L, CIRBP,

ALKBH7, and POLDIP3 had not been reported before.

In summary, the DEPs in the skin of the resistant and

susceptible C. semilaevis families were identified via iTRAQ
Frontiers in Immunology 10
ana ly s i s and a ided the d i s covery o f the molecu la r

mechanisms of fish skin immunity involving the microbial

community of marine fish. Therefore, these proteins might

be used as molecular markers for disease resistance in fish;

however further studies are required to determine their

antibacterial roles.
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