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Innovative prognostic modeling
in ESCC: leveraging scRNA-seq
and bulk-RNA for dendritic cell
heterogeneity analysis
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Xiaoting Wang1,2,3†, Daqiang Sun5* and Zhijie Feng1,2,3*
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Hebei, China, 2Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology,
Shijiazhuang, Hebei, China, 3Hebei Clinical Research Center for Digestive Diseases, Hebei Institute of
Gastroenterology, Shijiazhuang, Hebei, China, 4Clinical School of Thoracic, Tianjin Medical University,
Tianjin, China, 5Tianjin Chest Hospital, Tianjin University, Tianjin, China
Background: Globally, esophageal squamous cell carcinoma (ESCC) stands out

as a common cancer type, characterized by its notably high rates of occurrence

and mortality. Recent advancements in treatment methods, including

immunotherapy, have shown promise, yet the prognosis remains poor. In the

context of tumor development and treatment outcomes, the tumor

microenvironment (TME), especially the function of dendritic cells (DCs), is

significantly influential. Our study aims to delve deeper into the heterogeneity

of DCs in ESCC using single-cell RNA sequencing (scRNA-seq) and bulk

RNA analysis.

Methods: In the scRNA-seq analysis, we utilized the SCP package for result

visualization and functional enrichment analysis of cell subpopulations. CellChat

was employed to identify potential oncogenic mechanisms in DCs, while

Monocle 2 traced the evolutionary trajectory of the three DC subtypes.

CopyKAT assessed the benign or malignant nature of cells, and SCENIC

conducted transcription factor regulatory network analysis, offering a

preliminary exploration of DC heterogeneity. In Bulk-RNA analysis, we

constructed a prognostic model for ESCC prognosis and immunotherapy

response, based on DC marker genes. This model was validated through

quantitative PCR (qPCR) and immunohistochemistry (IHC), confirming the

gene expression levels.

Results: In this study, through intercellular communication analysis, we identified

GALECTIN and MHC-I signaling pathways as potential oncogenic mechanisms

within dendritic cells. We categorized DCs into three subtypes: plasmacytoid

(pDC), conventional (cDC), and tolerogenic (tDC). Our findings revealed that

pDCs exhibited an increased proportion of cells in the G2/M and S phases,

indicating enhanced cellular activity. Pseudotime trajectory analysis

demonstrated that cDCs were in early stages of differentiation, whereas tDCs

were in more advanced stages, with pDCs distributed across both early and late

differentiation phases. Prognostic analysis highlighted a significant correlation

between pDCs and tDCs with the prognosis of ESCC (P< 0.05), while no

significant correlation was observed between cDCs and ESCC prognosis (P =

0.31). The analysis of cell malignancy showed the lowest proportion of malignant
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cells in cDCs (17%), followed by pDCs (29%), and the highest in tDCs (48%), with

these results being statistically significant (P< 0.05). We developed a robust ESCC

prognostic model based on marker genes of pDCs and tDCs in the GSE53624

cohort (n = 119), which was validated in the TCGA-ESCC cohort (n = 139) and the

IMvigor210 immunotherapy cohort (n = 298) (P< 0.05). Additionally, we

supplemented the study with a novel nomogram that integrates clinical

features and risk assessments. Finally, the expression levels of genes involved

in the model were validated using qPCR (n = 8) and IHC (n = 16), thereby

confirming the accuracy of our analysis.

Conclusion: This study enhances the understanding of dendritic cell

heterogeneity in ESCC and its impact on patient prognosis. The insights gained

from scRNA-seq and Bulk-RNA analysis contribute to the development of novel

biomarkers and therapeutic targets. Our prognostic models based on DC-related

gene signatures hold promise for improving ESCC patient stratification and

guiding treatment decisions.
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1 Introduction

ESCC holds a notable position in global cancer statistics, being

the seventh most common in terms of new cases and the sixth

leading cause of cancer-related deaths (1). In the year 2020, the

worldwide incidence of esophageal cancer was around 604,000,

leading to approximately 544,076 fatalities. Notably, more than half

of these instances were reported in China (2). Approximately 90%

of esophageal cancers are of the squamous cell carcinoma type.

Despite advancements in treatment methods, the prognosis for

ESCC remains concerning, with a relatively low overall five-year

survival rate. Currently, the primary treatment modalities for ESCC

include surgery, chemotherapy, radiotherapy, and limited targeted

therapy (3). However, these treatments offer only limited survival

benefits. In recent years, the advent of cancer immunotherapy has

brought significant therapeutic effects for patients with cancers,

including those with ESCC. Additionally, endoscopic screening

plays a crucial role in the early diagnosis and treatment of

esophageal cancer. Yet, due to the variability in the skill levels of

endoscopists, many cases are still missed due to the inability to

timely identify lesions (4, 5).

TME refers to the complex environment surrounding tumor

cells, comprising intercellular interactions, extracellular matrix,

vasculature, immune cells, and several other factors, all of which

collectively influence tumor development, spread, and response to

treatment (6–8). Within the TME, dendritic cells (DCs) serve as

critical immune regulators, playing a vital role. Not only do they

capture and present tumor antigens, but they also activate and

modulate immune responses, impacting the mechanisms of tumor

immune surveillance and escape (9). Previous studies have
02
indicated that a combination therapy of pemetrexed and DCs as a

third-line treatment for ESCC can significantly improve prognosis

and is well-tolerated (10). Furthermore, in ESCC patients with

regions rich in tertiary lymphoid structures, there is an increased

infiltration of CD8+ T cells and DCs, which is associated with

stronger anti-tumor immune activity (11).Specifically, conventional

dendritic cells (cDCs) play a key role in cross-presenting tumor

antigens and activating cytotoxic T cells; tolerogenic dendritic cells

(tDCs) can modulate immune responses by inducing immune

tolerance or generating regulatory T cells, thereby preventing

overactive immune reactions (12); plasmacytoid dendritic cells

(pDCs), primarily known for their role in antiviral responses,

have an unclear role in the TME, possibly involving the

modulation of the immune status of the TME (13). The functions

and interactions of these three types of dendritic cells in tumor

immunity provide a critical theoretical basis for the development of

novel immunotherapeutic strategies.

Single-cell RNA sequencing(scRNA-seq) technology, in

contrast to traditional Bulk-RNA sequencing, offers more precise

and detailed analysis at the cellular level (14). scRNA-seq enables us

to capture the heterogeneity within a cell population, revealing

unique gene expression patterns of different cellular states and

subgroups. This technology allows us to identify and differentiate

rare cell types within a cell population, such as cancer or immune

cells in tumors, thus offering new perspectives for understanding

complex biological processes and disease mechanisms (15).

Additional ly , scRNA-seq can reveal interact ions and

communication pathways between cells, often unachievable in

Bulk-RNA sequencing (16). Therefore, scRNA-seq not only

enhances our understanding of biological systems at the
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microscopic level but also opens new doors for precision medicine

and personalized treatment.

In our study, we utilized scRNA-seq to delve into signaling

pathways associated with dendritic cells and conducted pseudotime

analyses of three different types of dendritic cells: conventional

cDC, pDC and tDC. Using the Copykat algorithm, we inferred the

benign or malignant nature of these cells. We also carried out cell

communication analyses between dendritic cells and other cell types

within the single-cell sequencing data, revealing their interactions

and functions in the tumor microenvironment. Additionally, in

Bulk-RNA data, we analyzed the impact of these three types of

dendritic cells on prognosis. Based on these findings, we

constructed a model based on the marker genes of DC cells,

which can accurately predict the prognosis and efficacy of

immunotherapy in ESCC. To validate this model and the

expression of its genes, we employed real-time quantitative PCR

(qPCR) and immunohistochemistry techniques. The application of

these methods not only further confirmed the accuracy of our

model but also offered new strategies and targets for the

personalized treatment of ESCC.
2 Methods

2.1 Data acquisition

This study obtained original scRNA-seq data of 9 cases of ESCC

and 9 normal esophageal tissues from the National Center for

Biotechnology Information Sequence Read Archive (SRA) (Project

Number: PRJNA777911, URL: https://www.ncbi.nlm.nih.gov/sra/?

term=PRJNA777911). Furthermore, we acquired dataset GSE53624

from the Gene Expression Omnibus (GEO), which includes

sequencing data and clinical information of 119 ESCC samples

and 119 normal samples, for the purpose of training our model.

Subsequently, for model validation and further analysis, we

obtained sequencing data (FPKM format), clinical information,

and genetic mutation details of 198 ESCA patients from The

Cancer Genome Atlas (TCGA) database (URL: https://

portal.gdc.cancer.gov/repository). In order to better match the

TCGA data with GEO data, we converted the gene expression

information from FPKM format to TPM format. Moreover,

aligning with previous studies, we retrieved information about 10

cancer-related biological pathways (17).
2.2 ScRNA-seq analysis

In the scRNA-seq analysis, we first utilized the hg38 reference

genome and employed the default parameters of Cell Ranger v.7.1.0

software for gene alignment (18). Following this, we conducted

standard single-cell RNA sequencing data analysis using the ‘Seurat’

package in R. After filtering out cells with mitochondrial gene

percentage (pMT) over 20%, hemoglobin gene percentage (pHB)

over 1%, and those expressing fewer than 500 genes, while retaining

genes expressed in at least five cells, we successfully obtained 91,810

high-quality cell samples. Data normalization was achieved using
Frontiers in Immunology 03
the NormalizeData function, followed by the use of the

FindVariableFeatures function to identify 2000 highly variable

genes, and data scaling was accomplished through the ScaleData

function. Next, Principal Component Analysis (PCA) was utilized

for data dimensionality reduction. To further ensure comparability

between different sequencing data, we employed the ‘Harmony’ R

package to eliminate batch effects among samples (19). Utilizing t-

distributed Stochastic Neighbor Embedding (t-SNE) technology, we

visualized the above results, and ultimately identified 30 cell

clusters. The annotation of each cell cluster was conducted by

combining the ‘singleR’ package (20) and CellTypist (https://

github.com/Teichlab/celltypist), based on the expression patterns

of known marker genes. Moreover, we extracted DC cells using the

subset function and subjected them to similar analytical processing

as mentioned above. Subsequently, the analysis of intercellular

communication was conducted using the ‘CellChat’ R package

(21). Following this, we performed single-cell regulatory network

inference and clustering (SCENIC) analysis on DC cells using the

‘Scenic’ R package (22) Additionally, the malignancy level of DC

cells was inferred using the copykat R package (23), and pseudotime

analysis was conducted with the ‘monocle2’ R package (24). Finally,

we calculated marker genes between three types of dendritic cells

using the FindallMarkers function, with selection parameters

including logfc.threshold = 1, min.pct = 0.25, only.pos = T.

Furthermore, the ‘SCP’ R package was used during the data

visualization process.
2.3 Evaluation of dendritic
cell-related features

In the GSE53624 cohort, enrichment scores for each type of

DCs macrophage in every sample were calculated using the Single-

sample Gene Set Enrichment Analysis (ssGSEA) algorithm (25),

based on marker genes of dendritic cell. Initially, the differences in

enrichment scores between normal and tumor samples were

assessed, followed by dividing the ESCC tumor samples into two

groups based on the median enrichment score, to conduct Kaplan-

Meier survival analysis and assess survival differences between

the groups.
2.4 Construction of the prognostic model

In this phase of our study, the ‘limma’ R package (26) was

initially utilized to analyze the GSE53624 dataset, specifically

aiming to identify differentially expressed genes (DEGs) between

normal esophageal tissues and ESCC samples. The selection criteria

were established as a false discovery rate (FDR) less than 0.05 and

an absolute log2 fold change (|log2(FoldChange)|) greater than 1.

After this evaluation, we analyzed the correlation between the DEGs

and markers of three types of dendritic cells, selecting genes with a

correlation coefficient greater than 0.4 and a p-value less than 0.05

for subsequent univariate Cox regression analysis to identify genes

significantly impacting ESCC prognosis. Thereafter, a prognostic

model was constructed using the identified genes in conjunction
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with least absolute shrinkage and selection operator (LASSO) Cox

proportional hazards regression and multivariate regression. The

model’s formula is: RiskScore =on
k=1 coef (k)� Expr(K) where cof

(k) is an abbreviation for the regression coefficient, and Expr (k)

represents the expression level of the genes used in model

construction. Based on the median risk score, all patients were

categorized into high and low-risk groups. To enhance the

confirmation of the model’s prognostic effectiveness, the

‘survivalROC’ R package was applied on two datasets: the training

set GSE53624 and the validation set TCGA-ESCC. This was done to

construct Receiver Operating Characteristic (ROC) curves and

compute the Area Under the Curve (AUC). The aim of this

procedure was to ascertain the risk model’s precision and evaluate

its viability for clinical application.
2.5 Development of nomograms

Initially, both univariate and multivariate Cox regression

analyses, integrating clinical features (such as age, alcohol

consumption, lesion location, gender, and pathological staging)

along with risk scores, were employed to identify factors

significantly affecting ESCC prognosis. Utilizing these analysis

outcomes, a nomogram was developed using the ‘rms’ package

(27, 28) for predicting the survival probability of patients at 1, 3, and

5 years. To confirm the diagnostic and prognostic capabilities of the

nomogram, decision curves and calibration curves were generated.

These methods were utilized to assess the clinical benefits of the

model at different risk thresholds and to evaluate the concordance

between predicted survival probabilities and actual observed

survival probabilities, thereby ensuring the accuracy and

practicality of our model in clinical applications.
2.6 Analysis of mutations

Mutation data of ESCC patients were retrieved from the TCGA

database using the ‘TCGAbiolinks’ R package and then uniformly

decompressed. Using the read.maf function of the ‘maftools’ R

package, mutation data and clinical information were read into

MAF files. The oncoplot function was employed to create a heatmap

that combines clinical and mutation information, showcasing the

mutation profiles of high and low-risk groups, and the

somaticInteractions function was used to analyze the co-mutation

patterns of hub genes and the top 10 most frequently mutated genes

in TCGA-ESCC.
2.7 Analysis of enrichment

Initially, the correlation between each Hub gene and common

signaling pathways was assessed, followed by the application of the

‘GSEA’ algorithm (29) to analyze significantly enriched Gene

Ontology (GO) pathways (30) and the Kyoto Encyclopedia of
Frontiers in Immunology 04
Genes and Genomes (KEGG) (31) between high and low-

risk groups.
2.8 Forecasting the effectiveness
of immunotherapy

Initially, we assessed the expression differences of immune

checkpoint-related genes and major histocompatibility complex

genes between high and low-risk groups. Subsequently, we

validated the model’s prognostic and immunotherapy efficacy

prediction capabilities in the IMvigor210 and GSE78220

cohorts, respectively.
2.9 RNA isolation and quantitative
RT-PCR assay

Using TRIzol reagent from Thermo Fisher Scientific (Waltham,

MA, USA), total RNA was extracted from ESCC cells and tissues.

Following the protocol provided by the manufacturer, this RNA was

then reverse-transcribed into complementary DNA (cDNA) using

the RevertAid™ First Strand cDNA Synthesis Kit, also from

Thermo Fisher Scientific. Quantitative real-time PCR (qRT-PCR)

analyses were conducted using a Takara Bio’s SYBR Green PCR kit

(Otsu, Japan) on Thermo Fisher Scientific’s StepOne Real-Time

PCR system. For quantifying the levels of gene expression, the 2-

△△CT method was employed.
2.10 Immunohistochemistry

Following approval by the Ethics Committee, 16 paraffin-

embedded ESCC tissue sections, including tumors and

corresponding peritumoral tissues, were obtained from the

Pathology Department of the Second Hospital of Hebei Medical

University. The immunohistochemical staining commenced with

incubating the slides at 60°C for four hours to fix the tissue, followed

by deparaffinization in xylene and rehydration through a graded

series of alcohol. Subsequently, antigen retrieval was conducted in

citrate buffer under high pressure for 20 minutes before the slides

were cooled to room temperature and washed with PBS.

Endogenous peroxidase activity was quenched with a 30-minute

treatment of 3% hydrogen peroxide, followed by further PBS

washes. The sections were then blocked with PBS containing 10%

bovine serum. Primary antibody incubation proceeded overnight,

after which the slides were washed with PBS, treated with secondary

antibody for one hour, and washed again. Color development was

achieved by applying DAB chromogen and timing the reaction

carefully. Following this, the sections were rinsed with water,

counterstained with hematoxylin for three minutes, washed again,

and finally subjected to a dehydration, clearing, and mounting

process. This sequence of steps completed the staining of the tissue

sections for subsequent microscopic observation and analysis.
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3 Results

3.1 Analysis of scRNA-seq

Firstly, strict quality control measures were implemented on the

data, resulting in the elimination of low-quality cells that did not

meet the requirements (Supplementary Figures 1A, B).

Subsequently, during the analysis phase, batch effects in the

original dataset were identified, a critical factor when explaining

differences between cells (Supplementary Figure 1C). Following
Frontiers in Immunology 05
this, the non-biological effects were effectively mitigated using the

Harmony algorithm, thereby optimizing sample distribution and

minimizing the impact of experimental condition variability on the

analysis results (Supplementary Figure 1D). Thereafter, following

data normalization and dimensionality reduction clustering, the

single-cell data were visually depicted in a t-SNE plot. Figure 1A,

depicting the cell distribution by sample origin, reveals that cells

from different samples are evenly mixed in space, unaffected by

significant batch effects. Continuing with the analysis, 30 cell

subpopulations were identified from 91,810 high-quality cells,
B C

D

E F

G

A

FIGURE 1

Annotation of single-cell data. (A) Distribution of single-cell data in a t-SNE plot, colored according to sample origin. (B) Thirty cell subpopulations
obtained after dimensionality reduction clustering, each represented by a different color. (C) Following cell annotation, ten distinct cell subtypes
were identified. (D) Enrichment analysis results of each cell subpopulation, with a heatmap showing unique gene expression patterns and activities in
various biological pathways for different subpopulations. (E) Heatmap of the top 10 most highly expressed genes in all subpopulations, reflecting
heterogeneity in expression among subpopulations. (F) Heatmap of marker gene expression among different cell subpopulations, revealing the
accuracy of cell annotation. (G) t-SNE plot colored according to tissue origin.
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representing various cell states in the TME (Figure 1B). Through

the integration of manual and algorithmic annotations, these

subpopulations were further refined into 10 major cell clusters

(Figure 1C). The functional annotation of these cell clusters

highlighted that dendritic cells (DCs) are primarily associated

with pathways such as positive regulation of leukocytes, allograft

rejection, and T-cell regulation in pancreatic cancer (Figure 1D).

Figure 1E presents the top 10 most highly expressed genes in each

cell cluster, further elucidating the biological characteristics of each

cluster. Furthermore, the expression patterns of marker genes in

Figure 1F, Supplementary Figure 1E illustrate the precision of our

clustering. Ultimately, Figure 1G, depicting the distribution of cell

tissue origins, further confirms the uniform mixture of various cell

types in ESCC, apart from epithelial cells, emphasizing the cellular

heterogeneity in the TME.
3.2 Analysis of cell communication

Our cellular communication analysis revealed a marked

escalation in both the number and intensity of intercellular

communications within tumor tissues, as opposed to normal

tissues, with Figure 2A visually supporting this finding. This

trend likely indicates a heightened level of interaction between

tumor cells and adaptive responses within the TME. Elaborating on

these insights, the heatmap in Figure 2B uncovers noticeable

disparities in communication probabilities among different tumor

cell subpopulations, particularly highlighting the intensified

interactions between dendritic and epithelial cells in tumor

contexts. Delving into signal pathway analysis, illustrated in

Figure 2C, we discerned notable variances in the frequency and

intensity of cellular communications between tumor and normal

tissues. This analysis brought to light the prominent activation of

pathways such as GALECTIN, MHC−I, and MHC−II within

tumors, hinting at their potential pivotal roles in tumor evolution.

Following this trajectory, our subsequent examination, as

demonstrated in Figure 2D, brought to the fore significant

alterations in ligand-receptor pairs within tumor tissues. These

specific molecular interactions suggest critical regulatory roles in

intercellular communication, thereby unveiling potential new

molecular targets for therapeutic intervention. A deeper dive into

the GALECTIN and MHC-I pathways ’ roles in cellular

communication revealed distinct dynamics. The GALECTIN

pathway, predominantly initiated by dendritic cells within the

TME and targeting T lymphocytes, is illustrated in Figure 2E.

Conversely, the MHC−I pathway, prominently active in T

lymphocytes and functioning as a signal emitter in dendritic cells,

is depicted in Figure 2F. Intriguingly, the comparative analysis of

key molecules in the GALECTIN pathway between tumor and

normal samples, as seen in Figure 2G, did not indicate significant

expression differences. This suggests that their role in the TME

might be mediated through mechanisms beyond mere expression

level alterations. Concluding our analysis, Figure 2H elucidates the

pivotal receptor-ligand pairs in the MHC-I pathway, particularly

highlighting the dominance of HLA-B - CD8A, HLA-A - CD8A,

and HLA-C - CD8A in tumor communication. This finding
Frontiers in Immunology 06
accentuates their significance in the tumor immune landscape,

potentially positioning them as central targets for future

therapeutic exploration. These comprehensive analytical results

not only demonstrate the intricacies and dynamic nature of

cellular communication within the TME but also pinpoint

potential key regulatory nodes in tumor progression. This

provides novel insights for developing ESCC treatment strategies

and lays a solid foundation for future advancements in precision

medicine research.
3.3 Further clustering of dendritic cells

In order to gain a deeper understanding of DC subgroups, we

initially utilized the subset function within the Seurat package,

specifically focusing on isolating DC cells for enhanced scrutiny.

This approach led to the identification of 3,877 high-quality DC cells

following the crucial steps of data normalization and dimensionality

reduction clustering. These cells were distinctly visualized in a t-SNE

plot, where they were further subdivided into 25 unique subgroups, as

illustrated in Figure 3A. Subsequently, by employing specific marker

genes for cell annotation (32), we meticulously differentiated these

cells into three DC subtypes: cDCs, tDCs, and pDCs. Each subtype,

with its unique features, is concisely represented in Figure 3B.

Furthermore, the analysis of the sample origin distribution of these

DC cells, showcased in Figure 3C, revealed a uniform distribution

across various samples. This uniformity is indicative of minimal

batch effect influence, thereby reinforcing the reliability of our

clustering approach. Advancing further into our investigation, the

expression analysis of marker genes was conducted, as depicted in

Figure 3D. This analysis not only validated the precision of our cell

clustering but also enriched our understanding of the cellular

characteristics. Moreover, the functional enrichment analysis of the

three DC subgroups, detailed in Figure 3E, unveiled distinct

functional pathways associated with each subgroup. In Figure 3F,

we demonstrate the significantly overexpressed and underexpressed

differential genes across three dendritic cell types. We discovered that

cDC cells are predominantly involved in pathways like ‘response to

molecule of bacterial origin’ and ‘positive regulation of cytokine

production’, while tDC cells are linked to the ‘regulation of

leukocyte proliferation’. In contrast, pDC cells are primarily

associated with ‘ribonucleoprotein complex biogenesis’. These

insights elucidate the diverse and significant roles that different DC

subgroups play within the immune system, further contributing to

our comprehensive understanding of their functionalities in various

physiological contexts.
3.4 Pseudotime analysis and assessment of
heterogeneity among samples

To elucidate the evolutionary relationships among the three

types of DCs, we embarked on a pseudotime analysis using the

Monocle2 package. This analysis revealed that DC cells progress

through nine distinct differentiation states. Intriguingly, cDCs were

predominantly found in the early stages of differentiation, while
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tDCs appeared to advance towards later stages. pDCs, however,

were present in both early and late stages, as illustrated in

Figures 4A-C. This finding points towards the dynamic and

complex nature of DC cell differentiation. Further examining the

number and percentage of DC cells among different patients, as

shown in Figures 4D, E, we uncovered significant heterogeneity.
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This variability suggests that DC cells may assume diverse roles in

different individuals, highlighting the complexity of their functions

in the immune response. Subsequently, we compared the cell cycle

distribution of the dendritic cell subpopulations, presented in

Figures 4F, G. This comparison revealed that pDCs had a higher

proportion of cells in the G2/M and S phases, indicating a more
B

C D

E F

G H

A

FIGURE 2

Analysis of cell communication. (A) Comparison of the number and intensity of cell communications between tumor and normal tissues. (B) Heatmap of
communication probabilities between each cell subpopulation. (C) Differences in the number and intensity of signaling pathway-related cell
communications between tumor and normal tissues. (D) Key ligand-receptor pairs with significant changes in tumor tissues. (E) The Function of the
GALECTIN Signaling Pathway in Cellular Interaction. (F) The Importance of the MHC-I Signaling Pathway in Intercellular Communication. (G) Expression
differences of molecules in the GALECTIN pathway between tumor and normal samples. (H) Relative contribution of receptor-ligand pairs in the MHC-
I pathway.
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active cell cycle status, whereas cDCs and tDCs predominantly

occupied the G1 phase. Delving deeper, our analysis, as

demonstrated in Figure 4H, focused on the expression patterns of

various transcription factors across dendritic cell types. A detailed

examination unveiled distinct expression trends for transcription

factors such as IRF1, NFKB1, and RELB within the DC subgroups.

Notably, IRF1 expression was markedly higher in cDC cells

compared to pDC cells. NFKB1 exhibited relatively high

expression in both cell types, albeit more pronounced in cDCs.

Conversely, an increased expression of RELB was observed

predominantly in pDC cells. Additionally, POLR2A was found to

be highly expressed across all dendritic cell types, particularly in

cDC cells, which might indicate its broad and pivotal role in

dendritic cell functions. These results shed light on potential

transcriptional regulatory differences between dendritic cell

subgroups, which are integral to comprehending their distinct

functions in immune responses. The unique expression patterns

of these transcription factors likely mirror the specialized roles of

dendritic cells in immune surveillance, antigen presentation, and

inflammatory responses, thereby contributing to our understanding

of the intricate dynamics within the immune system.
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3.5 Impact of dendritic cell subgroups on
ESCC prognosis

In the GSE53624 dataset, we conducted a thorough analysis of

the differences in the behavior of cDC, tDC, and pDC dendritic cells

between normal esophageal tissue and ESCC tissue. Figures 5A-C

revealed significant differences in the enrichment scores of the three

types of DCs between normal and cancerous tissues. In particular,

tDC and pDC showed significantly higher enrichment scores in

ESCC tissues compared to normal tissues, reflecting their possible

activated state in the TME. Further survival analysis using the

Kaplan-Meier curve method explored the correlation between these

enrichment scores and patient prognosis. Figures 5D, E showed that

high levels of cDC and tDC enrichment fractions were positively

correlated with worse prognosis in ESCC patients. While the

correlation for cDC did not reach statistical significance (p=0.31),

tDC exhibited a statistically significant correlation (p=0.03).In stark

contrast, high levels of pDC enrichment scores were significantly

correlated with better prognosis in patients (Figure 5F). These

results revealed the unique roles of different dendritic cell

subgroups in the pathogenesis of esophageal cancer and their
B C
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A

FIGURE 3

Reclustering of DC cells. (A) DCs divided into 25 cell subpopulations after dimensionality reduction clustering, each represented by a different color.
(B) Dendritic cells annotated as three different cell types based on phenotype. (C) t-SNE plot showing the origins of each DCs sample, each
identified by a unique color. (D) Illustration of dendritic cell marker gene expression. (E) Enrichment analysis results, with a heatmap revealing the
activity of different dendritic cell subpopulations in various biological pathways and functions. (F) Presentation of differential genes in three types of
dendritic cells, with scatter plots revealing changes in their expression levels and potential significance in tumor biology.
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potential mechanisms affecting patient prognosis. The significant

association of tDC and pDC enrichment scores with patient survival

probabilities highlights their importance as potential biomarkers in

the TME and in future clinical decision-making. These findings

provide valuable molecular targets for future therapeutic strategies

targeting dendritic cells and offer new perspectives for clinical

prognosis assessment.
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3.6 Dendritic cell malignancy inference

In our in-depth molecular characterization of DC subgroups,

we employed the Copykat algorithm to estimate the benign or

malignant state of each cell. t-SNE visualization results indicated a

clear distinction between malignant and benign cells among the

3,877 cells analyzed, with 1,141 malignant and 2,536 benign cells
B C
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A

FIGURE 4

Pseudotime analysis and cell proportion analysis. Pseudotime analysis: (A) colored according to cell type, (B) colored according to cell state,
(C) colored according to developmental time. (D) Stacked bar graph showing the relative proportions of cDC, tDC, and pDC cell types in different
samples, reflecting the heterogeneity of dendritic cell composition among samples. (E) Each bar represents the number of different dendritic cell
types in a sample, providing a visual comparison of the numbers of cDC, tDC, and pDC cells in each sample. (F) Proportion of the cell cycle in each
type of dendritic cell. (G) Number of cells in different cell cycle phases for each type of dendritic cell. (H) Heatmap displaying transcription factors
that may regulate the three types of dendritic cells.
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identified (Figure 6A). Comparing the proportion of malignant cells

across three different types of dendritic cells revealed variability in

malignancy rates within each cell type, potentially reflecting their

distinct functions or pathological states in the TME (Figure 6B).

Specifically, cDCs had the lowest proportion of malignancy (17%),

followed by pDCs (29%), and tDCs had the highest (48%). The

activity of ten tumor-related signaling pathways was assessed using

GSVA, with the results presented in a heatmap format (Figure 6C).

This analysis demonstrated a more significant association of

malignant cells with these pathways, revealing specific

correlations between each dendritic cell type and certain signaling

pathways, providing clues to their potential roles in tumor

development. Further analysis of functional state differences

between benign and malignant cells within each subgroup showed

significant scoring differences in multiple tumor-related signaling

pathways for cDCs (Figure 6D), tDCs (Figure 6E), and pDCs
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(Figure 6F). This disparity may reveal different mechanisms by

which malignant dendritic cells promote tumor growth and

modulate tumor immune responses. Integrating these findings, we

conclude that different dendritic cell subgroups exhibit distinct

signaling pathway activation patterns and functional states in

malignant tumors, which is crucial for understanding their roles

in the tumor immune microenvironment.
3.7 Development and assessment of the
predictive mode

In the process of conducting an in-depth analysis of the

GSE53624 dataset, we initially calculated the differentially expressed

genes (DEGs), selecting genes with an absolute log fold change

(|lgFC|) greater than 1 and a p-value less than 0.05 (Figure 7A).
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FIGURE 5

Impact of dendritic cell subgroups on ESCC prognosis. In the GSE53624 dataset, (A) cDC, (B) tDC, and (C) pDC GSVA enrichment scores
comparison between normal esophagus and ESCC tissues. (D) Kaplan-Meier survival curves for cDC, (E) tDC, and (F) pDC, used to assess the
correlation between these dendritic cell subgroup enrichment scores and the prognosis of esophageal squamous cell carcinoma patients. **P <
0.01, ****P < 0.0001.
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Next, we analyzed the correlation between tDC and pDC marker

genes and these DEGs, selecting genes with a correlation coefficient

greater than 0.4 and a p-value less than 0.05. Based on these genes,

univariate Cox regression analysis identified 46 genes with significant

prognostic value for esophageal squamous cell carcinoma (ESCC), of

which 28 were risk factors and 18 were protective factors (Figure 7B).

To further narrow down the gene pool, we employed Lasso regression

analysis and selected 13 genes at the optimal cutoff value

(lambda=0.0735) (Figure 7C). Ultimately, we constructed a

prognostic model comprising six genes using stepwise multivariate

Cox regression, including Coiled-Coil Domain Containing 50

(CCDC50), ETS Variant 5 (ETV5), Neuralized E3 Ubiquitin

Protein Ligase 3 (NEURL3), Lysosomal-Associated Membrane

Protein Family Member 5 (LAMP5), Complement Receptor 2

(CR2), and Serine Dehydratase (SDS). The model formula is:

Risk = 0.684 * CCDC50 + 0.221 * ETV5 + 0.158 * LAMP5 + 0.203

* NEURL3 - 0.62 * SDS - 0.15 * CR2. Kaplan-Meier survival analysis

was used to evaluate the prognosis of patients in high-risk and low-
Frontiers in Immunology 11
risk groups, with results indicating a significantly worse prognosis for

the high-risk group. In the training set, the prognostic model

demonstrated good predictive performance with area under the

curve (AUC) values of 0.81, 0.76, and 0.74 for 1-year, 3-year, and

5-year survival predictions, respectively (Figure 6D). Additionally, we

validated the prognostic assessment and diagnostic capabilities of the

model in the TCGA-ESCA dataset, obtaining similar positive results

(Figure 7E). The risk score distribution chart (Figure 7F) clearly

differentiated between high-risk and low-risk group patients, while

the survival status distribution chart (Figure 7G) showed a noticeably

higher number of deaths in the high-risk group compared to the low-

risk group. Lastly, a heatmap (Figure 7H) detailed the expression

patterns of the six core genes in the training set, further supporting

their critical roles in esophageal cancer. In summary, the gene

signature model we constructed is not only statistically significant

but also holds potential clinical application value. It provides

important molecular markers for the personalized treatment of

esophageal cancer patients.
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FIGURE 6

Evaluation of dendritic cell subgroups in benign and malignant classification, signal pathway correlation, and functional status. (A) t-SNE plot
generated using the Copykat algorithm to infer benign and malignant states in dendritic cells. B) Comparison of the proportion of malignant cells in
three types of dendritic cells (cDC, tDC, pDC). (C) Heatmap showing the correlation of three dendritic cell subpopulations with ten tumor-related
signaling pathways. (D) cDC, (E) tDC, (F) pDC: Differences between benign and malignant cells in tumor-related signaling pathway scores (GSVA
enrichment scores). *P < 0.05, **P < 0.01, ***P < 0.001.
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3.8 Building and testing of the
prognostic nomogram

To comprehensively assess the prognosis of ESCC patients and

its applicability in clinical decision-making, we conducted a series of

statistical analyses and model validations. Initially, we identified

factors significantly affecting the prognosis of ESCC patients

through univariate and multivariate Cox regression analyses,

combined with clinical features and risk scoring (Figures 8A, B).

The analysis indicated that pathological staging (Stage) and risk

scoring are important factors affecting prognosis. Based on these

findings, we constructed a nomogram (Figure 8C) combining risk

scores and pathological staging to predict 1-year, 3-year, and 5-year

survival probabilities. This tool aims to provide a quantitative

method to assist physicians in treatment decision-making,

estimating patients’ survival probabilities by calculating a total

score for each patient. To validate the predictive accuracy of this

nomogram, we plotted calibration curves (Figure 8D) to assess the

concordance between the predicted and actual survival
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probabilities. The calibration curves demonstrated the model’s

accuracy in predicting 1-year, 3-year, and 5-year survival,

providing an intuitive validation of the model’s predictive

capability. From the calibration curves in Figure 8D, our

nomogram prediction model demonstrated good accuracy in

forecasting 1-year, 3-year, and 5-year survival probabilities of

ESCC patients in the training set. The calibration curves closely

followed the ideal line, indicating a match between predicted

survival probabilities and actual observed survival rates,

confirming good calibration performance of the model at different

time points. In the decision curve analysis, when applying our

nomogram prediction model, particularly at moderate threshold

ranges, the model showed higher net benefits, indicating strong

clinical applicability in differentiating medium to high-risk groups

of ESCC patients (Figure 8E). This result emphasizes the important

value of the model in accurately stratifying patient risk and assisting

in the formulation of corresponding treatment strategies. Overall,

our analysis revealed a powerful prognostic assessment tool that

combines clinical features and biomarker scoring of patients,
B C

D

E

F

G

H

A

FIGURE 7

Development and assessment of the predictive model. (A) Volcano plot showing the distribution of differentially expressed genes in the GSE53624
dataset, with red indicating upregulated genes, blue indicating downregulated genes, and size representing the significance of gene expression
changes. (B) Results of univariate regression analysis of dendritic cell-related genes. (C) Optimal prognostic markers identified via Lasso regression
analysis and their respective coefficient shrinkage trajectories. (D) Kaplan-Meier survival curves for ESCC patients in the GSE53624 and (E) TCGA
datasets (left), and receiver operating characteristic (ROC) curve analysis of the prognostic model at 1 year, 3 years, and 5 years (right). (F) Risk score
distribution plot differentiating between high and low-risk statuses of patients. (G) Distribution plot of survival statuses illustrating survival scenarios
of patients in high and low-risk scoring categories. (H) Heatmap providing a detailed display of HUB gene expression in different samples.
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effectively predicting the survival probabilities of ESCC patients.

The model’s accuracy and clinical utility in predicting the prognosis

of esophageal cancer patients were confirmed through the

validation by calibration curves and decision curve analysis.
3.9 Enrichment analysis

An in-depth bioinformatics analysis of gene expression data from

ESCC patients revealed significant differences in biological processes

and metabolic pathways between different risk groups, offering new

perspectives on the molecular characteristics and pathological

mechanisms of these patient groups. As shown in Figures 9A, B,

we first analyzed potential signaling pathways related to the genes

used in model construction. A total of 30 pathways were significantly

related to these genes, including the B cell receptor signaling pathway,

primary immunodeficiency, colorectal cancer, etc., which play key
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roles in the biology and clinical characteristics of tumors. Subsequent

GO and KEGG enrichment analyses further emphasized the

molecular-level differences between different risk groups. As

illustrated in Figure 9C, GO enrichment analysis showed that gene

expression features of patients in the high-risk group were primarily

focused on processes related to tumor invasiveness and metastasis,

such as external encapsulating structure organization and collagen

fibril organization. This finding suggests that tumors in these patients

may have a stronger tendency for invasiveness and deterioration. In

contrast, the low-risk group showed enrichment in processes related

to immune response, such as keratinization and T cell receptor

complex (Figure 9D), possibly reflecting a stronger immune

response and lower tumor invasiveness in these patients. KEGG

enrichment analysis results (Figures 9E, F) further highlighted these

differences. The high-risk group was significantly enriched in ecm

receptor interaction and pathways in cancer, suggesting that the

tumor microenvironment might be more conducive to tumor growth
B

C

D

E

A

FIGURE 8

Building and testing of the prognostic nomogram. (A) Results of univariate Cox regression analysis combining clinical features and risk scores.
(B) Results of multivariate Cox regression analysis combining clinical features and risk scores. (C) Nomogram constructed based on multivariate Cox
regression analysis results, used to calculate the total score based on patients’ clinical features and risk scores, subsequently predicting 1-year, 3-
year, and 5-year survival probabilities. (D) Calibration curves showing the concordance between the model’s predicted survival probabilities and the
actual observed survival rates, providing validation for the 1-year, 3-year, and 5-year survival rate predictions. (E) Decision Curve Analysis (DCA)
indicating the clinical value of the model at different risk thresholds by comparing net benefits when including different variable combinations,
assessing the practical application benefits of the model.
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and spread. Conversely, the low-risk group was mainly enriched in

drug metabolism-cytochrome P450 and linoleic acid metabolism

pathways, revealing unique characteristics of these patients in drug

and lipid metabolism. In summary, our analysis disclosed marked

differences in molecular traits and biological processes between high-

risk and low-risk groups among ESCC patients.
3.10 Forecasting the effectiveness
of immunotherapy

Initially, we compared the expression differences between immune

checkpoint-related genes and major histocompatibility complex genes

in high and low-risk groups (Supplementary Figures 2A, B). The results

indicated that these genes, including classic molecules like PDCD1 and

HAVCR2, were predominantly expressed at higher levels in the low-

risk group. Next, we compared the survival differences between high
Frontiers in Immunology 14
and low-risk groups in the IMvigor210 cohort. Consistent with

previous analyses, there were significant prognostic differences

between the different risk groups (Supplementary Figure 2C).

Additionally, in the group with better immunotherapy responses (CR

+PR group), there were lower risk scores (Supplementary Figure 2D).

Concurrently, the proportion of patients with poorer immunotherapy

responses (PD+SD group) was significantly lower in the low-risk group

(Supplementary Figure 2E). Lastly, we validated the prognostic ability

of the model in another immunotherapy cohort, obtaining similar

results (Supplementary Figures 2F-H).
3.11 Validation of model gene expression

Given that our analysis was primarily based on bioinformatics,

it is possible that certain biases existed. To confirm the accuracy of

our analysis, we initially downloaded the expression data of six
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FIGURE 9

Enrichment analysis. (A) Displays a heatmap of enrichment scores for key pathways, visualizing the extent of enrichment in various samples.
(B) Reveals the correlation between Hub genes and key pathways. (C) Results of the GO enrichment analysis for the high-risk group. (D) Results of
the GO enrichment analysis for the low-risk group. (E) Results of the KEGG enrichment analysis for the high-risk group. (F) Results of the KEGG
enrichment analysis for the low-risk group. *P < 0.05, **P < 0.01, ***P < 0.001.
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model genes across various cancers from the Timer2.0 database. We

then conducted qPCR and IHC validations of these model genes’

expression levels. As shown in Figure 10, our qPCR analysis

(involving 8 pairs of ESCC patients and their corresponding

peritumoral tissues) revealed significant overexpression of the six

model genes in tumor tissues. While the pan-cancer analysis did not
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demonstrate statistical significance for CCDC50 and CR2, the trend

of gene overexpression was consistent. This discrepancy might be

attributed to the genetic differences between Eastern and Western

populations. We further validated the expression of CCDC50 and

CR2 at the protein level using IHC, which confirmed their

significant overexpression in tumor tissues (Figure 11). These
B

C

D

E

A

F

FIGURE 10

PCR validation of gene expression. Expression of genes (A) CCDC50, (B) CR2, (C) ETV5, (D) SDS, (E) LAMP5, and (F) NEURL3 in tumor and normal
tissue samples. The left panels show the gene expression profiles across pan-cancer. The middle panels depict the comparative expression of these
genes in tumor versus normal tissues. The right panels present paired comparisons between individual tumor tissues and their adjacent normal
tissues. *P < 0.05, **P < 0.01, ***P < 0.001.
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analyses substantiate the accuracy and credibility of our

bioinformatics finding.
4 Discussion

ESCC is a globally prevalent disease, occupying a leading

position in both incidence and mortality among malignancies (1).

Traditional treatments such as surgery, chemotherapy, and

radiotherapy, augmented by a limited range of targeted therapies,

have been the mainstay. However, the advent of emerging strategies

like immunotherapy has injected a ray of hope into the realm of

ESCC management (3). Despite these advancements, the battle

against ESCC is fraught with challenges, primarily due to the

inherent difficulties in early diagnosis and the multitude of

complex postoperative complications. Accurate molecular

characterization is imperative for effectively targeting ESCC.

In solid tumors, especially ESCC, the significance of TME in

influencing cancer therapy has garnered escalating attention. The

microenvironment of ESCC, a complex milieu comprising diverse

cellular groups, signaling molecules, and structural components,

facilitates an intricate interplay with cancer cells, thereby

supporting every phase of tumor development (33). Environmental

factors, for instance, can instigate chronic inflammation, perpetuating

pro-inflammatory signaling pathways that bolster tumor cell survival

and proliferation (34). The anti-tumor immune response is often

undermined by elements such as myeloid-derived suppressor cells,

regulatory T cells, and immune checkpoints like programmed death-

1 (35). Moreover, tumor-associated macrophages and other immune

cells can assume additional tumor-promoting roles, including the

induction of angiogenesis and facilitation of tumor cell invasion (36).

Furthermore, cancer-associated fibroblasts secrete growth factors and

modify the extracellular matrix, crafting a conducive tumor niche

that accentuates tumor cell migration and metastasis (37).
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Notably, dendritic cells (DCs), as professional antigen-presenting

cells, play a pivotal role in the tumor microenvironment. These cells

adeptly capture exogenous antigens and present them to

lymphocytes, such as T and B cells, epitomizing one of the most

potent cells in triggering the adaptive immune response (38).

Consequently, the presence of DCs at immune challenge sites is

essential for mounting an effective immune response. A significant

area of current research is how different tumor microenvironments

influence DCs in aspects like their development, functionality, and

migration, thereby modulating the robustness of the adaptive

immune response. Given their heterogeneity, DCs are classified

into various subtypes, each with distinct functionalities. In our

study, we categorize DCs into three subtypes - cDC, tDC, and pDC

- in alignment with established literature. Our ssGSEA analysis

reveals that pDCs positively influence ESCC prognosis, while a

high enrichment of tDC-related genes correlates with poorer

outcomes in ESCC patients. Through intercellular communication

analysis, we have pinpointed GALECTIN and MHC−I as potential

carcinogenic pathways in these DC subsets. GALECTINs, crucial in

cancer progress ion, play unique roles in the tumor

microenvironment by modulating tumor cell adhesion, migration,

invasion, and impacting immune cell functions (39). Consequently,

GALECTIN inhibitors or modulators could emerge as innovative

therapeutic approaches in cancer treatment, potentially improving

patient outcomes. The aberrant regulation of MHC-I molecules in

cancer, possibly exploited by tumor cells to evade immune detection

and promote tumor progression, diminishes the efficacy of cancer

immunotherapies. The interactions of MHC-I molecules within the

tumor microenvironment and their multifaceted roles in cancer

progression are currently at the forefront of oncological research

(40). Targeted therapies against MHC-I hold substantial promise in

enhancing the effectiveness of cancer immunotherapies and in

deepening our understanding of the dynamic roles and

mechanisms of MHC-I in cancer.
B
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FIGURE 11

Immunohistochemical validation of gene expression. (A) Results for CCDC50. (B) Results for CR2. On the left are normal tissues, in the middle are
tumor tissues, and on the right are the statistical results. ***P < 0.001.
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During our examination of the cell cycle distribution across

different dendritic cell (DC) subgroups, notable variances were

found in the proportions of cell cycle stages among diverse types

of DCs. Specifically, pDCs exhibited a higher proportion of cells in

the G2/M and S phases, suggesting a more active state of cell

division or preparation for cell division. In contrast, cDCs and tDCs

predominantly resided in the G1 phase, indicating a relatively

quiescent state in the cell cycle. This distribution pattern of cell

cycle states may reflect the distinct biological functions and

activities of each cell type within the tumor microenvironment.

Notably, the increased proportion of pDCs in the G2/M phase could

be associated with their role in viral defense and tumor immune

surveillance, whereas the dominance of cDCs and tDCs in the G1

phase might align with their functions in antigen presentation and

maintaining immune tolerance. These findings provide cell cycle-

related insights for further exploration of the roles of DCs in tumor

development and immune responses.

Based on six DC marker genes (CCDC50, ETV5, LAMP5,

NEURL3, SDS, CR2), we constructed a robust prognostic feature set

that can reliably predict the prognosis and efficacy of immunotherapy

in ESCC. CCDC50, a gene encoding a human protein, has been

explored in multiple studies for its primary functions and

mechanisms. Its increased expression in diffuse large B-cell

lymphoma (DLBCL) has been linked to tumor development stages

and extranodal site numbers. Additionally, CCDC50 promotes tumor

cell proliferation by inhibiting c-Myc ubiquitin-mediated degradation

(41) and also contributes to the development of hepatocellular

carcinoma through the Ras/Foxo4 signaling pathway (42). ETV5,

belonging to the ETS family of transcription factors, is a key factor

in cancer research, recognized for its role in cell cycle regulation and

tumor progression. In neuroblastoma, ETV5 drives tumor

aggressiveness through transcriptional regulation mediated by

activated ALK mutations and is influenced by the MAPK signaling

pathway, a mechanism consistent across different cancer types (43).

Moreover, ETV5’s oncogenic role in colorectal cancer involves

enhancing tumor proliferation and affecting the G1/S transition in

the cell cycle, primarily by regulating p21 expression (44). LAMP5, a

lysosome-associatedmembrane protein, plays a crucial role in leukemia

and gastric cancer. In leukemia, particularly mixed-lineage leukemia

rearrangements (MLL-r), LAMP5 is a direct target of the oncogenic

MLL fusion protein, and its reduction significantly inhibits leukemia

cell growth, highlighting its potential as a therapeutic target (45). In

gastric cancer, the upregulation of LAMP5 in metastatic tissues is

associated with enhanced cell proliferation, invasion, migration, and

alterations in apoptosis and the cell cycle, indicating its significant role

in metastasis formation and potential as a drug development

target (46).

In summary, our systematic analysis of dendritic cell heterogeneity

in ESCC has identified that tDCs and pDCs can significantly impact

the prognosis of ESCC patients. Utilizing marker genes from these two

cell groups, we have developed a robust prognostic model that can

accurately predict the prognosis and immunotherapeutic efficacy in

ESCC. This model could bring new insights into the treatment of ESCC

patients. However, we must acknowledge certain limitations. Firstly, as

our study relies on existing public data, we lack comprehensive

experimental validation of the key genes in our model. This might
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limit our understanding of the roles these genes play in ESCC. In light

of these limitations, our future research will focus on more extensive

cellular and animal experiments. These studies will enable us to more

directly validate the roles these genes play in the development of ESCC,

particularly regarding the functions of dendritic cells. Through these

experiments, we hope to provide stronger evidence to support our

findings and further deepen our understanding of the heterogeneity of

dendritic cells in ESCC and their role in TME.
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