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associated viral variants to the
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bNAb-naïve population
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Broadly neutralising antibodies (bNAbs) targeting HIV show promise for both

prevention of infection and treatment. Among these, 10-1074 has shown

potential in neutralising a wide range of HIV strains. However, resistant viruses

may limit the clinical efficacy of 10-1074. The prevalence of both de novo and

emergent 10-1074 resistance will determine its use at a population level both to

protect against HIV transmission and as an option for treatment. To help

understand this further, we report the prevalence of pre-existing mutations

associated with 10-1074 resistance in a bNAb-naive population of 157 individuals

presenting to UK HIV centres with primary HIV infection, predominantly B clade,

receiving antiretroviral treatment. Single genome analysis of HIV proviral envelope

sequences showed that 29% of participants’ viruses tested had at least one

sequence with 10-1074 resistance-associated mutations. Mutations interfering

with the glycan binding site at HIV Env position 332 accounted for 95% of all

observed mutations. Subsequent analysis of a larger historic dataset of 2425 B-

clade envelope sequences sampled from 1983 to 2019 revealed an increase of

these mutations within the population over time. Clinical studies have shown that

the presence of pre-existing bNAb mutations may predict diminished therapeutic

effectiveness of 10-1074. Therefore, we emphasise the importance of screening

for these mutations before initiating 10-1074 therapy, and to consider the

implications of pre-existing resistance when designing prevention strategies.
KEYWORDS

HIV - human immunodeficiency virus, primary HIV infection (PHI), broadly neutralising
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Introduction

Broadly neutralising antibodies (bNAbs) may emerge during HIV

infection in a rare subset of people living with HIV (PWH). Unlike

early strain-specific neutralising antibodies, bNAbs are capable of

neutralising a broader range of HIV by targeting conserved regions

of the HIV Envelope protein (1). Passive administration of bNAbs can

sustain viral suppression in the absence of antiretroviral therapy (ART)

and may be efficacious for HIV prevention (2–7). Pharmacokinetic

data suggest the longer acting M428L/N434S (‘LS’) variants may

provide therapeutic levels for months (2, 8–11).

The presence of bNAb-resistant proviruses integrated into

latently infected cells prior to bNAb exposure, however, could

compromise bNAb efficacy (2, 8, 10, 12). This may pose a risk of

bNAb treatment failure not only for individuals with HIV but more

widely, due to the potential for transmission of bNAb-resistant

strains, as documented for ART drug resistance (13). One difficulty

lies in the lack of a gold standard test for determining susceptibility

to bNAbs, with approaches divided between either in-vitro

neutralisation assays using amplified envelope (env) sequences or

sequence-based in-silico predictions (14–16).

One of the most potent bNAbs in clinical trials is 10-1074, which

neutralises HIV by targeting the base of the V3 loop on HIV Env (4).

10-1074 is able to interact with the glycan attached to the potential N-

glycosylation site (PNG) at position 332 of HIV Env (documented

position is relative to the HXB2 strain) while penetrating through the

glycan shield and binding to the underlying protein region (17, 18).

These traits of 10-1074, which are also associated with other V3-

targeting bNAbs, are a result of extensive affinity maturation during

multiple rounds of host-induced selection pressure. Either on its own

or in combination with other bNAbs, 10-1074 has shown extended

viral suppression for up to 21 weeks (2, 4, 8) and it is, therefore, one of

the more promising agents in the field of HIV therapeutics. When

tested in a panel of 118 strains, 10-1074 was very potent, although with

a reported breadth of 63-67% (19). Successful roll-out of 10-1074 – and

bNAbs more generally – as widely used therapeutics will be dependent

on understanding the degree of bNAb resistance that exists in the

general population, especially as responses are likely to be HIV

subtype-specific (for example,10-1074 is reported to be more potent

against B-clade viruses (17) and less potent on C and A clades (18).

This study reports the prevalence of mutations in HIV Env that

have been associated with resistance to 10-1074 in a UK cohort of

people with treated primary HIV infection (PHI). Through this

analysis, we aim to understand the current prevalence of resistance

to 10-1074 and map how this evolves in the population or within-

host in people with HIV who have not previously been treated with

10-1074.
Results

HEATHER cohort demographics

The HEATHER cohort was an observational study looking at

the impact of ART on the viral reservoir in people with Primary

HIV Infection (PHI) who started ART within 3 months of diagnosis
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(20). Samples from 157 participants were used to study the

prevalence of resistance to 10-1074 based on sequence analysis of

HIV env. All participants were on ART at the time of sampling for

an average of 5 years (range: 0-18 years). The majority of

participants (64.4%) seroconverted between 2013 and 2016

(range: 2001-2020). The median age of the participants at the

time of ART initiation was 35 years (range: 18-64). All but two

participants in this cohort were male (98.7%), and 91 of 92 recorded

transmission events were men having sex with men (MSM). An

average of 16 single, proviral env sequences per participant (range:

1-72 sequences) was assessed for sensitivity to bNAbs. In total, 2593

sequences were analysed in this study. Most participants had B

clade HIV (69.4%), followed by F (5.7%), C (4.4%), CRF02-AG

(4.4%), CRF01-AE (3.1%), A1 and D/A1 (2.5% each), with other

clades representing less than 2% of the cohort (Figure 1A).
Predicted 10-1074 sensitivity in the
HEATHER cohort

The key determinants of HIV sensitivity to 10-1074 are the

presence of a sequon at amino acid positions 332-334 of the HIV

Envelope protein (a sequence of N-x-T/S, where x can be anything

but P), which allows glycan attachment on the asparagine, and an

intact motif on the protein,324G(D/N)IR327, which allows CDRH3

binding (4, 17). 28.6% of the HEATHER cohort participants had at

least one sequence with mutations associated with 10-1074

resistance. No participants had previously been exposed to 10-

1074 or had received treatment with bNAbs. Co-existence of

sensitive and resistant sequences to 10-1074 in the same person

was detected in 5.7% of participants in the HEATHER cohort. For

this group with mixed sequences, the proportion of resistant

sequences varied between12.5 and 85.7%. Subtype was an

important determinant of resistance - most participants with

clade B HIV in this cohort were predicted to be sensitive to 10-

1074 (81/109; 74.3%). The highest rate of predicted 10-1074

resistance in the cohort was detected in CRF01-AE, although this

was only five participants (5/5; 100%) (Figure 1B).
Distribution of resistance-
conferring variants

Mutations that interfere with the glycan attachment on the PNG at

HIV Envelope position 334 were the most common among sequences

predicted to be resistant (35 of the 45 sequences with resistance-

associated mutations, 77.7%) in the HEATHER cohort. More than half

of the potentially resistant sequences (25 of the 45 sequences with

resistance-associated mutations, 55.5%) carried mutations at both

positions 332 and 334 (Figure 2) and furthermore, 64.4% of likely

resistant samples in the cohort had a PNG site shift from position 332

to position 334 (Figure 2). Notably, 89.2% of those with a PNG at 334

in this dataset also carried a 336T (334N-x-T336), which has a 100%

likelihood of glycan occupancy (21). However, 332N-x-T334 was very

rare in the sequences with an intact 332PNG. Furthermore, mutations

at 330, which has been described as a critical 10-1074 binding site on
frontiersin.org
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env, most often occur with mutations that affect the glycan binding at

position 332 (50% of 4 sequences with 330 mutations in the

HEATHER cohort) (Figure 2).
10-1074 sensitivity prediction in B clade
viruses over the course of the
HIV epidemic

To explore further the broader prevalence of resistance to 10-

1074, 6516 HIV env protein sequences sampled between 1983 and

2019 were downloaded from the Los Alamos sequence database

(dataset Year 2020, all HIV-1 subtypes included; one sequence per

individual) and tested for mutations associated with resistance to 10-

1074. Of these, we focused on subtype B, and any sequences for which

the time of sampling was unknown (43 sequences) were excluded

from the analysis. The resulting analysis of 2425 B clade HIV env
Frontiers in Immunology 03
sequences revealed a trend of increasing 10-1074 resistance over the

course of the HIV pandemic (16) (Figure 3A). Further analysis in the

subset of sequences with 10-1074 resistance-associated mutations,

reveals that mutations impacting the 332PNG (in positions 332 and/

or 334) are becoming more frequent with time (Figure 3B),

potentially driving the 10-1074 resistance pattern identified.
Variability in hypervariable variable loop
length between resistant and sensitive B
clade sequences

The variable loops in HIV Env evolve to evade the host immune

response by incorporating insertions and deletions which have been

associated with bNAb sensitivity (18). Alignment-independent

methods were used on the HEATHER cohort sequences to

measure the variable regions’ lengths (V1, V2, V4 and V5) as well
B

A

FIGURE 1

Distribution of predicted 10-1074 resistance in different HIV clades in the HEATHER cohort. (A) ML phylogenetic tree showing all sequences from 157
participants in the HEATHER cohort. The inner ring layer marks sequences with mutations associated with 10-1074 resistance in red and sensitive sequences
in green. The outer ring layer shows the sequence clades. (B) Barplot showing the distribution of samples with 10-1074 resistance-conferring mutations per
clade. The number in brackets is the number of samples. The percentage of samples in each clade is on the y-axis.
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as the number of PNGs within these regions (Supplementary

Table 2). A multivariable logistic regression with mixed effects,

accounting for intra-patient variability and clade, showed that only

the length of variable V1 loop was significantly associated with the

presence of resistance-conferring mutations (OR=1.57, p-

value<0.01, Figure 4). No statistically significant relationship

between 10-1074 resistance-conferring mutation and the number

of PNGs within the variable regions was observed.
Sensitivity evolution through ancestral
state reconstruction

In the absence of longitudinal data and relevant dating,

ancestral state reconstruction can be used to infer the sensitivity
Frontiers in Immunology 04
phenotype of the founding virus. Here, ancestral state

reconstruction was performed from the nine participants who

had both sensitive and resistance sequences using bootstrapped

maximum likelihood nucleotide trees. The median average pairwise

distance between nucleotide sequences within samples with more

than 1 sequence was 0.009 substitutions per site (range: 0-0.098

substitutions per site). The ancestral state is displayed as a pie chart

at the root of each tree and the likelihood of sensitivity and

resistance is indicated by different colours. The analysis revealed

that in five of the samples (Figures 5A-E), the inferred root was very

likely sensitive, indicating that the ancestral strain in these patients

was most likely susceptible to 10-1074. The most common

mutations observed in these samples were N334, with a PNG

emerging at 334. In the remaining four trees (Figures 5F-I), a

large amount of uncertainty was associated with the status of the
FIGURE 2

Heatmap presenting the frequency of mutated sites in the HEATHER cohort samples. This heatmap illustrates the frequency of mutations in the
protein sequence in individual samples at HXB2 Env positions associated with 10-1074 susceptibility. Each row in the heatmap represents a distinct
sample, and the first five columns correspond to precise amino acid positions. The last column illustrates the presence of a PNG at position 334. All
samples harbouring >1 sequence with predicted resistance to 10-1074 B clade samples are shown in the upper panel and non-B are shown in the
lower. The colour scale shows the percentage of sequences with 10-1074-associated mutations, per sample.
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most recent common ancestor of the sequences, although these

ancestral strains were slightly more likely to be resistant to 10-1074.

As viral evolution is unlikely on suppressive ART, this suggests that

the ancestral strain in these participants may have already possessed
Frontiers in Immunology 05
genetic mutations associated with 10-1074 resistance, consistent

with transmission of bNAb resistant strains, or that evolution of

these mutations occurred shortly after transmission before ART

was started.
B

A

FIGURE 3

Analysis of Los Alamos Database B clade env sequences. (A) Time series analysis showing the proportion of sequences with 10-1074 resistance-
associated mutations in the total number of sequences available per year. The trend line is shown in red, and the confidence intervals are shaded
grey. Years for which less than 5 sequences where available were excluded from the analysis. (B) Frequency of individual mutation patterns
associated with 10-1074 resistance among all sequences predicted as resistant, sampled throughout the pandemic. The type of mutation is encoded
as ‘PNG’, for mutations affecting the 332-glycan binding (332-334 sites), ‘GDIR’ for mutations impacting the binding site on the protein (sites 325 and
330) and ‘Both’ for mutations occurring in both regions in the same sequence. Each mutation pattern is marked with a different colour. The year of
sampling is on the x-axis and the proportion of resistant B-clade sequences per year is on the axis. The coloured bands represent the confidence
interval for each fitted line.
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Discussion

This study was the first to evaluate the prevalence of 10-1074

associated mutations in a bNAb-treatment-naïve population with

PHI in the UK using viral sequencing from the HIV reservoir. In the

absence of a gold standard for predicting bNAb resistance, we used

specific env residues to define 10-1074 resistance, from samples of

DNA, whilst the virus was suppressed on ART, which were selected

by an algorithm based on West et al. (14), which has been

previously used to assess sensitivity to 10-1074 (2, 8). Previous

studies have demonstrated that the recognition of the 332 glycan is

necessary for 10-1074 binding, so any disruption of the glycan site

would confer resistance to this bNAb (16), whereas variations on

the 10-1074 GDIR binding region on the protein are better tolerated

(18). In addition, we demonstrated that 10-1074 genotypic

sensitivity varies among different HIV subtypes, suggesting that

treatment with 10-1074 may be less effective in people who live with

non-B clades of HIV, for example, subtype CRF01-AE HIV. These

findings are comparable to previous study results, showing that

88.5% of the B-clade viruses were neutralised in vitro by 10-1074 at

an average of 80% inhibitory concentrations (4) or, that CRF01-AE

viruses are extremely resistant to 10-1074 (18). However, due to the

low number of participants with non-B clades, these findings may

need to be confirmed through studying larger, non-B PHI

clade cohorts.

The analysis of the HEATHER cohort sequences identified that

the most frequently appearing substitutions in resistant sequences

impact the binding to the 332-supersite glycan. Instead, the PNG
Frontiers in Immunology 06
site was shifted from position 332 to position 334 in most of these

sequences. A glycan at this position could, however, serve as a target

for other neutralising antibodies and bNAbs as well as a marker of

lower viral infectivity (22, 23). In addition, Caskey et al. (4) observed

some reversion of 10-1074 escape mutations (such as D/K332 and I/

A334) to wild type in PWH, when 10-1074 levels started dropping

in the blood conferring less selection pressure, indicating that the

escape mutations may have a fitness cost.

Changes in the combined length of variable region V1 have

been reported to play a role in evading humoral immune responses

(18, 24, 25). We found that a longer V1 loop was strongly associated

with the presence of 10-1074 resistance-conferring mutations.

According to previous studies, a longer V1V2 region protects

against neutralising antibodies by shielding the V3 epitopes (26).

The fact that a longer V1 length is associated with 10-1074

mutations may indicate that 10-1074 resistance is developed in

the mutated sequences in the process of escaping from V3-targeting

NAbs. Further analysis in larger sample sizes may result in more

precise estimates and in elucidating the relationship between

variable loop lengths and 10-1074 resistance-conferring variants.

It was not possible to clearly map the pathway of bNAb

resistance evolution in this cohort with early treated PHI.

However, the characterisation of ancestral resistance phenotypes

in participants with mixed resistance showed that it is possible for

founder viruses to be resistant or sensitive, which highlights the

heterogeneity of bNAb resistance in the population. Our findings

from an ART-treated primary infection cohort may differ from

those in chronic infection where there is more viral exposure to

immune selection pressure. The co-existence of resistant and

sensitive viruses within a host may reflect viral escape from early

immune response with cross-reactivity to escape from bNAbs (23).

It is also possible that mutations that confer 10-1074 resistance

come at a fitness cost and a resistant virus may revert to the sensitive

wild type when bNAb serum levels drop and the selection pressure

reduces (4). In addition, co-infection with multiple viral strains is

possible and distinct clustering of viral sequences within a single

sample, such as in the ones shown in Figures 5F–I, may indicate that

a sensitive and a resistant virus were transmitted to an individual.

Choosing the best approach for predicting bNAb resistance is

contentious; there is no gold standard when it comes to which assay is

themost accurate (1). A similar debate explored whether phenotyping or

genotyping assays were best for predicting antiretroviral therapy drug

resistance, with clinical practice having now settled on a genotypic

approach which has been integrated into the standard of care (2). Key

advantages of genotyping over phenotypic assays are the detection of

clinically significant minority resistance and the cost and time efficiency.

However, the interpretation of genotypic assays and prediction

algorithms has proven to be more problematic, especially for

predicting bNAb sensitivity where structural interactions between

amino acids are more complex than they are for drug resistance (27,

28). We have therefore been cautious here to interpret our results as

likely predicting resistance, rather than being an absolute finding,

although the algorithms for 10-1074 are better than for some other

bNAbs, such as 3BNC117 (15, 29, 30). To accurately predict bNAb

resistance, more clinical outcome data is needed matching sequence
FIGURE 4

Forest plots showing the odds ratio of 10-1074 resistance in relation
to each of the HIV Env variable loop lengths in the HEATHER cohort.
** indicates a p-value<0.001.
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variation to viral suppression after bNAb therapy. Nevertheless, it is

likely that should bNAbs become a mainstream therapy or prophylactic

treatment, a genotypic approach to screening – combined with

consideration of viral subtype - will be most pragmatic. This study

included only samples from people treated in the UK during PHI, who

had predominantly clade B HIV. This limitation may restrict the

generalizability of the findings to the broader population.

In summary, the presence of pre-existing resistance presents a

challenge to the effectiveness of 10-1074 treatment in PWH,

potentially diminishing its long-term utility as a treatment option.

This may however be minimised with proactive screening and

combination therapy approaches. Should resistance be equally

prevalent for other bNAbs with therapeutic potential, this has

implications for screening programmes for the wide population to

ensure maximum efficacy.
Frontiers in Immunology 07
Materials and methods

Study population

Blood samples used in this study were collected from 157

participants on ART, enrolled in the HEATHER study, a

prospective observational cohort study of individuals who

commenced ART (and remained on uninterrupted therapy)

within 3 months of the date of HIV diagnosis during PHI.

Individuals were considered to have PHI if they met any of the

following criteria: HIV-1 positive antibody test within 6 months of

an HIV-1 negative antibody test, HIV-1 antibody negative with

positive PCR (or positive p24 Ag or viral load detectable), RITA

(recent incident assay test algorithm) assay result consistent with

recent infection, equivocal HIV-1 antibody test supported by a
B C

D E F

G H I

A

FIGURE 5

ML phylogenetic trees tracing the evolution of nucleotide sequences in nine participants (A–I) from the HEATHER cohort, amplified with SGA, with
ancestral roots annotated with predicted sensitivity. Red points indicate 10-1074 resistant and blue points indicate sensitive sequences. The status of
the most recent ancestor is represented as a pie chart at the root of the tree; (A–E) show trees with roots predicted to be sensitive (or most likely
sensitive) to 10-1074 and (F–I) show trees with roots predicted to be most likely resistant to 10-1074. Data are for proviral nucleotide sequences and
maximum likelihood bootstrap support values exceeding 60% are marked with a *. The scale indicating the number of mutations per site based on
the length of branches can be found at the bottom of each tree plot.
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repeat test within 2 weeks showing a rising optical density or having

clinical manifestations of symptomatic HIV seroconversion illness

supported by antigen positivity. Participants were all adult men who

have sex with men and had started ART within 6 months of

seroconversion. All research was performed following relevant

guidelines and regulations, and all patients gave written informed

consent to participate. Recruitment to the HEATHER cohort was

approved by the West Midlands-South Birmingham Research

Ethics Committee (reference 14/WM/1104).
Single genome amplification

PBMCs were isolated from blood and genomic DNA was

extracted using the QIAmp DNA blood midi kit (QIAGEN). HIV

env was amplified with single genome amplification in 96-well

plates. To achieve a Poisson distribution, where a maximum of

30% wells yields a product, the appropriate dilution factor was

calculated for each sample. Nested PCR with Platinum Taq

(Invitrogen) was used to amplify env, with 2 sets of primers:

envB5out 5′-TAGAGCCCTGGAAGCATCCAGGAAG-3′ and

envB3out 5′-TTGCTACTTGTGATTGCTCCATGT-3′ in the first

round and envB5in 5′-CACCTTAGGCATCTCCTATGGCAG
GAAGAAG-3 ′ and envB3 in 5 ′ -GTCTCGAGATACT

GCTCCCACCC-3′ in the second round. If no product was

amplified, an alternative set of outer primers (R3B6R 5′-
TGAAGCACTCAAGGCAAGCTTTATTGAGGC-3′ and B3F3 5′-
TGGAAAGGTGAAGGGGCAGTAGTAATAC-3′) was used in the

first round. The first round PCR was run at 94°C for 2 min; 94°C for

15 s, 58.5°C for 30 s, and 68°C for 3 min × 35; and 68°C for 15 min.

For the second round, 1 ml of the first-round product was used as a

template and the mix was run at 94°C for 2 min; 94°C for 15 s, 61°C

for 30 s, and 68°C for 3 min × 45; and 68°C for 15 min. The end

products were run on 1% 96-well E-gels (Invitrogen) in a 1:5

dilution. Amplicons were then pooled in a sequencing library and

were sequenced using MiSeq Nano kits V3 (Illumina). On average

20 sequences (range: 2-76) were sampled from each participant.
HIV reconstruction and bNAb
sensitivity prediction

A custom bioinformatics pipeline was used to assemble raw

sequences and evaluate their sensitivity to 10-1074, as described

elsewhere (8). Briefly, non-HIV sequences were removed, the raw

sequences were aligned to HXB2, and the consensus was used as a

reference to re-align raw reads. Viral sequences were translated to

proteins and functionality was assessed based on env length and

premature stop codons. Resistance to 10-1074 was defined by the

absence of the following amino acids: N332; 333: not P; S/T334; D/

N/T325 and H/Y330. These critical residues were associated with

10-1074 resistance using an adapted model by West et al. (14). HIV

subtyping was done with REGA HIV Subtyping Tool version

3.46 (31).
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Prediction of 10-1074 sensitivity in B clade
viruses over the course of the epidemic

The time series analysis to model the frequency of 10-1074

resistance-associated mutations was done and visualised using R.

To model the frequency of individual mutation patterns

associated with 10-1074 resistance, the subset of sequences with

10-1074 resistance-associated mutations was resampled 1000

times to account for the small dataset size and the proportion of

each mutation pattern, PNG, GDIR and Both, were calculated per

year for all datasets. Linear models of the proportion of each

mutation pattern as a function of Year were fitted for all datasets

and an average intercept and Year coefficient value were

calculated. Using this data, an average line and its confidence

intervals were plotted to illustrate the mutation pattern frequency

trend in time.
Variable loop features

Multiple alignment of the Los Alamos B clade sequences and of

the HEATHER cohort B-clade sequences was performed with mafft

(version 7.490). The lengths of variable loops as well as the number

of PNGs within these regions in the aligned amino acid env

sequences were measured using the variable region characteristics

tool on the Los Alamos HIV database (https://www.hiv.lanl.gov/

content/sequence/VAR_REG_CHAR/index.html). A mixed-effects

logistic regression was then performed to identify the effect size of

V1, V2, V4 and V5 lengths on 10-1074 resistance. The length of V3

was found to be constant across the HEATHER cohort sequences

with a very small variability (1-3 amino acids compared to the

average length) in very few sequences. Taking these observations, as

well as similar findings in the literature (32) into account, the length

of V3 was not included in the explanatory variables.
Phylogenetic trees and
ancestral reconstruction

Neighbour-joining (NJ) phylogenetic trees of all protein sequences

in the HEATHER cohort were constructed using R package ape to

check for inter-sample contamination. Maximum likelihood trees were

built for each sample with both sensitive and resistant nucleotide

sequences, using Fastree on NGphylogeny.fr. The trees were rooted on

an outgroup sequence, which was then pruned while maintaining the

tree structure and the position of the root. Ancestral state

reconstruction was performed to estimate sensitivity to 10-1074 of

the internal nodes and root. Ancestral state reconstruction was done

using ape and trees were visualised using ggplot2 (33).
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