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Integrated bioinformatics
combined with machine learning
to analyze shared biomarkers
and pathways in psoriasis and
cervical squamous
cell carcinoma
Luyu Liu1,2†, Pan Yin1,2†, Ruida Yang1,2†, Guanfei Zhang1,
Cong Wu1,2, Yan Zheng1, Shaobo Wu1,2* and Meng Liu1*

1Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an,
Shaanxi, China, 2Department of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
Background: Psoriasis extends beyond its dermatological inflammatory

manifestations, encompassing systemic inflammation. Existing studies have

indicated a potential risk of cervical cancer among patients with psoriasis,

suggesting a potential mechanism of co-morbidity. This study aims to explore

the key genes, pathways, and immune cells that may link psoriasis and cervical

squamous cell carcinoma (CESC).

Methods: The cervical squamous cell carcinoma dataset (GSE63514) was

downloaded from the Gene Expression Omnibus (GEO). Two psoriasis-related

datasets (GSE13355 and GSE14905) were merged into one comprehensive

dataset after removing batch effects. Differentially expressed genes were

identified using Limma and co-expression network analysis (WGCNA), and

machine learning random forest algorithm (RF) was used to screen the hub

genes. We analyzed relevant gene enrichment pathways using GO and KEGG,

and immune cell infiltration in psoriasis and CESC samples using CIBERSORT.

The miRNA-mRNA and TFs-mRNA regulatory networks were then constructed

using Cytoscape, and the biomarkers for psoriasis and CESC were determined.

Potential drug targets were obtained from the cMAP database, and biomarker

expression levels in hela and psoriatic cell models were quantified by RT-qPCR.

Results: In this study, we identified 27 key genes associated with psoriasis and

cervical squamous cell carcinoma. NCAPH, UHRF1, CDCA2, CENPN and MELK

were identified as hub genes using the Random Forest machine learning

algorithm. Chromosome mitotic region segregation, nucleotide binding and

DNA methylation are the major enrichment pathways for common DEGs in the

mitotic cell cycle. Then we analyzed immune cell infiltration in psoriasis and

cervical squamous cell carcinoma samples using CIBERSORT. Meanwhile, we

used the cMAP database to identify ten small molecule compounds that interact

with the central gene as drug candidates for treatment. By analyzing miRNA-

mRNA and TFs-mRNA regulatory networks, we identified three miRNAs and nine

transcription factors closely associated with five key genes and validated their

expression in external validation datasets and clinical samples. Finally, we
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examined the diagnostic effects with ROC curves, and performed experimental

validation in hela and psoriatic cell models.

Conclusions: We identified five biomarkers, NCAPH, UHRF1, CDCA2, CENPN,

and MELK, which may play important roles in the common pathogenesis of

psoriasis and cervical squamous cell carcinoma, furthermore predict potential

therapeutic agents. These findings open up new perspectives for the diagnosis

and treatment of psoriasis and squamous cell carcinoma of the cervix.
KEYWORDS

psoriasis, cervical squamous cell carcinoma (CESC), immune cell infiltration, machine
learning, biomarkers
Introduction

Psoriasis is a chronic inflammatory and hyperproliferative skin

condition, which is mediated by the immune system. The

inflammatory features have been acknowledged with a deeper

understanding of its biological properties (1–6). Several co-

morbidities such as metabolic syndrome, tumors and

inflammatory diseases can be induced by the cytokines involved

in psoriasis (7–12). In addition, psoriasis patients receiving systemic

and UV therapy are more likely to develop general and organ-

specific cancers (13, 14).

Cervical cancer is a malignant tumor that arises in the cervix and

vagina, with the second highest incidence rate among female tumors

(15). Furthermore, it remains the second most common cause of

cancer-related deaths among women in developing nations (16). The

incidence of cervical cancer is on the rise, necessitating further

exploration of new treatments for cervical squamous cell carcinoma

(17, 18). The grave issue of patients with advanced cervical cancer

experiencing poor prognosis and survival rates persists (19, 20).

Previous studies have shown that the pathogenesis of cervical

cancer is hypothesized to stem from multifactorial interactions

between the host system, HPV(Human Papilloma Virus) infection,

and diverse behavioral, environmental, or inherited variables (21).

Clinical data reveals that the majority of patients presenting

with both cervical cancer and psoriasis exhibit advanced inoperable

stages or postoperative recurrence. These cases are characterized by

pathologically confirmed squamous cell carcinoma, a history of

psoriasis, and a recurrent pattern of immunosuppressive therapy

usage (22, 23). A traditional Chinese medicine known as Wolf

Poison demonstrates dual efficacy—internally for treating cervical

cancer and externally for addressing psoriasis. This dual therapeutic

application suggests a potential common pathogenesis between

cervical cancer and psoriasis (24, 25). In addition, both psoriasis

and cervical squamous cell carcinoma show hyperproliferation of

squamous epithelial cells and both have angiogenic mechanisms

(26–29). Several studies have suggested that prolonged

immunosuppression in individuals with psoriasis hampers
02
immune responses, elevating their vulnerability to tumorigenesis,

including CESC (30–32). However, the underlying mechanisms of

this comorbidity remain unclear and warrant further investigation.

Thus, this study employs a systems biology approach to

elucidate potential biomolecular mechanisms shared between

psoriasis and CESC. Our findings aim to identify candidate

biomarker signatures that could be common between psoriasis

and cervical squamous cell carcinoma, contributing valuable

insights to the field.
Materials and methods

Data processing

The research flowchart of this research is shown in Figure 1. Data

Source GEO (http://www.ncbi.nlm.nih.gov/geo) is a public database

containing a large number of high-throughput sequencing and

microarray datasets submitted by research organizations around

the world. The epithelial cell microarray dataset of cervical

squamous cell carcinoma patients (GSE63514), including 24

normal 28 cervical squamous cell carcinoma epithelial cell

specimens, was obtained through GEO. Two expression profiling

datasets, GSE13355 and GSE14905, were downloaded from the GEO

database for psoriasis and controls. The GSE13355 dataset consisted

of total RNA extracted from puncture biopsies of 58 patients with

psoriasis and 64 normal healthy controls, and the GSE14905 dataset

consisted of skin biopsy specimens from 21 normal healthy donors

and 56 from 28 patients with psoriasis skin biopsy samples. Batch

correction integration, normalization, and gene ID transformation

were performed on the 2 psoriasis datasets carried out using the R

software package SVA (v4.2.1). RNAseq data for the STAR process of

the TCGA-CESC project were downloaded and organized from The

Cancer GenomeAtlas Program (TCGA) database (https://

portal.gdc.cancer.gov) and extracted in TPM format. Table 1

presents detailed dataset information, including the microarray

platform, sample groups, and numbers.
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FIGURE 1

Flowchart of analytical steps in this study.
TABLE 1 Basic information of datasets used in the study.

Datasets Type
Sample size

Platform
Normal Psoriasis

GSE13355 RNA 64 58 GPL570

GSE14905 RNA 21 33 GPL570

GSE30999 RNA 85 170 GPL570

Control CESC

GSE63514 RNA 24 28 GPL570

TCGA-CESC RNA 3 306
F
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Identification of DEGs

Limma, a differential expression screening method based on

generalized linear models, was utilized to obtain the differential

genes between different comparator groups and the control group.

We conducted the differential analysis using the R package limma

(version 3.40.6) (33). We obtained the expression profiling dataset

and performed multiple linear regression utilizing the lmFit

function. We then utilized the eBays function to compute

moderated t-statistics, moderated F-statistics, and log-odds of

differential expression through empirical Bayes moderation of the

standard errors towards a common value. Finally, we determined

the significance of differences for each gene. Technical terms were

explained upon first usage and the language used was neutral

and objective.
Weighted gene co-expression
network analysis

Using gene expression profiles, we calculated the MAD (Median

Absolute Deviation) of each gene separately, eliminated the top 50%

of genes with the smallest MAD, removed outlier genes and samples

using the goodSamplesGenes method of the R package WGCNA,

and further constructed scale-free co-expression networks using

WGCNA. b is a soft-threshold parameter that can emphasize strong

correlations between genes and penalize weak correlations. The

neighbor-joining matrix was converted to a topological overlap

matrix (TOM), which measures the network connectivity of a gene,

defined as the sum of the neighbor-joining matrices of the gene and

all other genes assigned to the network gene, and the corresponding

dissimilarity (1-TOM) was calculated. To cluster genes with similar

expression profiles into gene modules, we utilized average linkage

hierarchical clustering based on the TOM similarity measure. It

should be noted that the gray modules were classified as the set of

genes unassigned to any module.
PPI network construction and
module analysis

Search Tool for the Retrieval of Interacting Genes (STRING,

http://string-db.org) (version 11.0) searches for relationships

between proteins of interest, such as direct binding relationships,

or coexisting upstream and downstream regulatory pathways, to

construct PPI networks with complex regulatory relationships.
Functional enrichment analysis

Sangerbox (http://www.sangerbox.com/tool) was used for Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis. Gene Ontology (GO) analysis is a

common technique utilized for conducting large-scale functional

enrichment studies that encompass biological processes, molecular
Frontiers in Immunology 04
functions, and cellular components (34). Kyoto Encyclopedia of

Genes and Genomes (KEGG) is a popular database for storing

information pertaining to genomes, biological pathways, diseases,

and pharmaceuticals (35). Adjusted P-value < 0.05 was

considered significant.
Machine learning

Machine learning algorithms are used to screen the core genes

for diagnosis. Using the Random Forest (RF) algorithm which

integrates multiple trees for better accuracy through the idea of

ensemble learning, we narrowed down the candidate biomarkers,

which integrates multiple trees for better accuracy through the idea

of ensemble learning. The genes with MeanDecreaseGini > 2 in the

RF model were defined as the central genes.
Immune infiltration analysis

The CIBERSORT algorithm is utilized for evaluating the

percentage of immune cells present in cells or tissues. The bar

graphs show the proportion of each type of immune cell in various

samples, and the “corrplot” R package is used to generate a heat

map of the correlation between 22 immune cells. The vioplot was

used to visualize the differences between the Psoriasis and normal

immune cell groups.
Identification of transcription factors and
miRNAs interact with key genes

Hub transcription factors (TFs) were identified using the

JASPAR database, and the effect of binding of hub miRNAs to

hub gene transcripts on protein expression was detected by miRNet

(https://www.mirnet.ca/). We constructed topological networks of

TFs genes and miRNA genes using Cytoscape software.
Isolation of human primary keratinocytes

Skin samples were obtained from the foreskin tissue of eight

children, aged 6 to 12 years, at Northwest Women’s and Children’s

Hospital in Xi’an, China. Prior to the procedure, the researchers

obtained ethical permits and secured written informed consent

from the parents or legal guardians of the participants. The

researchers isolated primary keratinocytes using the standard

two-step digestion method (36).
Cell culture

The HeLa cells were acquired from ATCC and grew in DMEM

with 10% fetal bovine serum, penicillin (100 U/mL), and

streptomycin (100 mg/mL) at 37°C in a humidified atmosphere

with 5% CO2. PKC was cultured following prior procedures (37).
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Establishment of the psoriatic cell model

PKCs were stimulated by M5 (TNF-a, IL-17A, IL-22, IL-1a, and

oncostatin M) at a concentration of 10 ng/mL for a duration of 24

hours, as previously described (37).
qRT-PCR

RNA extraction and qRT-PCR procedures were conducted

following the previously described method (38). Relevant mRNA

levels were determined utilizing the 2^(-DDCt) formula. The primers

used in the study are summarized in Table 2.
Statistical analysis

All statistical analyses were conducted using R software version

4.2.2 and Sangerbox. To assess the statistical significance between

normally distributed variables in the two groups of continuous

variables, we employed the independent Student’s t-test.

Conversely, differences between non-normally distributed variables

were determined using the Mann-Whitney U-test. The statistical

significance between the two groups of categorical variables was

analyzed using either the chi-square test or Fisher’s exact test.

Estimation of correlation coefficients between different genes was

conducted through Pearson correlation analysis. All statistical tests

conducted were two-sided and the level of statistical significance was

set at a p-value of less than 0.05.
Results

WGCNA identifies key modules in psoriasis
and cervical cancer

The investigators merged two psoriasis-related GEO datasets,

GSE14905 and GSE13355. The data sets were merged and

normalized to ensure uniformity for principal component analysis

and to rectify batch effects. The final training dataset consisted of 91

patients and 85 matched controls, and the evaluation showed that

the data preprocessing was valid and reliable. From the density plot,

we can observe that the sample distributions of the individual

datasets before removing the batch effect varied greatly,

suggesting a batch effect, and after removing the batch effect the
Frontiers in Immunology 05
data distributions between the individual datasets converged, with

similar means and variances (Figures 2A, B). Weighted gene co-

expression network analysis was conducted utilizing the R package

WGCNA, the genes with expression variance in the top 50% were

used as the screening conditions, and the genes with less volatility

were excluded, and the co-expression network was constructed for

20547 genes of psoriasis and 10,275 genes of cervical cancer.

Combining the analysis of scale independence and average

connectivity, in the psoriasis samples, b=12 was chosen

(Figures 2C, D) as the soft threshold. The minimum module size

was set to 30 and 15 gene modules were obtained (Figure 2G). The

results showed that the brown module had the highest correlation

with psoriasis (correlation coefficient = 0.92, p= 2.2e-72, Figure 2I).

Ultimately, 969 psoriasis-significantly correlated genes were

identified in brown color module with high MM (> 0.8) and GS

(> 0.1) values. In the cervical cancer samples, 8 was chosen as the

optimal soft threshold to build a scale-free network (Figures 2E, F).

Subsequently, cluster analysis was used to identify highly similar

modules with the minimum module size set to 30, sensitivity set to

3, and modules with distances less than 0.25 were merged to obtain

18 gene modules (Figure 2H). The correlation between cervical

cancer and gene modules (Figure 2J) showed that the green module

had the highest correlation with cervical cancer (2270 genes, r=0.71,

p=5.4e-9), and the green module was taken as the key module. The

genes in the green module: MM>0.8 and GS>0.1 were selected as

pivotal genes, and a total of 421 key genes significantly associated

with cervical cancer were identified.
Identification of differentially expressed
genes and machine learning screening of
key genes

By Limma analysis, 2066 differentially expressed genes (DEGs)

between psoriasis patients and healthy controls were identified in the

integrated dataset, of which 1134 genes were up-regulated and 932

genes were down-regulated. These DEGs were presented by volcano

plot visualization (Figure 3A). In addition, the cervical squamous cell

carcinoma dataset generated 6573 DEGs, including 2689 up-regulated

genes and 1586 down-regulated genes (Figure 3B). The DEGs from the

cervical squamous cell carcinoma and psoriasis samples were

intersected with key genes taken from the WGCNA to obtain a total

of 27 genes for subsequent analysis (Figure 3C). 27 genes were

uploaded to the STRING database to construct a protein-protein

interaction network (Figure 3D), then we analyzed the top 10 genes
TABLE 2 Basic information of datasets used in the study.

Gene Forward (5’→3’) Reverse (5’→3’)

CDCA2 TCTGATTCGTTTCATTGCTCGG ACATTTCGATACAGTGCAGGG

CENPN TGAACTGACAACAATCCTGAAGG CTTGCACGCTTTTCCTCACAC

MELK AACTCCAGCCTTATGCAGAAC AACGATTTGGCGTAGTGAGTATT

NCAPH GTCCTCGAAGACTTTCCTCAGA TGAAATGTCAATACTCCTGCTGG

UHRF1 AGGTGGTCATGCTCAACTACA CACGTTGGCGTAGAGTTCCC
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by using the “degree” algorithm with the CytoHubba application in

Cytoscape to identify the key genes, and the color of the nodes

indicated the strength of the correlation (Figure 3E). The color of the

nodes indicates the strength of the correlation. Random forest pairs

were used for screening and finally 16 characterized genes were

identified in psoriasis samples, including MELK, AURKA, CENPN,

CDCA5, KIF2C, NDC80, PRSS3P2, PRC1, DEPDC1B, FOXM1,

UHRF1, WDR53, MCM10, BUB1B, NCAPH, CDCA2(Figure 3F).

Meanwhile, 10 cervical squamous cell carcinoma signature genes

were also identified using RF algorithms, including NCAPH, SMC4,

CENPN, UHRF1, STIL, CDCA2,MELK, ZNF665 (Figure 3G). Next, the

study found that these algorithms identified five overlapping genes
Frontiers in Immunology 06
(Figure 3H), namely NCAPH, UHRF1, CENPN, CDCA2, MELK which

were used for sebsequent analysis (Table 3).
GO and KEGG enrichment analyses were
performed to identify biological pathways
and diseases associated with key genes

For biological processes in GO enrichment analysis, biological

processes were highly enriched in mitotic cell cycle processes

(Figure 4A, biological processes (BP)). And for the cellular

components in GO, it involves intracellular non-membrane-bound
A B

D E F

G

I

H

J

C

FIGURE 2

Identification and analysis of key module of psoriasis and cervical squamous cell carcinoma by WGCNA. (A) Principal component analysis of the two
original Psoriasis datasets before batch effect correction. (B) Principal component analysis of the corrected Psoriasis dataset. (C, D) Scale
independence and average connectivity plots of psoriasis. (E, F) Scale independence and average connectivity plots of cervical cancer. (G, H) Gene
dendrogram and heatmap of the modular signature gene network. (I, J) Identification of weighted gene co-expression network modules associated
with psoriasis and cervical cancer, and module characterized genes in relation to psoriasis and cervical cancer status.
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organelles, chromosomes, and mitotic regions (Figure 4B, cellular

components (CC)). For the molecular functions enriched in GO,

including nucleotide binding, phosphoribosylation, chromatin

binding (Figure 4C, Molecular Functions (MF)). Based on the KEGG

database further to decipher the biological pathways behind, the

enriched molecular pathways included cell cycle, microRNAs in

cancer, oocyte meiosis, breast cancer, gastric cancer, and mTOR

signaling pathway (Figure 4D). These findings are in line with the

results of GO enrichment analysis, providing further evidence of the

association between cervical squamous cell carcinoma and psoriasis.

The CIBERSORT analysis tool calculated the proportions of 22

types of leukocyte subpopulations in psoriasis and CESC samples,

respectively, including naïve B cells, memory B cells, plasma B cells,

CD8 T cells, CD4 naive T cells, CD4 memory quiescent T cells, CD4

memory-activated T cells, follicular helper T cells, regulatory T cells

(Tregs), g d T cells, resting natural killer (NK) cells, activated NK cells,

monocytes, M0, M1 and M2 macrophages, resting and activated

myeloid dendritic cells, and resting and activated mast cells. We also

explore the relationship of key genes to immune infiltrating cells in

both diseases and found that genes associated with psoriasis can also

play a role in cervical squamous cell carcinoma. Stacked bar graphs of

the two datasets show the percentage of 22 immune cells in each
Frontiers in Immunology 07
sample (Figure 5A). Analysis of the immune microenvironment in

psoriasis patients revealed significant differences in the abundance of 20

immune cells. Analysis of the immune microenvironment in patients

with cervical squamous cell carcinoma revealed notable variations in

the abundance of seven immune cells. These differences were

statistically significant (Figure 5B). In summary, patients with

psoriasis and cervical squamous cell carcinoma have varying degrees

of multiple immune cell infiltrations, and these immune cell

infiltrations may be potential regulatory points for therapy. Then, the

spearman correlation coefficient between hub genes and the infiltration

level of the immune cell was calculated. As a result, resting mast cells

and CD8T cells were negatively correlated with the expression of

NCAPH, UHRF1, CDCA2, CENPN and MELK in patients with

psoriasis and cervical squamous carcinoma, respectively (Figure 5C).
Identification of candidate small molecule
compounds for the treatment of psoriasis
and cervical squamous cell carcinoma

The intersection of DEGs genes upregulated in psoriasis and

cervical squamous cell carcinoma was taken with hub genes in the
A B

D E

F G H

C

FIGURE 3

Screening of hub-genes by machine learning algorithm. (A, B) Volcano plot demonstrating an overview of the differential expression of all genes in
CESC and Psoriasis. (C) DEGs in cervical cancer and psoriasis samples were intersected with key genes in WGCNA taken to obtain the Wayne plots
of 27 genes. (D) PPI network of 27 genes. (E) Major PPI network analysis of the top 10 hub genes by CytoHubba software. (F) RF algorithm screened
out 16 characterized genes in psoriasis samples. (G) The RF algorithm screened 8 characterized genes in cervical cancer samples. (H) Wayne
diagram of 5 key genes identified. The threshold in the volcano plot was -log10 (adjusted P-value) > 2 and |log2 (fold change)| > 0.5; red dots
indicate significant differential expressed genes. FDR was used for P value adjustment.
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WCGNA module, and 24 relevant pathogenic genes were obtained

(Figure 6A). The screened 24 relevant pathogenic genes were

imported into connectivity map (cMAP) database to predict small

molecule compounds that could reverse the gene expression

alterations in psoriasis-related pathogenesis and cervical

squamous cell carcinoma. Phloretin, antimycin-a, palbociclib,

purvalanol-a, aminopurvalanol-a, PD-102807, 7b-cis, pyrvinium-

pamoate, angiogenesis-inhibitor, roscovitine were the top 10

compounds with the highest negative scores as potential drugs for

therapy (Figure 6B). The targeting pathways and chemical

structures of these 10 compounds are described in Figures 6C, D.
Frontiers in Immunology 08
Validation of hub genes with GEO and
TCGA databases and cellular
experimental validation

To further confirm the accuracy of the comprehensive

bioinformatics analysis described above, we first examined the

expression patterns of the five hub genes in the patients of the

two validation cohorts, and chose the psoriasis dataset, GSE63514

and the cervical squamous cell carcinoma dataset, TCGA-CESC, as

the validation datasets. Multi-group box plots showed that the

expression levels of NCAPH, UHRF1, CDCA2, CENPN and
TABLE 3 Overview of the five hub genes.

Symbol Description Aspect References

NCAPH Non-SMC Condensin I Complex Subunit H
Interferes with plasmids and affects cell

proliferation and migration
(39)

UHRF1 Ubiquitin Like With PHD And Ring Finger Domains 1
Required for G1/S phase transition;

Regulation of DNA methylation, chromatin
modification, cell proliferation and DNA repair

(40, 41)

CENPN Centromere Protein N
Binds to filaments in S and G2 phases and

recruits proteins
(42)

CDCA2 Cell Division Cycle Associated 2
Affects tumor cell proliferation and regulates the

G0/G1 phase of the cell cycle
(43)

MELK Maternal Embryonic Leucine Zipper Kinase

Induces inflammatory responses through
secretion of pro-inflammatory factors

Involved in mitosis, proliferation, apoptosis,
differentiation and tumorigenesis

(44, 45)
A B

DC

FIGURE 4

Significant gene module and enrichment analysis of the modular genes. (A-C) Results of GO analysis of 27 genes, biological process (BP), cellular
component (CC) and molecular function (MF) of the genes. (D) Results of KEGG analysis of 27 genes.
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MELK were significantly higher in psoriasis patients and cervical

squamous cell carcinoma patients than in normal controls

(Figures 7A, B). RT-qPCR results confirmed that the expression

levels of CENPN and MELK mRNA levels were increased

(Figure 7C), and that the expression of the five pivotal genes were

consistently up-regulated in cervical cancer samples as compared to

the control samples (Figure 7D).

Cohort validation of hub genes and
enrichment analysis

We plotted ROC curves based on the five candidate genes to

assess the diagnostic value of each gene. The calculated AUCs and
Frontiers in Immunology 09
95% confidence intervals were as follows: NCAPH (AUC 0.92, CI

0.97–0.88), UHRF1 (AUC 0.89, CI 0.94–0.84), CDCA2 (AUC 0.96,

CI 0.99–0.92), CENPN (AUC 0.94, CI 0.98–0.90) and MELK (AUC

0.96, CI 1.00–0.93). The findings indicated that the acquired genes

had a significant diagnostic value in Psoriasis (Figure 8A). To

investigate the potential functions of common central genes, we

divided the samples from the psoriasis dataset into groups with high

and low expressions based on median levels. We then identified

DEGs between these groups and conducted GO/KEGG enrichment

analysis. The significant enriched genes include “lysosomes,

phagocytosis, SLE, pyrimidine metabolism, arachidonic acid

metabolism, complement and coagulation cascades, and natural

killer cell-mediated cytotoxicity (Figures 8B, C).
A

B

C

FIGURE 5

Immune cell infiltration analysis. (A) Heat map of the relative proportions of 22 types of infiltrating immune cells in patients with psoriasis and
cervical cancer. (B) Violin plot of the abundance of each type of immune cell infiltration in the psoriasis and cervical cancer group. (C) Correlation
graph representing the association of immune cells with five central genes.
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A B

D

C

FIGURE 6

Screening of the potential small-molecular compounds for the treatment of psoriasis and CESC via cMAP analysis. (A) Intersection Wayne plots of
DEGs genes up-regulated in psoriasis and cervical cancer with hub genes taken from the WCGNA module. (B) Heatmap of the top 10 compounds
with the highest enrichment in 10 cell lines based on cMAP analysis. (C) Top 10 compounds information and targeting pathways. (D) Chemical
structures of the 10 compounds.
A B

C D

FIGURE 7

Validation of hub-genes in external datasets and experiments databases. (A) Validation of the center gene of cervical cancer in TCGA-CESC
database. (B) Validation of center gene in the psoriasis dataset GSE35182. (C) RT-qPCR results of 5 key genes in psoriasis cell samples. (D) RT-qPCR
results of 5 key genes in cervical cancer cell samples. (*p< 0.05, **p < 0.01, ***p < 0.001).
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The regulatory signatures analysis

We applied the miRNet database to screen the targeted miRNAs

of NCA NCAPH, UHRF1, CDCA2, CENPN andMELK. As depicted

in Figure 9A, the prediction identifies three miRNAs: hsa-miR-124–

3p, hsa-mir-129–2-3p, and hsa-mir-147a. The Network analysis

tool explored 9 transcription factors namely FOXC1, NFKB1,

RELA, SREBF1, NRF1, GATA2, TFAP2A, USF1, USF2

(Figure 9B). The TFs and miRNAs related to three hub genes via

network analysis were shown in Table 4.
Discussion

Cervical cancer is the fourth leading cause in cancer incidence

and mortality among women, contributing to over 60,000 new cases
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and approximately 342,000 deaths across the world (60). In recent

years, there has been a decline in the incidence of cervical cancer

due to high-risk group screenings. Despite some progress, the 5-

year survival rate for patients with advanced cervical cancer is only

16.7%. And early recognition and diagnosis of cervical cancer is one

of the best measures to improve prognosis and reduce social

burden (61).

Psoriasis, a chronic inflammatory skin disease, is increasingly

recognized as a systemic inflammatory condition and can coexist

with other diseases (62). The link between psoriasis and cancer is

also gaining attention. In a cohort study, individuals who

underwent treatment for severe psoriasis displayed a 41% greater

likelihood of succumbing to malignant tumors than non-psoriasis

attendees (63). A meta-analysis of 11 retrospective studies showed

an increased risk of cancer in non-melanoma skin cancer (NMSC)

(95% confidence interval [CI] 1.07–1.25) (64). A cohort study
A

B C

FIGURE 8

The diagnostic value evaluation in the validation cohort and enrichment analysis. (A) ROC plot of each key gene (NCAPH, UHRF1, CDCA2, CENPN,
and MELK) based on the AUC. (B) The bubble plot demonstrates the results of GO enrichment analysis of hub gene-related differential genes in
psoriasis. (C) The results of the KEGG enrichment analysis of hub gene-related differential genes in psoriasis are demonstrated by a lollipop plot.
AUC, area under the curve.
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assessing cancer risk among psoriasis patients in the United

Kingdom also found an increased risk of NMSC, lung cancer, and

lymphoma, and this study also removed the effects of confounding

factors such as smoking and alcohol consumption (65). Specifically

cervical cancer, surveys have demonstrated that psoriasis patients

taking biologics were more likely to be screened for cervical cancer

than the general population without psoriasis (adjusted hazard ratio
Frontiers in Immunology 12
[HR] 1.09; 95% [CI] 1.02 - 1.16) (66). In addition, psoriasis lesions

have been shown to contain HPV infection (67). Due to the

immunomodulatory effects of medications used to treat psoriasis,

which contribute to the development of cervical cancer, the ability

of clearing HPV infection is impaired, leading to an increased risk

of cervical tumors. This suggests that patients with psoriasis are at

increased risk of developing HPV-associated cervical lesions; there
A B

FIGURE 9

Screening of potential miRNAs and TF-mRNA network of 5 targeting hub-gene. (A) An Interaction network of five hub genes and potential miRNAs-
targeted. (B) TF-mRNA network of 5 hub genes. The pink squares represent the top TFs associated with the hub genes.
TABLE 4 Top transcription factors and miRNA predicted from miRNA-mRNA, TFs-mRNA regulatory networks.

TFs/miRNAs Description Biological function Reference

FOXC1 Forkhead Regulation of cell proliferation, migration and
invasion through PI3K/AKT signaling

(46)

NFKB1 nuclear factor kappa B subunit 1 Inhibition of cell proliferation, colony formation
and migration in cervical cancer

(47)

RELA v-rel avian reticuloendotheliosis viral oncogene homolog A Control of NF-kB activity by
autophosphorylation in inflammatory diseases

and cancer。

(48)

SREBF1 sterol regulatory element binding transcription factor 1 Stimulates ubiquitination of SREBP1 and inhibits
endoplasmic reticulum stress in CESC cells.

(49)

NRF1 nuclear respiratory factor 1 Leads to severe oxidative stress,
genomic instability

(50)

GATA2 GATA binding protein 2b A common regulatory elements in
cervical cancer

(51)

TFAP2A transcription factor AP-2 alpha Promotes the growth of cervical tumors (52, 53)

USF1/2 upstream transcription factor 1/2 Enhancement of cervical cancer cell malignancy
by transcriptional activation of p65

(54, 55)

hsa-miR-124–3p MicroRNA 124 Direct targeting of IGF2BP to inhibit cervical
cancer growth and metastasis is considered to be

an important marker and target for
CC prognosis

(56)

hsa-mir-129–2-3p MicroRNA 129 The methylation process of mir-129–2-3p
increases cervical (pre)cancerous lesions.

(57)

hsa-mir-147a MicroRNA 147a Interacts with circ_0018289 binding and
Linc00319 to promote cervical

cancer progression.

(58, 59)
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may be a co-morbid mechanism and risk association between the

two, and our study provides new insights for clinicians to be aware

of encouraging patients with psoriasis to follow a cervical tumor

screening program (68).

Combining WGCNA, limma difference analysis and machine

learning, we screened five key genes as markers of psoriasis and

cervical cancer co-morbidities, including NCAPH, UHRF1, CDCA2,

CENPN and MELK. NCAPH predominantly promotes sister

chromatid entanglement, exacerbating chromosome segregation

errors and cell division failure (69). Studies have confirmed that

elevated levels of NCAPH expression are associated with an

unfavorable prognosis and immune infiltration in several cancer

types, including lung adenocarcinoma, breast cancer, and colorectal

cancer (70). The expression of NCAPH in cervical cancer tissues

was significantly higher than that in normal cervical tissues and was

significantly correlated with the size, invasion and lymph node

metastasis of cervical cancer tumor tissues, suggesting that NCAPH

is a potential target for cervical cancer immunotherapy (71).

UHRF1 is a highly expressed epigenetic regulator within cancer

cells that plays a significant role in double-strand break repair

through homologous recombination. Overexpression of UHRF1

results in increased DNA methylation, promoting the further

development, progression, and invasion of cancer (72, 73).

Interestingly, human papillomavirus was found to induce cervical

cancer through UHRF1-mediated promoter methylation,

suggesting that treatment targeting UHRF1 may inhibit cervical

carcinogenesis through cell cycle arrest and apoptosis (74–77). The

mitochondrial protein CENP-N regulates normal chromosome

segregation by recognizing histone H3 in fi lamentous

nucleosomes and promoting densification of filamentous

chromatin (78, 79). In this study, CENPN expression was

significantly elevated in both psoriasis and cervical cancer tissues

compared to control samples, which could serve as a potential

diagnostic indicator for identifying cervical cancer in psoriasis

patients. In conclusion, our study suggests that these five central

genes may play a key role in psoriasis and cervical cancer.

The pathophysiology of psoriasis involves abnormal activation

of the autoimmune system, both intrinsic and acquired. This

dysregulation is a key component of mechanisms that prevent

and interfere with cancer (79). There exists a robust association

between cancer and inflammation, with inflammation representing

a paramount risk factor in the development of cancer, often

accompanied by inflammation (80). We explored the mechanisms

of immune dialog between psoriasis and cervical cancer. Our study

demonstrated that cervical cancer tissues are heavily infiltrated with

T lymphocytes and the ratio of CD4+ to CD8+ is reversed, and

there is evidence that this phenomenon promotes an inflammatory

response in patients with cervical cancer, leading to elevated levels

of CRP(C-reactive protein) and HbA1c% (81). Interestingly,

previous studies have shown that Th1 subpopulation T cells

promote macrophage- and cytotoxic T cell-mediated immune

responses through the release of interferon-g (IFN-g) and TNF-a,
which are key factors in the pathogenesis of psoriasis (82). In

addition, our immune infiltration analysis showed that macrophage

type M1, which promotes the development of inflammation, was
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also heavily infiltrated in cervical cancer tissues. It has been shown

that depletion of macrophages attenuates psoriatic inflammation

and reduces the levels of Th1 cytokines, including IL-1a, IL-6, IL-
23, and TNF-a, to normal levels (83–86). Psoriasis and cervical

cancer show common properties and potential in terms of

immune processes.

Although biologics have shown better efficacy in psoriasis, the

side effects of biologics pose certain hazards. Therefore, there is an

urgent need to explore potential drugs. Small molecule compounds

have the advantages of high tissue permeability, adjustable half-life,

and high oral bioavailability, resulting in better therapeutic efficacy.

We linked causative genes associated with psoriasis and cervical

cancer through cMAP analysis to identify potential therapeutic

agents. roscovitine, palbociclib, and purvalanol-a are CDK (cell

cycle protein-dependent kinase) inhibitors. The CDK inhibitors

block the proliferation inhibition of malignant tumor cells through

cell cycle progression (87). In some inflammation models,

roscovitine demonstrates a reduction in leukocyte-mediated

inflammation (88). Pravachol A, a CDK2 inhibitor, induces

apoptosis in human neutrophils (89). Most solid tumor cells

produce energy by relying heavily on aerobic glycolysis, and

phloretin can effectively inhibit cancer progression by targeting

the glycolytic pathway as a glucose cotransporter inhibitor (90).

Antimycin A is a promising anticancer agent (90), which can target

mitochondria, reduce human papillomavirus E6/E7 oncogene

protein, inhibit proliferation, and induce apoptosis in cervical

cancer cells (91). Aminopurinol A as a Tyrosine kinase inhibitor

can restore the abnormal process of pre-mRNA splicing in cancer

(92). The anticancer effects of Pyrviniu are mainly manifested in the

inhibition of mitochondrial function as well as the renewal of cancer

stem cells (93), and in particular, it significantly impedes cancer cell

invasion via the Wnt/b-catenin signaling pathway (94). These drugs

have promising potential in the treatment of psoriasis and

cervical cancer.

We recognize the potential challenges faced by patients with

comorbidities. For example, the use of biologics during treatment

tends to suppress the activation of the body's immune system,

which implies an increased potential risk of tumorigenesis. To

further validate this concern in patients with psoriasis treated

with biologics, we need to conduct additional clinical cohort

studies. How psoriasis and cervical cancer talk through key genes

under the systemic neuro-immune-endocrine network also needs

further experimental exploration.
Conclusion

Based on bioinformatics analysis and machine learning, we

systematically identified five related candidate genes (NCAPH,

UHRF1, CDCA2, CENPN and MELK). This study will facilitate

the exploration of molecular mechanisms, particularly with regard

to the immune response and drug action. A comprehensive

understanding of disease pathogenes is vital for mediating their

interaction and prevent the risk of complications. The screened

genes could be used for clinical diagnosis and treatment.
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