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A machine learning approach
using 18F-FDG PET and
enhanced CT scan-based
radiomics combined with clinical
model to predict pathological
complete response in ESCC
patients after neoadjuvant
chemoradiotherapy and
anti-PD-1 inhibitors
Wei-Xiang Qi1†, Shuyan Li1†, Jifeng Xiao2, Huan Li1, Jiayi Chen1*

and Shengguang Zhao1*

1Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine,
Shanghai, China, 2Real Time Lab, Shenzhen United Imaging Research Institute of Innovative Medical
Equipment, Shenzhen, China
Background:We aim to evaluate the value of an integratedmultimodal radiomics

with machine learning model to predict the pathological complete response

(pCR) of primary tumor in a prospective cohort of esophageal squamous cell

carcinoma (ESCC) treated with neoadjuvant chemoradiotherapy (nCRT) and anti-

PD-1 inhibitors.

Materials and methods: Clinical information of 126 ESCC patients were included

for analysis. Radiomics features were extracted from 18F-FDG PET and enhanced

plan CT images. Four machine learning algorithms, including SVM (Support

Vector Machine), Random Forest (RF), and eXtreme Gradient Boosting (XGB)

and logistic regression (LR), were applied using k-fold cross-validation to predict

pCR after nCRT. The predictive ability of the models was assessed using receiver

operating characteristics (ROC) curve analysis.

Results: A total of 842 features were extracted. Among the four machine learning

algorithms, SVM achieved the most promising performance on the test set for

PET(AUC:0.775), CT (AUC:0.710) and clinical model (AUC:0.722). For all

combinations of various modalities-based models, the combination model of
18 F-FDG PET, CT and clinical features with SVMmachine learning had the highest

AUC of 0.852 in the test set when compared to single-modality models in various

algorithms. The other combined models had AUC ranged 0.716 to 0.775.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1351750/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1351750/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1351750/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1351750/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1351750/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1351750/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1351750/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1351750/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1351750/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1351750/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1351750&domain=pdf&date_stamp=2024-01-30
mailto:zsg10935@rjh.com.cn
mailto:cjy11756@rjh.com.cn
https://doi.org/10.3389/fimmu.2024.1351750
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1351750
https://www.frontiersin.org/journals/immunology


Qi et al. 10.3389/fimmu.2024.1351750

Frontiers in Immunology
Conclusion: Machine learning models utilizing radiomics features from 18F-

FDG PET and enhanced plan CT exhibit promising performance in predicting

pCR in ESCC after nCRT and anti-PD-1 inhibitors. The fusion of features from

multiple modalities radiomics and clinical features enhances the better

predictive performance compared to using a single modality alone.
KEYWORDS

radiomics, neoadjuvant chemoradiotherapy, esophageal squamous cell carcinoma,
pathological complete response, immune checkpoint inhibitor
Introduction

Esophageal cancer is one of the world’s most common

diagnosed gastrointestinal cancers and cancer-related death (1).

In China, esophageal squamous cell carcinoma (ESCC) is the major

histological type of esophageal carcinoma (2). Since the publication

of CROSS (3, 4) and NEOCRTEC 5010 (5) phase III trials, the

standardized treatment option for locally advanced ESCC is a

neoadjuvant chemoradiotherapy followed by esophagectomy.

However, esophagectomy is a highly invasive surgery. Although

the mortality followed by esophageal cancer surgery has been

reduced from 30% in pre-1980 to less than 5% in recent years,

occurrence of operation morbidity remains high than 50%, which

significantly impact quality life of EC patients (6, 7). Radiation plays

an important role in organ preservation for EC patients, with a

watch and wait strategy enabling surgery to be avoided in patients

who are refusing surgery. In this contest, a non-surgical, “organ

preservation” followed by close follow-up strategy is recommended

for EC patients with a complete clinical response after nCRT.

However, in order to safely provide organ preservation without

increasing the risk of post-treatment recurrence, an accurate

prediction of the tumor response after nCRT in ESCC patients is

clearly required.

Recently, radiomics, which is defined as the process of

converting medical images into high-dimensional, mineable, and

quantitative imaging features via high-throughput data extraction

algorithms, might improves the predicting accuracy of survival

outcomes. However, most established radiomics models have not

been used for routine clinical treatment due to some limitations,

including inconsistent standards, heterogeneous methods, and lack

of quality control or external validation. Therefore, the clinical

application of radiomics to guide cancer treatment strategies is still

needed further research and exploration. Prior to the present study,

Wang J. et al (8) demonstrated that machine learning models based

on pretreatment CT image radiomic features combined with clinical

model could accurately predict response to therapy of esophageal

squamous cell carcinoma patients after nCRT with an AUC of 0.891

(95% CI: 0.823–0.950) in the testing set. Frood R. et al (9) found that

pre-treatment FDG PET-CT-based models could predict the

survival outcomes of ESCC patients with a training c-index of 0.7
02
and an external testing c-index of 0.7. However, it is still unknown

that whether multimodal radiomics features could be more

predictive relative to single-dimensional model. In addition,

which machine learning algorithms would be the optimal method

to identify the radiomics features remain unknown. More recently,

immune checkpoint inhibitors (ICIs) had been investigated in

different stages of clinical trials (10, 11). The phase III Checkmate

648 trial (12) showed that both first-line treatment with nivolumab

plus chemotherapy (fluorouracil + cisplatin) resulted in

significantly longer overall survival than chemotherapy alone in

patients with advanced esophageal squamous-cell carcinoma (13.2

vs. 10.7 months, HR 0.74 [0.58–0.96], p = 0.002). KEYNOTE-590

(13) showed that pembrolizumab plus chemotherapy was superior

to chemotherapy alone as first-line treatment for locally advanced

oesophageal cancer in all randomised patients (12·4 months vs 9·8

months; 0·73 [0·62-0·86]; p<0·0001). Additionally, other ICIs

including camrelizumab, toripalimab and sintilimab also

improved median OS and PFS in overall populations in the

clinical trials of ESCORT-1st (14), JUPITER-06 (15), ORIENT-15

(16). Based on these published trials, PD-1/PD-L1 inhibitors had

become the standard of care for the treatment of metastatic

esophageal cancer (12, 13, 17, 18).

Additionally, multiple clinical trials had been performed to

investigate the efficacy and toxicities of ICIs as neoadjuvant

treatment for ESCC (19, 20). Zhu M. et al (19) found that the

addition of pembrolizumab to nCRT in gastroesophageal junction

cancer adenocarcinoma could improve pCR in patients with PD-L1

CPS ≥ 10 (50% vs. 13.6%, p = 0.046), compared with those with

CPS < 10. The PERFECT trial conducted by van den Ende et al. (21)

demonstrated that the combination atezolizumab with CRT showed

a pCR rate of 25% but without survival benefit for resectable

esophageal adenocarcinoma. For locally advanced ESCC patients,

the addition of ICIs to neoadjuvant chemotherapy showed pCR

between 16.7-35.3% (22, 23).PALACE-1 trial conducted by our

institute showed that the combination of pembrolizumab with

nCRT in ESCC patients achieved a pCR of 55.6% in ESCC

patients (24). Therefore, we perform the present study to evaluate

the value of an integrated multimodal radiomics with machine

learning combined model to predict the pathological complete

response (pCR) of primary tumor in a prospective cohort of
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esophageal squamous cell carcinoma (ESCC) treated with

neoadjuvant chemoradiotherapy (nCRT) and anti-PD-1

inhibitors. Additionally, we compare the predictive ability of the

models based on four different machine learning algorithms.
Materials and methods

Study papulation

The study was designed as a retrospective design from our

prospective trials (NCT NCT04435197, NCT04435197,

NCT04513418, NCT03990532) (25–27), and all included patients

were treated with nCRT and PD-1 inhibitors followed by

esophagectomy at Ruijin Hospital, Shanghai Jiao Tong university

school of medicine, between Jan 2019 and July 2023. All included

patients received standardized neoadjuvant chemoradiotherapy.

The chemotherapy regimen consisted of carboplatin (area under

the curve of 2 mg/mL per min) and paclitaxel or nab-paclitaxel (50

mg/m2 of body surface area), which were administered

intravenously on days 1, 8, 15, 22. Concurrent radiotherapy was

performed on day 1 of chemotherapy with a total dose of 41.4 Gy in

23 fractions, on five fractions per week (28). Pembrolizumab was

given on days 1 and 22 of the neoadjuvant therapy intravenously at

200mg. Since the publication of CheckMate 577 trial (29), adjuvant

nivolumab among patients with resected esophageal or

gastroesophageal junction cancer who had received nCRT could

improve disease-free survival. Therefore, adjuvant ICIs was

recommended for ESCC patients who did not archive pCR after

neoadjuvant CRT combined with pembrolizumab. Finally, a total of

126 patients with histologically proven ESCC with pre-treatment 18

FDG PET/CT and enhanced plan CT images were included for

analysis. Data regarding surgical procedures, neoadjuvant therapy,

and potential confounding clinical and demographic data [(sex, age,

body mass index, medical history, smoking status, alcohol use,

location of tumor, radiotherapy modality, location of anastomosis,

clinical TNM stage, pathological TNM, baseline white blood cell

(WBC), lymphocytes count (LY), neutrophil, Monocyte count]

were manually extracted.
Workflow of treatment response prediction

The workflow of treatment response prediction in this study is

illustrated in Figure 1. Each input case consists of a contrast-

enhanced plan CT and PET scan, along with the corresponding

GTV delineation. A total of 842 features were extracted, and the top

10 features with the highest occurrences in LASSO were selected for

both CT and PET features, respectively. In this study, we employed

four different machine learning algorithms, namely Support Vector

Machine, Logistic Regression, Random Forest, and XGBoost, to

predict treatment response. Each algorithm was tested on CT

features, PET features, and CT-PET fused features. During the

evaluation stage, we calculated the accuracy, sensitivity, specificity,

and the AUC value of each model to compare their performance.
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Radiomics feature extraction

The extraction of radiomics features was performed

automatically using the open-source Python library PyRadiomics.

Features were computed based on the radiologist-drawn ROIs on

both CT and PET images. The computed features include first-

order based features, 3D morphology-based features, and texture

analysis features. The texture analysis features consist of Gray Level

Cooccurence Matrix (GLCM), Gray Level Run Length Matrix

(GLRLM), Gray Level Size Zone Matrix (GLSZM), Gray Level

Dependence Matrix (GLDM), and Neighboring Gray Tone

Difference Matrix (HGTDM). All the aforementioned features

were extracted from both the original images and the images with

wavelet filtration. The wavelet filter comprises two types: low-pass

(L) and high-pass (H). In this study, the radiomics features were

extracted from the 3D images, thus the wavelet features were

computed along the x, y, and z directions. The features with

wavelet filtration can be categorized into eight categories: wavelet-

HLL, wavelet-LHL, wavelet-LHH, wavelet-LLH, wavelet-HLH,

wavelet-HHH, wavelet-HHL, and wavelet-LLL.
Feature selection

To mitigate the Curse of Dimensionality and address potential

adverse effects of data distribution, feature selection was conducted

to identify the most robust features for machine learning tasks. We

employed the variance threshold selection and the least absolute

shrinkage and selection operator (LASSO) logistic regression

analysis, utilizing the open-source Python library Scikit-learn, to

select the best features for prediction. During the feature selection

stage, we initially applied a variance threshold selection with a

threshold of 1 to the input 842 features, resulting in the selection of

approximately 200 features. Subsequently, LASSO regression was

performed on the remaining features to identify the most significant

ones, employing 5-fold cross validation with a = 1e-2. The feature

selection process was repeated 100 times, and the optimal features

with the highest occurrences were selected as the input for the

machine learning model. Furthermore, features with higher weights

were considered to have a greater impact on the task and were

retained by the LASSO regression.
Model construction and evaluation

In this study, we utilized several widely-used machine learning

algorithms for the prediction task, including logistic regression,

SVM (Support Vector Machine), Random Forest, and XGBoost

(eXtreme Gradient Boosting), all implemented using the Scikit-

learn library.

Logistic regression
Logistic Regression is a type of generalized linear model,

represented by the model form w0x + b. The model’s domain is

defined as [-∞, +∞], but its output values are limited to two
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1351750
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qi et al. 10.3389/fimmu.2024.1351750
categories: {0, 1} (30). Consequently, the classification of input data

x is achieved by mapping the continuous range of real numbers to a

finite number of points.

Support vector machine
Support Vector Machine (SVM) is a type of generalized linear

classifier that performs binary classification through supervised

learning. It determines the decision boundary by identifying the

maximum margin hyperplane based on the training samples. In

cases where the classification task involves non-linear data, kernel

methods can be employed to map the input data into a high-

dimensional linear space, enabling effective classification.
Radom forest
Random Forest is an ensemble learning method that constructs

a forest consisting of multiple decision trees in a random manner. It

can be seen as a variant of bagging, where decision trees are

employed as the underlying models. Random Forest randomly

selects subsets of features and training data, and then aggregates

the predictions from these individual trees to make the final

prediction. The prediction is determined by selecting the label

with the highest frequency among the predictions of the

constituent trees.
XGBoost
XGBoost, short for eXtreme Gradient Boosting, is a powerful

machine learning algorithm known for its exceptional performance

in various tasks. It is an optimized implementation of the gradient

boosting framework that combines multiple weak learners to create

a strong predictive model. XGBoost utilizes a boosting technique,

where weak learners, typically decision trees, are sequentially added

to the ensemble. Each new tree is trained to correct the errors made

by the previous ones. This iterative process enables XGBoost to

learn complex patterns and make accurate predictions.
Frontiers in Immunology 04
We applied all the aforementioned machine learning methods

to construct the prediction model and compared their performance.

Thirteen patients were randomly assigned to the test cohort, while

the remaining fifty-two patients were used for training. The features

selected by LASSO regression were utilized as inputs for the model,

and the model’s output was classified as either “pCR” or “non-

pCR”. To determine the optimal parameters, the training stage

employed the 5-fold cross-validation method. In this study,

accuracy, sensitivity, and specificity were chosen as the evaluation

metrics to assess the model’s performance on the testing cohort.

Additionally, the predictive performance of the model was

evaluated using the area under the curve (AUC) of the receiver

operating characteristic (ROC) curve.
Model hyperparameters:

SVM:

CT model: (C=10, cache_size=2000, class_weight=‘balanced’,

coef0 = 0.0, decision_function_shape= ‘ovr ’ , degree=3,

gamma=‘auto’, kernel=‘rbf’, max_iter=30000, probability=True,

random_state=None, shrinking=True, tol=0.001, verbose=False)

PET model: (C=0.08, cache_size=2000, class_weight=‘balanced’,

coef0 = 0.0, decision_function_shape=‘ovr’, degree=3, gamma=‘auto’,

kernel=‘linear’, max_iter=30000, probability=True, random_

state=None, shrinking=True, tol=0.001, verbose=False)

Clinical model: (C=25, cache_size=2000, class_weight=‘balanced’,

coef0 = 0.0, decision_function_shape=‘ovr’, degree=3, gamma=‘auto’,

kernel=‘rbf’, max_iter=30000, probability=True, random_state=None,

shrinking=True, tol=0.001, verbose=False)

Logistic regression:

CT model: (C=0.15, class_weight=‘balanced’, penalty=‘l2’,

solver=‘liblinear’)

PET model: (C=50, class_weight=‘balanced’, penalty=‘l2’,

solver=‘liblinear’)
FIGURE 1

Treatment response prediction workflow.
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Clinical model: (C=10, class_weight=‘balanced’, penalty=‘l1’,

solver=‘liblinear’)

Random forest:

CT model: (max_depth=3, n_estimators=150, class_?

>weight=‘balanced’, max_features=‘auto’, criterion=‘gini’,

min_samples_leaf=1, min_samples_split=7, bootstrap=True)

PETmodel: (max_depth=3, n_estimators=150, class_weight=‘balanced’,

max_features=‘auto’, criterion=‘gini’, min_samples_leaf=3,

min_samples_split=7, bootstrap=True)

Clinical model: (max_depth=3, n_estimators=150, class_weight=‘balanced’,

max_features=‘auto’, criterion=‘gini’, min_samples_leaf=1,

min_samples_split=7, bootstrap=True)

XGBoost

CTmodel: (eta=1e-1, gamma=0.1,max_depth=2,min_child_weight=0.5,

subsample=0.9, colsample_bytree=0.1, alpha=1e-3, scale_pos_weight=1)

PETmodel: (eta=1e-4, gamma=0.1,max_depth=2,min_child_weight=0.5,

subsample=0.9, colsample_bytree=0.1, alpha=1e-3, scale_pos_weight=1)

Clinical model: (eta=1e-3, gamma=0.1, max_depth=2,

min_child_weight=0.5, subsample=0.9, colsample_bytree=0.1, alpha=1e-

5, scale_pos_weight=1)
Feature fusion

The aforementioned machine learning models were constructed

and trained using features from a single modality using CT, PET

and clinical features. Additionally, a fusion process was conducted

at the backend by combining the output probabilities and selected

thresholds from both the CT feature model, the PET feature model

and the clinical feature model. This fusion process involved

weighting the probabilities and summing them to obtain the final

output value. Subsequently, classification was performed using the

weighted threshold to determine the ultimate decision and

classification result based on the fusion. It is important to note

that the fusion process is currently limited to models utilizing the

same machine learning algorithm. Different machine learning

models are not fused together. Ultimately, we will compare the

performance of models using only CT features, models using only

PET features, models using only clinical features, and the fused

model incorporating CT+PET+clinical features.
Statistical analysis

In this study, we utilized the open-source Python library

PyRadiomics to extract radiomics features. We selected the most

optimal features for prediction using LASSO regression

implemented in scikit-learn library (version 1.0.2). Furthermore,

we trained SVM, logistic regression, and random forest models

using scikit-learn, and xgboost model using the xgboost library.

During the evaluation stage, we employed matplotlib to plot the

ROC curve and utilized scikit-learn to compute the AUC value for

each model. Performance of models was quantified as AUC,

sensitivity and specificity. Coefficient of logical regression was
Frontiers in Immunology 05
applied for feature importance ranking. Moreover, we utilized

Scipy for statistical analysis. Continuous variables were described

using means and standard deviations, and categorical variables were

demonstrated with percentages. A two-sided p < 0.05 was regarded

as statistical difference.
Results

Baseline characteristics

A total of 126 patients were finally included for analysis in the

present study. Of them, 83 patients (65.9%) present with stage III

and 32 patients (25.4%) with stage IVA. The median time from

completion of nCRT to surgery were 42 days (range:14-89 days).

The median tumor length was 5cm (range: 1-15cm). A total of 66

ESCC patients (52.4%) achieved primary tumor pathological

complete response (pCR). The baseline characteristics of include

patients were listed Table 1.
Feature selection

In this study, a total of 100 cases were randomly divided into the

training cohort, while the remaining 26 cases were allocated to the

test cohort. The LASSO method was employed to select the optimal

features for prediction from the extracted features. During the

feature extraction stage, a comprehensive set of 1684 features was

computed for each patient from the input images. Half of these

features were computed from CT scans, while the other half were

derived from PET scans. Feature selection was performed separately

on the CT and PET features, resulting in the selection of 20 features

from CT and 30 features from PET. Among the selected features, 40

were derived from wavelet filtering, while 10 features originated

from the original image features. All of the selected features were

presented in Table 2 for reference.
Performance of four machine learning
radiomic and clinical-based models

The results of the machine learning models were presented in

Table 3. Four different models were implemented: Support Vector

Machine (SVM), Logistic Regression (LR), Random Forest (RF),

and XGBoost (XGB). The optimal hyper parameters for each model

were tuned using the validation set, and their performance was

evaluated on the test set. Each model was trained and tested using

three different feature sets: CT features, PET features, clinical

features. Our experimental results indicate that SVM achieved the

most promising performance with AUC of 0.775 for CT and 0.710

for PET when compared to LR, RF and XGB models (AUC for CT:

0.698-0.716; AUC for PET 0.704, Figure 2). For clinical model,

machine learning using SVM remained the most promising

performance (AUC 0.772), when compared other machine

learning methods (AUC ranges from 0.615-0.645).
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TABLE 1 Baseline characteristics of included patients.

Characteristics Level Statistic

Gender Female 19

Male 107

Age at diagnosis Years
(median, range)

66(39-80)

Clinical T stage T1-2 15

T3-4 111

Clinical N stage N0-1 45

N2-3 81

Clinical stage II 11

III 83

IV 32

Time from completion of NCRT
to surgery

Days
(median, range)

42 days (14-
89 days)

BMI Median, range 22.43(17.13-30.47)

Primary tumor pCR Yes 66

No 60

Tumor length cm
(median, range)

5(1-15)

Smoking status Yes 81

No 45

Drinking status Yes 77

No 49

Tumor location Upper thoracic 22

Middle thoracic 35

Low thoracic 69

WBC Median, range 5.92(3.1-16.6)
*109/L

LY Median, range 1.41(0.3-2.75)
*109/L

Monocyte count Median, range 0.43(0.15-7.3)
*109/L

neutrophil Median, range 3.71(1.5-13.6)
*109/L

NLR Median, range 2.64(1.04-11.13)

PLR Median, range 142.24(61.2-743.4)

LMR Median, range 3.37(0.21-10.67)

PIV Median, range 220.51
(63.83-18598.45)
F
rontiers in Immunology
BMI, body mass index; LMR, lymphocyte-to-monocyte ratio; NLR, neutrophil-to-lymphocyte
ratio; pCR, pathological complete response; PIV, pan-immune inflammation value; PLR,
platelet-to-lymphocyte ratio; LY, lymphocyte count; WBC, white blood cell; NSE.
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TABLE 2 Finalized features and clinical characteristics identified and
incorporated in the model construction

CT feature names P-value

wavelet-LHL_glszm_LowGrayLevelZoneEmphasis 0.0049

wavelet-LHL_glszm_HighGrayLevelZoneEmphasis 0.0049

wavelet-LLH_glcm_Idm 0.0027

wavelet-LHL_glrlm_LongRunHighGrayLevelEmphasis 0.0088

wavelet-LHL_gldm_LargeDependenceHighGrayLevelEmphasis 0.0043

wavelet-LHL_glcm_SumEntropy 0.0139

wavelet-LHL_glrlm_LowGrayLevelRunEmphasis 0.0115

wavelet-LLH_glcm_ClusterProminence 0.0062

wavelet-LLL_glrlm_RunLengthNonUniformityNormalized 0.0118

original_gldm_DependenceEntropy
wavelet-LHL_firstorder_Entropy
original_glrlm_RunLengthNonUniformityNormalized
wavelet-LLH_glrlm_LowGrayLevelRunEmphasis
wavelet-HLH_glcm_SumSquares
original_glcm_DifferenceEntropy
wavelet-LLH_ngtdm_Contrast
wavelet-LLH_glcm_Correlation
wavelet-LLH_ngtdm_Complexity
wavelet-HLH_firstorder_Entropy
wavelet-LHL_firstorder_Mean

0.0046
0.0063
0.0111
0.0148
0.0118
0.0209
0.0017
0.0047
0.0017
0.0148
0.0226

PET feature names P-value

wavelet-HHH_glszm_SizeZoneNonUniformity 0.0146

wavelet-HHH_glszm_GrayLevelNonUniformity 0.0044

wavelet-HHH_glszm_SmallAreaLowGrayLevelEmphasis
original_shape_Sphericity
wavelet-HLH_glszm_ZoneEntropy
wavelet-HLH_glszm_GrayLevelNonUniformity
wavelet-LHH_glcm_SumEntropy
wavelet-HLH_glszm_HighGrayLevelZoneEmphasis
wavelet-LHL_firstorder_Entropy
original_glrlm_ShortRunLowGrayLevelEmphasis
wavelet-LHL_glcm_SumEntropy
wavelet-HLH_firstorder_Mean
wavelet-LLH_glszm_ZoneEntropy
wavelet-HHH_glszm_ZoneEntropy
wavelet-LHL_glszm_SmallAreaLowGrayLevelEmphasis
wavelet-HHL_glszm_LargeAreaHighGrayLevelEmphasis
wavelet-LHL_gldm_DependenceNonUniformity
wavelet-LLL_glszm_SmallAreaEmphasis
wavelet-LHL_glszm_LargeAreaHighGrayLevelEmphasis
wavelet-HLH_glszm_SizeZoneNonUniformityNormalized
wavelet-LHL_gldm_DependenceNonUniformityNormalized
wavelet-LHH_glcm_JointAverage
original_shape_SurfaceArea
wavelet-LLH_gldm_DependenceEntropy
original_glszm_ZonePercentage
original_gldm_GrayLevelNonUniformity
original_glszm_ZoneVariance
wavelet-LHL_glszm_SmallAreaEmphasis
original_shape_Maximum2DDiameterSlice
wavelet-HHL_glszm_LowGrayLevelZoneEmphasis

0.0424
0.0353
0.0270
0.0299
0.0864
0.1032
0.0852
0.0923
0.0712
0.0822
0.1068
0.0799
0.1220
0.0685
0.0336
0.1135
0.0591
0.1071
0.0876
0.1047
0.0387
0.1088
0.0829
0.0832
0.1099
0.1549
0.0883
0.2005

(Continued)
fro
ntiersin.org

https://doi.org/10.3389/fimmu.2024.1351750
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qi et al. 10.3389/fimmu.2024.1351750
Performance of combined models in
predicting pCR

In addition, we also investigate the predictive value of combined

models trained on CT+PET+clincial fused features. Our result
Frontiers in Immunology 07
showed that SVM machine learning exhibited significantly higher

results compared to those trained solely on CT or PET features in

the training set (AUC=0.997) and in the testing set (AUC=0.852,

95%CI: 0.824-0.876, Figure 2). This demonstrates the potential of

enhancing performance through muti-modalities feature fusion.
Discussion

Until now, nCRT followed by esophagectomy remains the

standard treatment for potentially curable ESCC patients.

However, approximately 40% of these patients would archive

pCR, with an estimated 5-year survival of 70-80% (3, 5). In our

PALACE-1 trial, the addition of pembrolizumab to nCRT could

improve the pCR to 55.5% with acceptable toxicities, which

suggested that the combination of ICIs with nCRT could be a

novel treatment option for locally advanced ESCC. On the one

hand, surgery likely contributed limited benefit for those favorable

ESCC patients, and active surveillance, which had already been
TABLE 2 Continued

CT feature names P-value

Clinical Features P-value

tumor length 0.0959

BMI
cStage
time interval
LY
smoking status
cT
NSE
cN
NLR

0.2735
0.5752
0.3496
0.5669
0.7571
0.6823
0.0789
0.8733
0.1345
TABLE 3 The prediction performance of different machine learning models, including Support Vector Machine (SVM), Logistic Regression (LR),
Random Forest, and XGBoost, was evaluated.

SVM Accuracy Sensitivity Specificity AUC value

Train Test Train Test Train Test Train Test

CT 0.950 0.692 0.981 0.846 0.917 0.538 0.991 0.775

PET 0.760 0.615 0.750 0.462 0.771 0.769 0.826 0.710

Clinical 0.970 0.715 0.942 0.615 0.938 0.615 0.996 0.722

Fused 0.970 0.808 0.990 0.846 0.938 0.769 0.997 0.852

LR Accuracy Sensitivity Specificity AUC value

Train Test Train Test Train Test Train Test

CT 0.700 0.654 0.808 0.769 0.583 0.538 0.768 0.698

PET 0.760 0.615 0.769 0.462 0.750 0.769 0.846 0.704

Clinical 0.610 0.538 0.596 0.385 0.625 0.692 0.662 0.615

Fused 0.820 0.654 0.808 0.538 0.833 0.769 0.897 0.775

RF Accuracy Sensitivity Specificity AUC value

Train Test Train Test Train Test Train Test

CT 0.840 0.654 0.885 0.769 0.792 0.538 0.932 0.716

PET 0.900 0.654 0.904 0.462 0.896 0.846 0.967 0.704

Clinical 0.780 0.577 0.865 0.385 0.688 0.769 0.871 0.615

Fused 0.950 0.654 0.962 0.846 0.938 0.462 0.987 0.734

XGBoost Accuracy Sensitivity Specificity AUC value

Train Test Train Test Train Test Train Test

CT 0.930 0.654 0.962 0.615 0.896 0.692 0.989 0.716

PET 0.810 0.538 0.885 0.462 0.729 0.615 0.915 0.704

Clinical 0.730 0.654 0.827 0.538 0.625 0.769 0.803 0.645

Fused 0.940 0.654 0.962 0.615 0.917 0.692 0.989 0.716
Each model was tested using three different feature sets: CT features, PET features, and CT+PET fused features. SVM, Support Vector Machine; LR, Logistic Regression; RF, Random Forest.
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applied in patients with rectal cancer, could be considered as an

alternative treatment option for ESCC patients with a clinically

complete response (cCR) after nCRT. On the other hand, for those

who do not respond to nCRT, earlies surgical intervention could

minimize the nCRT-related toxicities. As a result, it is critically

important to develop a preoperative, non-invasive approach to

exactly predict pCR for ESCC treated with nCRT.

Prior to the present study, several studies had been performed

to establish pCR predicting models by using clinical characteristics,

imaging features, or biological markers. Hu Y. et al (31) trained

model with features extracted from ResNet50 to predict the pCR

with an AUC and accuracy of 0.805 (95% CI, 0.696-0.913) and

77.1% (65.6%-86.3%) in the testing cohort. Zhang M. et al (32)

compared pre- and post-treatment CT-based radiomics and deep

learning features for predicting pCR in patients with ESCC

receiving nCRT using three machine learning classifiers and

found that the XGBoost-based radiomics signature performed

well. And the authors incorporated radscores and hematological

biomarkers into pCR predicting model with AUCs of 0.857 in the

testing set. More recently, Wang J. et al (8) built two machine

learning models for predicting primary tumor CR and total pCR of

ESCC patients who underwent nCRT with an AUC of 0.891 and

0.814 in the testing set. However, most of these predicting models

were trained based on retrospective ESCC cohorts treated with

nCRT alone, Limited radiomics model could be obtained for
Frontiers in Immunology 08
predicting pCR of ESCC treated with NCRT and PD-1 inhibitors.

As far as we know, our study was the first to build a multiple

modalities radiomics combined with clinical models based on four

machine learning methods in a prospective cohort of ESCC patients

treated with standardized nCRT and PD-1 inhibitors followed by

surgery, which would contribute to greater generalisability of the

present model. Based on our analysis, machine learning using SVM

achieved the most promising performance when compared to LR,

RF and XGB models. Furthermore, the models trained on CT+PET

+clincial fused features by using SVM machine learning exhibited

significantly higher results compared to those trained solely on CT

or PET features in the training set (AUC=0.997) and in the testing

set (AUC=0.852, 95%CI: 0.824-0.876). However, further studies

were still needed to externally validate the combined model among

the ESCC patient population treated with standardized nCRT and

PD-1 inhibitors.

As for clinical model, a total of ten keys clinical features were

identified to establish clinical model with an AUC of 0.722 in the

test set. In the clinical model, patients with higher TNM staging or

longer tumor length indicated increased tumor burdens, and

elevated tumor burdens correlated with low probability of pCR.

Several studies had demonstrated that longer interval between

nCRT and surgery was associated with improved pathological

response (33, 34). In consistent with those findings, time interval

from complete of nCRT and surgery in the present study was
FIGURE 2

The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of different machine learning models on the
test set. The AUC values for the models based on CT features, PET features, clinical features and CT+PET+clinical fused features are represented by
the blue, brown, purple and red lines, respectively.
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another indicator which could impact the probability of

archiving pCR. Additionally, we also found that baseline blood

biomarkers lymphocytes count and NLR were associated with

improved pathological response. In our previous study, we had

demonstrated that pretreatment lymphocytes count was an

independent predictor for achieving pCR and favorable outcomes

of ESCC treated with neo-CRT and pembrolizumab (28), while

NLR had been reported to be associated with pCR in ESCC patients

in several studies (35–37). Some other clinicopathologic factors

such as BMI and smoking status had also been associated with pCR.

Based on these clinical features, we established a predictive clinical

model, which was important and should be incorporating into

radiomic features during training model.

The present study had the following strengths: firstly, we used

multimodality including pretreatment enhanced plan CT and 18-

FDG PET images for machine learning to improve the model

reliability. In addition, we compared the predictive value of four

different machine learning models. Secondly, all of the included

patients were identified from a prospective cohort and all patients

were treated with standardized nCRT and PD-1 inhibitors, this was

the first study to assess the predictive role of radiomics in ESCC

treated with nCRT and PD-1 inhibitors. Additionally, the

radiotherapy regimen was 41.4Gy/23Fx, and concurrent

chemotherapy regimen was same and consisted of carboplatin

(area under the curve of 2 mg/mL per min) and paclitaxel or

nab-paclitaxel (50 mg/m2 of body surface area). which

would reduce the impact of heterogeneity from nCRT on the

radiomics models.

However, this study had some limitations. Firstly, long-term

survival outcomes of ESCC after nCRT combined with ICIs could

not be available, thus whether our established model could predict

the overall survival of ESCC patients remain unknown, although

pCR was a critical factor in predicting long-term survival of patients

with esophageal cancer after preoperative therapy (38). Secondly,

this study was single center study with a relatively small patient

population and absence of an external groups for validation, further

multicentric researches were still recommended to confirm our

proposed pCR model. Finally, there was lack of standardized

assessment for lymph node metastasis, and it was difficult to

delineate the metastatic lymph nodes from benign lymph nodes,

especially for small lymph nodes. Therefore, imaging features that

reflected metastatic lymph node characteristics may be not accurate

enough, we thus only assessed the value of an integrated

multimodal radiomics with machine learning combined model to

predict the pCR of primary tumor after nCRT in ESCC patients.
Conclusion

In conclusion, our findings indicated that machine learning

algorithms using SVM achieved the most promising performance

when compared to LR, RF and XGB models. In addition, we found

that machine learning models utilizing integrated multimodal PET

and CT-images combined with clinical features exhibited promising

performance in predicting pCR of ESCC treated with standardized

nCRT and PD-1 inhibitors, which would provide an exactly
Frontiers in Immunology 09
preoperative, non-invasive approach to predict pCR for ESCC

and guidance for further precision treatment.
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