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Combined islet and kidney
xenotransplantation for diabetic
nephropathy: an update in
ongoing research for a clinically
relevant application of porcine
islet transplantation
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Combined islet and kidney xenotransplantation for the treatment of diabetic

nephropathy represents a compelling and increasingly relevant therapeutic

possibility for an ever-growing number of patients who would benefit from

both durable renal replacement and cure of the underlying cause of their renal

insufficiency: diabetes. Here we briefly review immune barriers to islet

transplantation, highlight preclinical progress in the field, and summarize our

experience with combined islet and kidney xenotransplantation, including both

challenges with islet-kidney composite grafts as well as our recent success with

sequential kidney followed by islet xenotransplantation in a pig-to-

baboon model.
KEYWORDS

islet xenotransplantation, islet-kidney, xenogeneic immune response, tolerance,
xenotransplantation
Abbreviations: ELISpot, enzyme-linked immunosorbent spot assay; GalTKO, a-1,3 Galactosyl transferase

gene knockout; hCD55, human CD55; hCD59, human CD59; hCD47, human CD47; IBMIR, instant blood-

mediated inflammatory reaction; I-K, islet-kidney; IEQ, islet equivalents; IFN-g, interferon gamma; IPN, islet

particle number; mAb, monoclonal antibody; Nab, natural antibody; NHP, non-human primate; NK, natural

killer; PTFE, PolyTetraFluoroEthylene; VTL, vascularized thymic lobe.
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Introduction

Diabetes is a leading cause of both cardiovascular disease and end

stage renal disease (ESRD), and incidence is increasing across the

country and across the globe (1). Human islet transplantation is an

effective treatment for diabetic patients but requires lifelong

immunosuppression: prospective islet transplant recipients must

weigh the risks of immunosuppression against the short- and long-

term complications of diabetes. Patients with diabetic nephropathy

represent a unique – and growing – population that would benefit

from both islet and kidney transplantation. Indeed, the favorable risk-

to-benefit considerations of combined islet and kidney

transplantation in this population inspired recent promising clinical

studies in islet after kidney transplantation led by the Clinical Islet

Transplantation (CIT) Consortium (2). However, at present these

procedures are rare, due, in part, to a shortage of deceased donor

organs (3). Xenotransplantation using organs derived from pigs may

overcome this organ shortage and allow for broader application of

combined islet and kidney transplantation.

The past several years have seen enormous progress in the field

of xenotransplantation, with advances in gene-editing and

immunosuppression leading to long-term survivals of both kidney

and heart xenografts in pig-to-nonhuman primate (NHP) studies

(4–7), as well as early studies (preclinical and clinical) in humans

(8–10). Clinical translation of porcine islet transplantation predated

these recent successes in solid organ xenotransplantation, with

encouraging pig-to-NHP studies leading to several small clinical

studies using porcine islets in humans (11–21). However, results of

these early studies in clinical islet xenotransplantation have been

mixed. While these differences between outcomes of preclinical and

clinical xenogeneic islet transplantation may be partly explained by

differences in the immunosuppression regimens used in the clinical

trials – notably, CD40/CD40L costimulatory blockade, which has

been critical to success in most preclinical studies, was not utilized –

further trials have been limited by more recent consensus guidelines

outlining an international framework to promote standardized

clinical translation of pig-to-human islet transplantation from

source pig development and manufacturing to patient

monitoring (22).

Moreover, in the many years since these clinical studies in islet

xenotransplantation were conducted, the landscape of diabetes

management has changed. Patients with diabetes have other

options for durable disease management. Innovations in glucose

monitoring and the rapid development of hybrid closed-loop

insulin delivery systems have improved quality of life for patients

living with diabetes (23), and ongoing clinical trials of novel

stem-cell derived islet cell therapy have published early

and highly promising results (24). However, porcine islet

xenotransplantation remains a compelling therapeutic possibility

for patients with diabetic nephropathy who need both kidney and

islet replacement. In these patients, there are minimal added risks

associated with islet transplantation, as these patients are already on

immunosuppression for their kidney grafts; in fact, islets may help

protect against premature kidney graft loss associated with diabetes

(25) as well as improve long-term vascular diabetic outcomes (26).

Here, we will briefly highlight immunologic barriers in porcine islet
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transplantation, chronicle preclinical progress in the field, and

summarize our own experience in combined islet and kidney

transplantation, using both 1) vascularized islets in an islet-kidney

composite graft, and 2) our more recent strategy of sequential

kidney followed by islet xenotransplantation.
Immunologic barriers in pig-to-
primate islet xenotransplantation

Porcine xenografts, including pig islets, elicit robust immune

responses in humans. These responses involve both innate barriers

(27) – including preformed natural antibodies (Nabs) and species

incompatibilities in complement and coagulation systems leading to

dysregulation – and adaptive immune components (reviewed in

(28)). As with transplantation of solid organs, humoral immunity

remains a key obstacle to long-term xenograft survival, and T cell-

targeted immunosuppression strategies have been critical for

prolonging islet survival (20, 29),. Unlike transplantation of other

organs, however, transplanted islets also trigger an immediate

inflammatory response, known as instant blood-mediated

inflammatory reaction (IBMIR) (30, 31), related to expression of

tissue factor on islets and leading to activation of innate responses

that subsequently consume islets (32, 33). Although IBMIR is seen

in auto- and allogeneic islet transplantation, greater immune

barriers in xenotransplantation may lead to more pronounced

islet losses (34, 35) as high as 70% in some studies (36).
Preclinical progress in porcine islet
xenotransplantation: encapsulation
and source pig genetic modifications

Various strategies have been developed to overcome these

short- and long-term immunologic hurdles, including islet

encapsulation and source pig genetic modifications – both of

which are intended to reduce the immunogenicity of the

porcine islets.

Broadly , i s le t encapsulat ion technologies inc lude

microencapsulation of islets in alginate matrix, and macro-

encapsulation of immobilized islets in bi-layered PTFE with a

common oxygenation chamber (37). This microencapsulation

technique successfully reversed diabetes for up to six months in

preclinical studies of rhesus macaques (38), and was subsequently

used in two nationally regulated clinical studies of porcine islet

xenotransplantation in New Zealand and Argentina. Follow-up

studies confirmed modest clinical benefit including reduction in

HbA1c, hospitalization, and severe hypoglycemic and/or

hyperglycemic events (21, 39) The key advantage of these

technologies is that encapsulation may protect islets from

the recipient immune system and obviate the need for

immunosuppression; whereas islet transplantation alone is

currently reserved for patients with hypoglycemic unawareness

due to the morbidity of immunosuppression, transplantation of

encapsulated islets without immunosuppression may tilt the risk-
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benefit ratio in favor of islet transplantation for cure of diabetes.

Still, important hurdles remain in broader clinical application

of this technology including variable recipient immune responses

to the encapsulation material, which may lead to fibrosis of

encapsulated grafts.

Source pig genetic modification is another strategy to overcome

innate immune barriers and can be divided into two major

categories: elimination of carbohydrate antigens that are targets of

preformed antibodies, and correction of species incompatibilities.

In solid organ xenotransplantation, preformed antibody

binding leads to hyperacute rejection of graft; in free islet

xenotransplantation, preformed antibody binding leads to an

amplified IBMIR with islet loss (40). While elimination of targets

of preformed Nabs (particularly elimination of a-gal with creation

of a-1,3 Galactosyl transferase gene knockout or GalTKO source

pigs) has been essential for successful pig-to-NHP heart and kidney

xenotransplantation (4, 41, 42), the impact of using GalTKO source

pigs on xenograft survival in islet transplantation is less conclusive,

which may be a function of changes in a-gal expression with

islet maturation (43–45). Similarly, correcting for species

incompatibilities between porcine and primate complement

regulatory systems through individual insertion of human

complement regulatory proteins may not significantly reduce the

incidence of IBMIR (44). However, combining carbohydrate

antigen gene knockouts with complement regulatory transgenes

proves additive: xenogeneic islets from GalTKO.hCD55.hCD59 and

GalTKO.hCD39.hCD46 source pigs demonstrated reduced islet loss

and attenuated IBMIR (15, 16). More recently, islets derived from

neonatal GalTKO.hCD55.hCD59 source pigs demonstrated cure of

diabetes with >1 year of insulin independence in the stringent pig-

to-baboon model (46).
Combined kidney and islet
xenotransplantation to broaden
clinical applicability of porcine
islet xenotransplantation

Marked improvements in diabetes management and emerging

therapies have changed the risk-benefit calculus associated with

islet transplantation more broadly, and porcine islet

xenotransplantation in particular. As described in the preceding

section, encapsulation technologies – which may allow for durable

glucose control without immunosuppression – remain one relevant

application for porcine islet xenotransplantation. Another relevant

strategy is combining porcine islet xenotransplantation with solid

organ xenotransplantation. This strategy has already been

employed with success by the CIT consortium treating diabetic

nephropathy with islet transplantation after kidney transplantation,

but broader application is limited by the shortage of deceased donor

organs. The following sections detail our preclinical experience with

combined islet and kidney transplantation, including both

composite islet-kidney transplantation as well as kidney-first

sequential islet and kidney xenotransplantation.
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Combined islet and kidney
xenotransplantation: our experience
with composite islet-kidney
xenotransplantation

Composite islet-kidney transplantation for
cure of diabetic nephropathy: concept and
supporting allogeneic data

As detailed above, xenogeneic islets are susceptible to destruction

by both innate and adaptive mechanisms. The senior author of this

review has demonstrated that transplanting pre-vascularized islets as

part of a composite organ protects islets from innate immune

destruction by circumventing the typical pathway that triggers

IBMIR (47–49). We have previously reported successful preparation

of composite islet-kidney (I-K) grafts which maintained

normoglycemia and normal renal function after transplantation in

pig-to-pig and nonhuman primate allogeneic transplantation models

(Figure 1). Islets are isolated and pre-vascularized under autologous

renal capsule, with subsequent transplantation of composite I-K graft

(50). Preclinical allotransplantation studies in both pigs and in NHPs

have demonstrated that this procedure preserves islets, likely by

limiting innate immune destruction: diabetes is cured in animals

who undergo composite I-K transplantation, while animals who

undergo conventional free islet injection with the same islet

equivalents (IEQs) remain insulin dependent (51, 52). Additional

preclinical studies have demonstrated further improvements in islet

yield and function with islet protective strategies including siRNA

silencing of apoptotic genes (53). However, practical challenges have

limited successful translation of this composite organ strategy for cure

of diabetes and kidney failure in pig-to-NHP transplantation.
Challenges with translation of allogeneic
results to xenogeneic pig-to-non-human
primate model

While I-K composite organs are ideally created in the same

animal with autologous pig islets transplanted under autologous

renal capsule, size constraints in our NHP recipient prevent

successful I-K transplantation using a single source pig: a small

(<30kg) source pig is needed for successful pig-to-NHP kidney

transplantation, while a large (>60kg) source pig is needed in

order to obtain sufficient islets for reversal of diabetes. This is a

limitation primarily in our preclinical pig-to-NHP model, as larger

kidneys from size matched >60kg pigs will likely be appropriate for

human adult recipients. Nevertheless, overcoming this experimental

constraint is critical to demonstration of composite I-K success. Our

own attempts to isolate islets from juvenile source pig pancreases

recapitulated the work of other investigators, confirming low islet-

equivalent yield from juvenile pigs (54, 55). Accordingly, we elected

to use two different source pigs for composite organ creation: large

pigs would be used for islets, pre-vascularized prior to

transplantation under the renal capsule of a smaller pig.
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Using different source pigs for I-K composite organ creation

introduced other challenges. Allogeneic islets from one source pig

transplanted under the renal capsule of another source pig are

vulnerable to recipient source pig immune responses, as with any

allogeneic transplant. Strategies to mitigate these responses include 1)

use of related pairs (cloned, inbred, or MHC-matched), and 2)

minimization of the islet pre-vascularization period under allogeneic

renal capsule.
Using related pairs for composite islet-
kidney creation

Although the use of genetically identical (cloned) pairs for islet-

kidney creation would be ideal, previous experiments have

demonstrated long-term survival of skin and heart grafts without

immunosuppression in highly inbred swine (56). Indeed, inbred

animals, defined by co-ancestry >0.9, accepted allogeneic skin grafts

for >340 days and accepted allogeneic heart grafts for >265 days without

immunosuppression. MHC-matched pairs (co-ancestry >0.75) also

allowed for acceptance of kidney grafts without immunosuppression,

although hearts and islets were not accepted (50, 56, 57). Over the last

three years, we have optimized composite I-K preparation using MHC-

matched source pigs. As opposed to autologous I-K preparation,

successful allogeneic preparation requires immunosuppression with

both high dose tacrolimus and MMF. I-K preparation may be further

optimized with reduction in pre-vascularization period from 6 weeks to

2 weeks. Still, it remains unclear whether I-K preparation in MHC-

matched pairs preserves sufficient islets for reversal of diabetes in a

xenogeneic recipient. We plan to revisit the composite I-K strategy in

xenotransplantation when cloned pigs or highly inbred GalTKO pigs

are available for these experiments.
Combined islet and kidney
xenotransplantation: recent success
with sequential kidney followed by
islet xenotransplantation

Definitive evaluation of composite I-K transplantation in a pig-

to-NHP model also requires a control: independent kidney and free
Frontiers in Immunology 04
islet transplantation. Negative controls were present in previous

studies of composite IK technologies – in pig-to-pig, baboon-to-

baboon, and macaque-to-macaque models – and demonstrated

preservation of islets with composite I-K transplantation across

allogeneic barriers. In the past year, due to lack of inbred or cloned

source pigs, we tested an alternative strategy for combined islet and

kidney transplantation across a xenogeneic barrier that would also

serve as a control of the composite I-K strategy. This alternative

approach involves delayed islet transplantation after kidney and

vascularized thymus transplantation (role of vascularized thymus

transplantation in the induction of tolerance across xenogeneic

barriers reviewed in (28)), using a recipient size-matched kidney

and thymus source pig, as well as a large source pig for islets. Notably

this approach (without thymus co-transplantation) is also similar to

recent work in human islet-after-kidney transplantation conducted

by the CIT consortium. Although additional cases are required, we

have achieved reversal of diabetes and life-supporting renal function

for 180 days with this kidney-first sequential islet and kidney

xenotransplantation (52). To our knowledge, this is the first

demonstration of maintenance of durable normoglycemia and

stable creatinine with porcine kidney and islets in a diabetic and

life-supporting pig-to-baboon combined kidney, vascularized thymus

and islet xenotransplantation model. These preliminary results were

recently presented at the International Xenotransplantation

Association Congress (San Diego, 2023), and are described in detail

in the following sections:
Methods: source pigs, recipient baboons,
immunosuppression regimen, and
transplantation procedures

In this experiment, we used two GalTKO.hCD55 source pigs

from the National Swine Resource and Research Center (Sus scrofa

domesticus, source: University of Missouri-Columbia, Columbia,

MO) and one baboon recipient from the National Research and

Resources Program (MD Anderson, Houston TX). Baboon

recipient underwent B and T cell depletion with rituximab and

rabbit anti-thymocyte globulin, followed by maintenance

immunosuppression with anti-CD40 mAb (Nonhuman Primate

Reagent Resource, University of Massachusetts Medical School,
FIGURE 1

Schematic diagrams of preparation of a composite islet-kidney graft in donor and allogeneic composite islet-kidney transplantation in a recipient.
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Worcester, MA). The baboon received kidney and vascularized

thymic lobe grafts from a GalTKO.hCD55 (11.7kg) source pig on

POD 0 with bilateral native nephrectomy. Diabetes was

subsequently induced with streptozosin (STZ. 100mg/kg on POD

5, 50mg/kg on POD 9). After confirmation of diabetes, baboon

underwent free islet transplantation into the portal vein, with islets

isolated from unrelated GalTKO.hCD55 (95kg) source pig. Islet

isolation was performed as previously described (58) and yielded

101K islet equivalents (IEQs) and 194K islet particle number (IPN).

All animals were used in compliance with guidelines provided by

the Animal Care and Use Committee at The Johns Hopkins

University School of Medicine.
Results: islet-after-kidney pig-to-baboon
xenotransplantation cures diabetes and
renal insufficiency

Both renal insufficiency and diabetes were cured with kidney-

first sequential islet and kidney xenotransplantation. The baboon

recipient maintained normal serum creatinine with no evidence of

rejection for six months following kidney and islet transplant but was

euthanized due to sepsis related to pyelonephritis in setting of stent

occlusion on POD180. Immediately after islet transplantation,

hyperglycemia was reversed with normalization of blood sugars

from >250mg/dL (pre-transplant) to 80-110 mg/dL. Porcine islets

functioned and maintained normal BG levels without any exogenous

insulin treatment throughout the recipient’s postoperative course.

Post-mortem evaluation of liver confirmed presence of insulin-

staining islets.
Discussion: timing of sequential transplants
and immunomodulatory strategies may be
important for success of islet-after-
kidney xenotransplantation

As referenced above (see Preclinical progress in porcine islet

xenotransplantation), investigators have recently achieved cure of

diabetes in baboons using pooled islets from neonatal genetically

modified pig donors (46). However, this required an average of 14

neonatal pancreases (70 piglets for 5 baboon recipients). In our

model, we have achieved normoglycemia using islets derived from a

single source adult pig with an administered islet mass of 12,500 IEQ/

kg. Of note, this is within range though slightly less than was required

in the recent clinical islet-after-kidney transplantation studies where

successful islet transplants averaged >16,000 IEQ/kg (2).

One reason for the success of free islet transplantation in this

model may be timing of sequential transplants: kidney-first

transplantation promotes absorption of anti-pig antibodies, likely

reducing IBMIR following islet transplantation, corresponding to

reduced loss of islets. This may have enabled durable reversal of

diabetes with fewer islet equivalents as compared with clinical islet-

after-kidney transplantation. Indeed, the possible antibody
Frontiers in Immunology 05
absorption benefits of sequential transplant timing is less clear in

the clinical islet-after-kidney studies, where islet transplantation

occurred well after index kidney transplantation.

Lastly, adjunctive immunomodulatory strategies may also have

played a role in the durable xenograft survival in this case. This

animal received vascularized thymic lobe (VTL) graft co-

transplantation from the kidney source pig, which has been

shown to prolong xenograft survival in pig-to-baboon renal

xenotransplantation (reviewed in (28)). Interferon gamma (IFN-

g) enzyme-linked immunosorbent spot (ELISpot) assay was

performed to assess the potential immunomodulatory effect of

VTL co-transplantation in this case. ELISpot assay at POD 180

demonstrated pig-specific unresponsiveness, suggesting that

co-transplanted VTL graft may promote immunomodulatory

effects. Further studies will clarify the mechanisms of in vitro

unresponsiveness (59).

Additional cases are needed to replicate this work, but these

encouraging results indicate that our negative control strategy,

sequential kidney followed by islet xenotransplantation may

reverse diabetes and renal insufficiency.
Porcine islet xenotransplantation: the
best path forward may be dual
indication transplantation

Porcine islet xenotransplantation is one promising strategy for

cure of diabetes among an evolving landscape of emerging therapies

in diabetes management. While islet-alone xenotransplantation

strategies continue to show improvement with source pig genetic

modifications and refinements to immunosuppression regimens,

approaches like encapsulation which allow for reversal of diabetes

without immunosuppression may be more clinically relevant.

Porcine islet xenotransplantation, in conjunction with kidney

xenotransplantation, remains a particularly compelling therapeutic

possibility for patients with diabetic nephropathy who require both

kidney and islet replacement, and who have already committed to

immunosuppression for their kidney grafts. Composite islet-kidney

transplantation has proven challenging in xenogeneic preclinical

models; however, preliminary studies in islet-after-kidney

xenotransplantation are promising and may point to a path

forward with combined islet and kidney transplantation for

diabetic nephropathy.
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